Skip to main content

Part of the book series: SERDP ESTCP Environmental Remediation Technology ((SERDP/ESTCP,volume 6))

Abstract

Many hazardous substances associate readily with sediments in marine, estuarine and freshwater environments. The science of sediment quality evaluation associated with characterizing the ecological effects of these substances has progressed dramatically over the past 30 years. It is now apparent that to reach conclusions that are accurate (related to actual field conditions), assessments of sediment quality involve much more than simply assessing sediment toxicity using laboratory tests on field-collected sediments. Optimal assessments of quality, hazard or risk associated with sediments integrate multiple methods and approaches. For example, many authors now advocate that laboratory toxicity testing be performed concurrently with physicochemical characterizations, indigenous biotic community assessment and in situ-based approaches to characterize exposures from overlying waters, sediments and advective groundwater-pulse events (Burton, 1991; Burton et al., 2005a; Greenberg et al., 2002; Adams et al., 2005). Sediment quality assessment tools and approaches also include toxicity identification evaluations (TIEs) (USEPA, 2007; Ho and Burgess, 2009), assessment of abiotic factors as stressors (Burton and Johnston, 2010) and toxicological evaluation of tissue residue (Meador et al., 2008; Sappington et al., 2011). However, compartmentalization rather than integration of key approaches and issues is a potential pitfall for sediment quality evaluation. If only one or two assessment methods are used, or any are used incorrectly, the resulting conclusions may be erroneous or have a high degree of uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

REFERENCES

  • Absil MCP, Berntssen M, Gerringa LJA. 1996. The influence of sediment, food and organic ligands on the uptake of copper by sediment-dwelling bivalves. Aquat Toxicol 34:13–29.

    Article  CAS  Google Scholar 

  • Adams SM, Hill WR, Peterson MJ, Ryon MG, Smith JG, Stewart AJ. 2002. Assessing recovery in a stream ecosystem: Applying multiple chemical and biological endpoints. Ecol Appl 12:1510–1527.

    Article  Google Scholar 

  • Adams WJ, Kimerle RA, Barnett JW. 1992. Sediment quality and aquatic life assessment. Environ Sci Technol 26:1864–1875.

    Article  CAS  Google Scholar 

  • Adams WJ, Burgess RM, Gold-Bouchot G, LeBlanc LA, Liber K, Williamson B. 2003. Pore water chemistry: Effects of sampling, storage, handling and toxicity testing. In Carr RS, Nipper M, eds, Pore water Toxicity Testing: Biological, Chemical and Ecological Considerations. SETAC Press, Pensacola, FL, USA, pp 95–124.

    Google Scholar 

  • Adams WJ, Green AS, Ahlf W, Brown SS, Burton GA, Chadwick B, Crane M, Gouguet R, Ho KT, Hogstrand C, Reynoldson TB, Ringwood AH, Savitz JD, Sibley PK. 2005. Using sediment assessment tools and a weight-of-evidence approach. In Wenning RJ, Batley GE, Ingersoll CG, Moore DW, eds, Use of Sediment Quality Guidelines and Related Tools for the Assessment of Contaminated Sediments. SETAC Press, Pensacola, FL, USA, pp 166–225.

    Google Scholar 

  • Adams WJ, Blust R, Borgmann U, Brix KV, DeForest DK, Green AS, Meyer JS, McGeer JC, Paquin PR, Rainbow PS, Wood CM. 2011. Utility of tissue residues for predicting effects of metals on aquatic organisms. Integr Environ Assess Manag 7:75–98.

    Article  CAS  Google Scholar 

  • Akerblom N, Goedkoop W. 2003. Stable isotopes and fatty acids reveal that Chironomus riparius feeds selectively on added food in standardized toxicity tests. Environ Toxicol Chem 22:1473–1480.

    CAS  Google Scholar 

  • Alther G. 2002. Organoclays remove organics and metals from water. In Kostecki PT, Calabrese EJ, Dragun J, eds, Contaminated Soils, Vol 7. Amherst Scientific Publishers, Amherst, MA, USA, pp 223–231.

    Google Scholar 

  • Anderson BS, Hester MM, Philips BM. 1996. Assessment of sediment toxicity at the sediment-water interface. In Ostrander GK, ed, Techniques in Aquatic Toxicology. Lewis, Ann Arbor, MI, USA, pp 609–624.

    Google Scholar 

  • Anderson BS, Nicely P, Gilbert K, Kosaka R, Hunt J, Phillips B. 2004. Overview of Freshwater and Marine Toxicity Tests: A Technical Tool for Ecological Risk Assessment. California Environmental Protection Agency Office of Environmental Health Hazard Assessment, Sacramento, CA, USA. 147 p.

    Google Scholar 

  • Anderson BS, Hunt JW, Philips BM, Tjeerdema RS. 2007. Navigating the TMDL Process: Sediment Toxicity. Water Environment Research Foundation, Alexandria, VA, USA. 187 p.

    Google Scholar 

  • Anderson BS, Phillips BM, Hunt JW, Clark SL, Voorhees JP, Tjeerdema RS, Casteline J, Stewart M, Crane D, Mekebri A. 2010. Evaluation of methods to determine causes of sediment toxicity in San Diego Bay, California, USA. Ecotoxicol Environ Saf 73:534–540.

    Article  CAS  Google Scholar 

  • ASTM. 2005. Standard Test Method for Measuring the Toxicity of Sediment-Associated Contaminants with Freshwater Invertebrates. E 1706–05. ASTM International, West Conshohocken, PA, USA. 118 p.

    Google Scholar 

  • ASTM. 2007a. Standard Guide for Conducting Sediment Toxicity Tests with Marine and Estuarine Polychaetous Annelids. E 1611–00. ASTM International, West Conshohocken, PA, USA. 26 p.

    Google Scholar 

  • ASTM. 2007b. Standard Guide for Conducting In-situ Field Bioassays with Caged Bivalves. E 2122–02. ASTM International, West Conshohocken, PA, USA. 30 p.

    Google Scholar 

  • ASTM. 2008a. Standard Guide for Designing Biological Tests with Sediments. E 1525–02. ASTM International, West Conshohocken, PA, USA. 25 p.

    Google Scholar 

  • ASTM. 2008b. Standard Guide for Collection, Storage, Characterization, and Manipulation of Sediments for Toxicological Testing and for Selection of Samplers Used to Collect Benthic Invertebrates. E 1391–03. ASTM International, West Conshohocken, PA, USA. 94 p.

    Google Scholar 

  • ASTM. 2008c. Standard Test Method for Measuring the Toxicity of Sediment-Associated Contaminants with Estuarine and Marine Invertebrates. E 1367–03. ASTM International, West Conshohocken, PA, USA. 62 p.

    Google Scholar 

  • ASTM. 2010. Standard Guide for Determination of the Bioaccumulation of Sediment Associated Contaminants by Benthic Invertebrates. E 1688–10. ASTM International, West Conshohocken, PA, USA. 57 p.

    Google Scholar 

  • Bailliez S, Nzihou A, Beche E, Flamant G. 2004. Removal of lead (Pb) by hydroxyapatite sorbent. Process Saf Environ Protect 82:175–180.

    Article  CAS  Google Scholar 

  • Balthis WL, Hyland JL, Bearden DW. 2006. Ecosystem responses to extreme natural events: Impacts of three sequential hurricanes in fall 1999 on sediment quality and condition of benthic fauna in the Neuse River Estuary, North Carolina. Environ Monit Assess 119:367–389.

    Article  CAS  Google Scholar 

  • Barbour MT, Gerritsen J, Snyder BD, Stribling JB. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish. EPA 841-B-99-002. U.S. Environmental Protection Agency, Washington, DC, USA.

    Google Scholar 

  • Barron MG, Hansen JA, Lipton J. 2002. Association between contaminant tissue residues and effects in aquatic organisms. Rev Environ Contam Toxicol 173:1–37.

    Google Scholar 

  • Batley GE, Stahl RG, Babut MP, Bott TL, Clark JR, Field LJ, Ho KT, Mount DR, Swartz RC, Tessier A. 2005. Scientifiic underpinnings of sediment quality guidelines. In Wenning RJ, Batley GE, Ingersoll CG, Moore DW, eds, Use of Sediment Quality Guidelines and Related Tools for the Assessment of Contaminated Sediments. SETAC Press, Pensacola, FL, USA, pp 39–119.

    Google Scholar 

  • Bay SM, Greenstein DJ, Young D. 2007. Evaluation of Methods for Measuring Sediment Toxicity in California Bays and Estuaries. Southern California Coastal Water Research Project Technical Report 503.

    Google Scholar 

  • Bay SM, Weisberg SB. 2008. A framework for interpreting sediment quality triad data. In Weisberg SB, Miller K, eds, Southern California Coastal Water Research Project Annual Report 2008. Southern California Coastal Water Research Project, Costa Mesa, CA, USA. 326 p.

    Google Scholar 

  • Bejarano AC, Maruya KA, Chandler GT. 2004. Toxicity assessment of sediments associated with various land-uses in coastal South Carolina, USA, using a meiobenthic copepod bioassay. Mar Pollut Bull 49:23–32.

    Article  CAS  Google Scholar 

  • Berge JA. 1990. Macrofauna recolonization of subtidal sediments – Experimental studies on defaunated sediment contaminated with crude-oil in 2 Norwegian Fjords with unequal eutrophication status.1. Community responses. Mar Ecol Prog Ser 66:103–115.

    Article  Google Scholar 

  • Birch GF, McCready S, Long ER, Taylor SS, Spyrakis G. 2008. Contaminant chemistry and toxicity of sediments in Sydney Harbour, Australia: Spatial extent and chemistry-toxicity relationships. Mar Ecol Prog Ser 363:71–87.

    Article  Google Scholar 

  • Blaise C, Gagne F. 2009. Bioassays and biomarkers, two pillars of ecotoxicology: Past, present and prospective uses. Fresenius Environ Bull 18:135–139.

    CAS  Google Scholar 

  • Bridges TS, Farrar JD. 1997. The influence of worm age, duration of exposure and endpoint selection on bioassay sensitivity for Neanthes arenaceodentata (Annelida, Polychaeta). Environ Toxicol Chem 16:1650–1658.

    CAS  Google Scholar 

  • Bridges TS, Berry WJ, Della Salla S, Dorn PB, Ells SJ, Gries TH, Ireland DS, Maher EM, Menzie CA, Porebski LM, Stronkhorst J. 2005. A framework for assessing and managing risks from contaminated sediments. In Wenning RJ, Batley GE, Ingersoll CG, Moore DW, eds, Use of Sediment Quality Guidelines and Related Tools for the Assessment of Contaminated Sediments. SETAC Press, Pensacola, FL, USA, pp 227–266.

    Google Scholar 

  • Brown JS, Sutula M, Stransky C, Rudolph J, Byron E. 2010. Sediment contaminant chemistry and toxicity of freshwater urban wetlands in southern California. J Am Water Resour Assoc 46:367–384.

    Article  CAS  Google Scholar 

  • Bugel SM, White LA, Cooper KR. 2010. Impaired reproductive health of killifish (Fundulus heteroclitus) inhabiting Newark Bay, NJ, a chronically contaminated estuary. Aquat Toxicol 96:182–193.

    Article  CAS  Google Scholar 

  • Bundy JG, Davey MP, Viant MR. 2009. Environmental metabolomics: A critical review and future perspectives. Metabolomics 5:3–21.

    Article  CAS  Google Scholar 

  • Burgess RM, Perron MM, Friedman CL, Suuberg EM, Pennell KG, Cantwell MG, Pelletier MC, Ho KT, Serbst JR, Ryba SA. 2009. Evaluation of the effects of coal fly ash amendments on the toxicity of a contaminated marine sediment. Environ Toxicol Chem 28:26–35.

    Article  CAS  Google Scholar 

  • Burgess R, Ho K, Biales A, Brack W. 2011. Recent developments in whole sediment toxicity identification evaluations: Innovations in manipulations and endpoints. In Brack W, ed, Effect-Directed Analysis of Complex Environmental Contamination. Springer, Berlin, Germany, pp 19–40.

    Chapter  Google Scholar 

  • Burgess RM, Berry WJ, Mount DR and Di Toro DM. 2013. Mechanistic sediment quality guidelines based on contaminant bioavailability: Equilibrium partitioning sediment benchmarks. Environ Toxicol Chem 32:102–114.

    Google Scholar 

  • Burkhard LP, Arnot J, Embry MR, Farley KJ, Hoke RA, Kitano M, Leslie HA, Lotufo GR, Parkerton TF, Sappington KG, Tomy GT, Woodburn KB. 2011. Comparing laboratory and field measured biota-sediment accumulation factors. Integr Environ Assess Manag 8: 17–31.

    Article  CAS  Google Scholar 

  • Burton GA. 1991. Assessing the toxicity of freshwater sediments. Environ Toxicol Chem 10:1585–1627.

    Article  CAS  Google Scholar 

  • Burton GA. 2002. Sediment quality criteria in use around the world. Limnol 3:65–75.

    Article  CAS  Google Scholar 

  • Burton GA, Batley GE, Chapman PM, Forbes VE, Smith EP, Reynoldson T, Schlekat CE, den Besten PJ, Bailer AJ, Green AS, Dwyer RL. 2002a. A weight-of-evidence framework for assessing sediment (or other) contamination: Improving certainty in the decision-making process. Hum Ecol Risk Assess 8:1675–1696.

    Article  Google Scholar 

  • Burton GA, Chapman PM, Smith EP. 2002b. Weight-of-evidence approaches for assessing ecosystem impairment. Hum Ecol Risk Assess 8:1657–1673.

    Article  Google Scholar 

  • Burton GA, Denton DL, Ho KT, Ireland DS. 2003. Sediment toxicity testing: Issues and methods. In Hoffman DJ, Rattner BA, Burton GA, CairnsJr J, eds, Handbook of Ecotoxicology. Lewis, Boca Raton, FL, USA, pp 70–97.

    Google Scholar 

  • Burton GA, Nguyen LTH, Janssen C, Baudo R, McWilliam R, Bossuyt B, Beltrami M, Green A. 2005a. Field validation of sediment zinc toxicity. Environ Toxicol Chem 24:541–553.

    Article  CAS  Google Scholar 

  • Burton GA, Greenberg MS, Rowland CD, Irvine CA, Lavoie DR, Brooker JA, Moore L, Raymer DFN, McWilliam RA. 2005b. In situ exposures using caged organisms: A multi-compartment approach to detect aquatic toxicity and bioaccumulation. Environ Pollut 134:133–144.

    Article  CAS  Google Scholar 

  • Burton GA, Johnston EL. 2010. Assessing contaminated sediments in the context of multiple stressors. Environ Toxicol Chem 29:2625–2643.

    Article  CAS  Google Scholar 

  • Burton GA, Rosen G, Chadwick DB, Greenberg MS, Taulbee WK, Lotufo GR, Reible DD. 2012. A sediment ecotoxicity assessment platform for in situ measures of chemistry, bioaccumulation and toxicity. Part 1: System description and proof of concept. Environ Pollut 162:449–456.

    Article  CAS  Google Scholar 

  • California State Water Resources Control Board. 1998. Sediment chemistry, toxicity, and benthic community conditions in selected water bodies of the Los Angeles Region. Final Report. CSWRCB, Sancramento, CA, USA.

    Google Scholar 

  • Carman KR, Fleeger JW, Pomarico SM. 1997. Response of a benthic food web to hydrocarbon contamination. Limnol Oceanogr 42:561–571.

    Article  CAS  Google Scholar 

  • Carpenter SR. 1996. Microcosm experiments have limited relevance for community and ecosystem ecology. Ecol 77:677–680.

    Article  Google Scholar 

  • Carr RS, Long ER, Windom HL, Chapman DC, Thursby G, Sloane GM, Wolfe DA. 1996. Sediment quality assessment studies of Tampa Bay, Florida. Environ Toxicol Chem 15:1218–1231.

    Article  CAS  Google Scholar 

  • Carr RS, Montagna PA, Biedenbach JM, Kalke R, Kennicutt MC, Hooten R, Cripe G. 2000. Impact of storm-water outfalls on sediment quality in Corpus Christi Bay, Texas, USA. Environ Toxicol Chem 19:561–574.

    CAS  Google Scholar 

  • Carr RS, Nipper M. 2003. Pore water Toxicity Testing: Biological, Chemical, and Ecological Considerations. SETAC Press, Pensacola, FL, USA, pp 1–315.

    Google Scholar 

  • Chapman PM. 1990. The sediment quality triad approach to determining pollution-induced degradation. Sci Total Environ 97/98:815–825.

    Article  Google Scholar 

  • Chapman PM. 1996. Presentation and interpretation of sediment quality triad data. Ecotoxicol 5:327–339.

    Article  Google Scholar 

  • Chapman PM, Wang FY, Germano JD, Batley G. 2002. Pore water testing and analysis: The good, the bad, and the ugly. Mar Pollut Bull 44:359–366.

    Article  CAS  Google Scholar 

  • Cho YM, Smithenry DW, Ghosh U, Kennedy AJ, Millward RN, Bridges TS, Luthy RG. 2007. Field methods for amending marine sediment with activated carbon and assessing treatment effectiveness. Mar Environ Res 64:541–555.

    Article  CAS  Google Scholar 

  • Christie H, Berge JA. 1995. In situ experiments on recolonization of intertidal mudflat fauna to sediment contaminated with different concentrations of oil. Sarsia 80:175–185.

    Google Scholar 

  • Clarke KR. 1999. Nonmetric multivariate analysis in community-level ecotoxicology. Environ Toxicol Chem 18:118–127.

    CAS  Google Scholar 

  • Clarke KR, Somerfield PJ, Airoldi L, Warwick RM. 2006. Exploring interactions by second-stage community analyses. J Exp Mar Biol Ecol 338:179–192.

    Article  Google Scholar 

  • Clarke KR, Gorley RN. 2006. PRIMER v6: User Manual/Tutorial. Primer-E, Plymouth, England.

    Google Scholar 

  • Clements WH. 1991. Characterization of stream benthic communities using substrate-filled trays: Colonization, variability, and sampling selectivity. J Freshw Ecol 6:209–221.

    Article  Google Scholar 

  • Crane M, Delaney P, Mainstone C, Clarke S. 1995. Measurement by in-situ bioassay of water-quality in an agricultural catchment. Water Res 29:2441–2448.

    Article  CAS  Google Scholar 

  • Crane M, Burton GA, Culp JM, Greenberg MS, Munkittrick KR, Ribeiro R, Salazar MH, St Jean SD. 2007. Review of aquatic in situ approaches for stressor and effect diagnosis. Integr Environ Assess Manag 3:234–245.

    Article  Google Scholar 

  • Deegan LA, Bowen JL, Drake D, Fleeger JW, Friedrichs CT, Galván KA, Hobbie JE, Hopkinson CS, Johnson M, Johnson DS, Lemay LE, Miller E, Peterson BJ, Picard C, Sheldon S, Sutherland M, Vallino J, Warren RS. 2007. Susceptibility of salt marshes to nutrient enrichment and predator removal. Ecol Appl 17:S42-S63.

    Article  Google Scholar 

  • den Besten PJ, ten Hulscher D, van Hattum B. 2003. Bioavailability, uptake and effects of PAHs in aquatic invertebrates in field studies. In Douben PET, ed, PAHs: An Ecotoxicological Perspective. John Wiley, London, United Kingdom, pp 127–146.

    Chapter  Google Scholar 

  • Depledge MH. 1996. Genetic ecotoxicology: An overview. J Exp Mar Biol Ecol 200:57–66.

    Article  CAS  Google Scholar 

  • Di Toro DM, Zarba CS, Hansen DJ, Berry WJ, Swartz RC, Cowan CE, Pavlou SP, Allen HE, Thomas NA, Paquin PR, Zarba CS, Hansen DJ, Berry WJ, Swartz RC. 1991. Technique basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ Toxicol Chem10:1541–1583.

    Article  Google Scholar 

  • Di Toro DM, Berry WJ, Burgess RM, Mount DR, O’Connor TP, Swartz RC. 2005. Predictive ability of sediment quality guidelines derived using equilibrium partitioning. In Wenning RJ, Batley GE, Ingersoll CG, Moore DW, eds, Use of Sediment Quality Guidelines and Related Tools for the Assessment of Contaminated Sediments. SETAC Press, Pensacola, FL, USA, pp 557–588.

    Google Scholar 

  • DiBattista JD. 2008. Patterns of genetic variation in anthropogenically impacted populations. Conserv Genet 9:141–156.

    Article  Google Scholar 

  • Dickson KL, Waller WT, Kennedy JH, Ammann LP. 1992. Assessing the relationship between ambient toxicity and instream biological response. Environ Toxicol Chem 11:1307–1322.

    Article  CAS  Google Scholar 

  • Doe K, Jackman P, Scroggins R. 2005. Solid-phase test for sediment toxicity using the luminescent bacterium, Vibrio fischeri. Small-scale Freshwater Toxicity Investigations, Vol 1. Springer, Dordrecht, The Netherlands, pp 107–136.

    Google Scholar 

  • Duan YH, Guttman SI, Oris JT. 1997. Genetic differentiation among laboratory populations of Hyalella Azteca: Implications for toxicology. Environ Toxicol Chem 16:691–695.

    CAS  Google Scholar 

  • Egeler P, Henry KS, Riedhammer C. 2010. Potential effects of food addition to sediment on test conditions in sediment toxicity tests. J Soils Sed 10:377–388.

    Article  CAS  Google Scholar 

  • Engler RM, Long ER, Swartz RC, Di Toro DM, Ingersoll CG, Burgess RM, Gries TH, Berry WJ, Burton GA, O’Connor TP, Chapman PM, Field LJ, Porebski LM. 2005. Chronology of the development of sediment quality assessment methods in North America. In Wenning RJ, Batley GE, Ingersoll CG, Moore DW, eds, Use of Sediment Quality Guidelines and Related Tools for the Assessment of Contaminated Sediments. SETAC Press, Pensacola, FL, USA, pp 311–344.

    Google Scholar 

  • Environment Canada. 1994. Guidance Document on Collection and Preparation of Sediments for Physicochemical Characterization and Biological Testing. EPS1/RM/29. Environmental Technology Center, Ottawa, Canada. 170 p.

    Google Scholar 

  • Environment Canada and Ontario Ministry of the Environment. 2008. Canada-Ontario Decision-Making Framework for Assessment of Great Lakes Contaminated Sediment, Environment Canada and Ontario Ministry of Environment, Canada. 75 p.

    Google Scholar 

  • Eranen JK. 2008. Rapid evolution towards heavy metal resistance by mountain birch around two subarctic copper-nickel smelters. J Evol Biol 21:492–501.

    Article  CAS  Google Scholar 

  • Farrar JD, Bridges TS. 2011. 28-Day Chronic Sublethal Test Method for Evaluating Whole Sediments Using an Early Life Stage of the Marine Polychaete Neanthes arenaceodentata. ERDC TN-DOER-R14. U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA. 15 p.

    Google Scholar 

  • Fedoroff M, Jeanjean J, Rouchaud JC, Mazerolles L, Trocellier P, Maireles-Torres P, Jones DJ. 1999. Sorption kinetics and diffusion of cadmium in calcium hydroxyapatites. Solid State Sci 1:71–83.

    Article  CAS  Google Scholar 

  • Ferretti JA, Calesso DF, Hermon TR. 2000. Evaluation of methods to remove ammonia interference in marine sediment toxicity tests. Environ Toxicol Chem 19:1935–1941.

    Article  CAS  Google Scholar 

  • Field LJ, MacDonald DD, Norton SB, Ingersoll CG, Severn CG, Smorong D, Lindskoog R. 2002. Predicting amphipod toxicity from sediment chemistry using logistic regression models. Environ Toxicol Chem 21:1993–2005.

    Article  CAS  Google Scholar 

  • Fleeger JW, Carman KR, Nisbet RM. 2003. Indirect effects of contaminants in aquatic ecosystems. Sci Total Environ 317:207–233.

    Article  CAS  Google Scholar 

  • Fleeger JW, Tita G, Carman KR, Millward RN, Moser EB, Portier RJ, GAmbrell RP. 2006. Does bioturbation by a benthic fish modify the effects of sediment contamination on saltmarsh benthic microalgae and meiofauna? J Exp Mar Biol Ecol 330:180–194.

    Article  Google Scholar 

  • Fleeger JW, Carman KR. 2011. Experimental and genetic studies of meiofauna assess environmental quality and reveal mechanisms of toxicity. Vie et Milieu-Life Environ 61:1–26.

    Google Scholar 

  • Forbes VE, Palmqvist A, Bach L. 2006. The use and misuse of biomarkers in ecotoxicology. Environ Toxicol Chem 25:272–280.

    Article  CAS  Google Scholar 

  • Garcia-Reyero N, Perkins EJ. 2011. Systems biology: Leading the revolution in ecotoxicology. Environ Toxicol Chem 30:265–273.

    Article  CAS  Google Scholar 

  • Gardestrom J, Dahl U, Kotsalainen O, Maxson A, Elfwing T, Grahn M, Bengtsson BE, Breitholtz M. 2008. Evidence of population genetic effects of long-term exposure to contaminated sediments: A multi-endpoint study with copepods. Aquat Toxicol 86:426–436.

    Article  CAS  Google Scholar 

  • Ginn TC, Pastorok RA. 1992. Assessment and management of contaminated sediments in Puget Sound. In Burton GA, ed, Sediment Toxicity Assessment. CRC Press, Boca Raton, FL, USA, pp 371–397.

    Google Scholar 

  • Gobas FAPC, Arnot JA. 2010. Food web bioaccumulation model for polychlorinated biphenyls in San Francisco Bay, California, USA. Environ Toxicol Chem 29:1385–1395.

    CAS  Google Scholar 

  • Grapentine L, Anderson J, Boyd D, Burton GA, DeBarros C, Johnson G, Marvin C, Milani D, Painter S, Pascoe T, Reynoldson T, Richman L, Solomon K, Chapman PM. 2002. A decision making framework for sediment assessment developed for the Great Lakes. Hum Ecol Risk Assess 8:1641–1655.

    Article  Google Scholar 

  • Greenberg MS, Burton GA, Duncan PB. 2000. Considering groundwater-surface water interactions in sediment toxicity assessment. SETAC Globe 1:42–44.

    Google Scholar 

  • Greenberg MS, Burton GA, Rowland CD. 2002. Optimizing interpretation of in situ effects of riverine pollutants: Impact of upwelling and downwelling. Environ Toxicol Chem 21:289–297.

    Article  CAS  Google Scholar 

  • Greenstein D, Bay S, Anderson B, Chandler GT, Farrar JD, Keppler C, Phillips B, Ringwood A, Young D. 2008. Comparison of methods for evaluating acute and chronic toxicity in marine sediments. Environ Toxicol Chem 27:933–944.

    Article  CAS  Google Scholar 

  • Guerra R, Pasteris A, Ponti M. 2009. Impacts of maintenance channel dredging in a northern Adriatic coastal lagoon. I: Effects on sediment properties, contamination and toxicity. Estuar Coast Shelf Sci 85:134–142.

    Article  CAS  Google Scholar 

  • Hallare AV, Seiler TB, Hollert H. 2011. The versatile, changing, and advancing roles of fish in sediment toxicity assessment: A review. J Soils Sed 11:141–173.

    Article  CAS  Google Scholar 

  • Haring HJ, Smith ME, Lazorchak JM, Crocker PA, Euresti A, Wratschko MC, Schaub MC. 2010. Comparison of bulk sediment and sediment elutriate toxicity testing methods. Arch Environ Contam Toxicol 58:676–683.

    Article  CAS  Google Scholar 

  • Heckmann LH, Friberg N. 2005. Macroinvertebrate community response to pulse exposure with the insecticide lambda-cyhalothrin using in-stream mesocosms. Environ Toxicol Chem 24:582–590.

    Article  CAS  Google Scholar 

  • Hellou J, Cheeseman K, Desnoyers E, Johnston D, Jouvenelle ML, Leonard J, Robertson S, Walker P. 2008. A non-lethal chemically based approach to investigate the quality of harbour sediments. Sci Total Environ 389:178–187.

    Article  CAS  Google Scholar 

  • Hickey CW, Roper DS, Buckland SJ. 1995. Metal concentrations of resident and transplanted freshwater mussels Hyridella menziesi (Unionacea: Hyriidae) and sediments in the Waikato River, New Zealand. Sci Total Environ 175:163–177.

    Article  CAS  Google Scholar 

  • Hinton DE, Baughman GL, Gardner GR, Hawkins WE, Hendricks JD, Murchelano RA, Okihiro MS. 1992. Histopathologic biomarkers. In Huggett RJ, Kimerle RA, Mehrle PM, Bergman HL, eds, Biomarkers, Biochemical, Physiological, and Histological Markers of Anthropogenic Stress. Lewis Publishers, Boca Raton, FL, USA, pp 155–209.

    Google Scholar 

  • Ho KT, Burgess RM. 2009. Marine sediment toxicity identification evaluations (TIEs): History, principles, methods, and future research. In Kassin TA, Barcelo D, eds, Contaminated Sediments. Springer, Berlin, Germany, pp 75–95.

    Chapter  Google Scholar 

  • Hummel H, Patarnello T. 1994. Genetics and pollution. In Beaumont AR, ed, Genetics and Evolution of Aquatic Organisms. Chapman & Hall, London, United Kingdom, pp 425–434.

    Google Scholar 

  • Ingersoll CG, Dillon T, Biddinger GR. 1997. Ecological Risk Assessment of Contaminated Sediments. SETAC Press, Pensacola, FL, USA. 389 p.

    Google Scholar 

  • Ingersoll CG, Wang N, Hayward JMR, Jones JR, Jones SB, Ireland DS. 2005. A field assessment of long-term laboratory sediment toxicity tests with the amphipod Hyalella azteca. Environ Toxicol Chem 24:2853–2870.

    Article  CAS  Google Scholar 

  • International Council on Mining and Metals, 2007). Metals Environmental Risk Assessment Guidance (MERAG). Final Report. ICMM. London.

    Google Scholar 

  • Ireland DS, Burton GA, Hess GG. 1996. In situ toxicity evaluations of turbidity and photoinduction of polycyclic aromatic hydrocarbons. Environ Toxicol Chem 15:574–581.

    Article  CAS  Google Scholar 

  • Ireland DS, Ho KT. 2005. Toxicity tests for sediment quality assessments. In den Besten PJ, Munawar M, eds, Ecotoxicological Testing of Marine and Freshwater Ecosystems: Emerging Techniques, Trends, and Strategies. CRC Press, Boca Raton, FL, USA, pp 1–42.

    Chapter  Google Scholar 

  • Janssen EML, Croteau MN, Luoma SN, Luthy RG. 2010. Measurement and modeling of polychlorinated biphenyl bioaccumulation from sediment for the marine polychaete Neanthes arenaceodentata and response to sorbent amendment. Environ Sci Technol 44:2857–2863.

    Article  CAS  Google Scholar 

  • Janssen EML, Oen AMP, Luoma SN, Luthy RG. 2011. Assessment of field-related influences on polychlorinated biphenyl exposures and sorbent amendment using polychaete bioassays and passive sampler measurements. Environ Toxicol Chem 30:173–180.

    Article  CAS  Google Scholar 

  • Jimenez-Tenorio N, Salamanca MJ, Garcia-Luque E, Gonzalez de Canales ML, Delvalls TA. 2008. Chronic bioassay in benthic fish for the assessment of the quality of sediments in different areas of the coast of Spain impacted by acute and chronic oil spills. Environ Toxicol 23:634–642.

    Article  CAS  Google Scholar 

  • Jones PD, Hannah DJ, Buckland SJ, Power FM, Gardner AR, Randall CJ. 1995. The induction of EROD activity in New Zealand freshwater fish species as an indicator of environmental contamination. Australas J Ecotoxicol 1:99–105.

    CAS  Google Scholar 

  • Jonker MTO, Suijkerbuijk MPW, Schmitt H, Sinnige TL. 2009. Ecotoxicological effects of activated carbon addition to sediments. Environ Sci Technol 43:5959–5966.

    Article  CAS  Google Scholar 

  • Kan JJ, Wang Y, Obraztsova A, Rosen G, Leather J, Nealson KH, Arias-Thode AM. 2011. Marine microbial community response to inorganic and organic sediment amendments in laboratory mesocosms. Ecotoxicol Environ Saf. 74:1931–41.

    Article  CAS  Google Scholar 

  • Keiter S, Peddinghaus S, Feiler U, von der Goltz B, Hafner C, Ho NY, Rastegar S, Otte JC, Ottermanns R, Reifferscheid G, Strahle U, Braunbeck T, Hammers-Wirtz M, Hollert H. 2010. DanTox - A novel joint research project using zebrafish (Danio rerio) to identify specific toxicity and molecular modes of action of sediment-bound pollutants. J Soils Sed 10:714–717.

    Article  CAS  Google Scholar 

  • Kennedy AJ, Steevens JA, Lotufo GR, Farrar JD, Reiss MR, kropp RK, Doi J, Bridges TS. 2009. A comparison of acute and chronic toxicity methods for marine sediments. Mar Environ Res 68:118–127.

    Article  CAS  Google Scholar 

  • Klerks PL, Weis JS. 1987. Genetic adaptation to heavy metals in aquatic organisms: A review. Environ Pollut 45:173–205.

    Article  CAS  Google Scholar 

  • Knowlton N. 1993. Sibling species in the sea. Annu Rev Ecol Syst 24:189–216.

    Article  Google Scholar 

  • Knox AS, Kaplan DI, Paller MH. 2006. Phosphate sources and their suitability for remediation of contaminated soils. Sci Total Environ 357:271–279.

    Article  CAS  Google Scholar 

  • Knox AS, Paller MH, Reible DD, Ma XM, Petrisor IG. 2008. Sequestering agents for active caps - Remediation of metals and organics. Soil Sed Contam 17:516–532.

    CAS  Google Scholar 

  • Lambshead PJD, Platt HM, Shaw KM. 1983. The detection of differences among assemblages of marine benthic species based on an assessment of dominance and diversity. J Nat Hist 17:850–874.

    Article  Google Scholar 

  • Lampert DJ, Sarchet WV, Reible DD. 2011. Assessing the effectiveness of thin-layer sand caps for contaminated sediment management through passive sampling. Environ Sci Technol 45:8437–8443.

    Article  CAS  Google Scholar 

  • Landrum PF, Meador JP. 2002. Is the body residue a useful dose metric for assessing toxicity? SETAC Globe 3:32–34.

    Google Scholar 

  • Lapota D, Osorio AR, Liao C and Bjorndal B. 2007. The use of bioluminescent dinoflagellates as an environmental risk assessment tool. Mar Pollut Bull 54:1857–1867.

    Google Scholar 

  • Lee MR, Correa JA. 2007. An assessment of the impact of copper mine tailings disposal on meiofaunal assemblages using microcosm bioassays. Mar Environ Res 64:1–20.

    Article  CAS  Google Scholar 

  • Liber K, Kaushik NK, Solomon KR, Carey JH. 1992. Experimental-designs for aquatic mesocosm studies - A comparison of the anova and regression design for assessing the impact of tetrachlorophenol on zooplankton populations in limnocorrals. Environ Toxicol Chem 11:61–77.

    CAS  Google Scholar 

  • Long ER, Chapman PM. 1985. A sediment quality triad-measures of sediment contamination, toxicity and infaunal community composition in Puget Sound. Mar Pollut Bull 16:405–415.

    Article  CAS  Google Scholar 

  • Long ER, MacDonald DD, Smith SL, Calder FD. 1995. Incidence of adverse biological effects within ranges if chemical concentrations in marine and estuarine sediments. Environ Manag 19:81–97.

    Article  Google Scholar 

  • Long ER, MacDonald DD. 1998. Recommended uses of empirically derived, sediment quality guidelines for marine and estuarie ecosystems. Hum Ecol Risk Assess 4:1019–1039.

    Article  Google Scholar 

  • Long ER, Ingersoll CG, MacDonald DD. 2006. Calculation and uses of mean sediment quality guideline quotients: A critical review. Environ Sci Technol 40:1726–1736.

    Article  CAS  Google Scholar 

  • Lotufo GR, Landrum PF, Gedeon ML, Tigue EA, Herche LR. 2000. Comparative toxicity and toxicokinetics of DDT and its major metabolites in freshwater amphipods. Environ Toxicol Chem 19:368–379.

    Article  CAS  Google Scholar 

  • Ma QY, Traina SJ, Logan TJ, Ryan JA. 1993. In-situ lead immobilization by apatite. Environ Sci Technol 27:1803–1810.

    Article  CAS  Google Scholar 

  • MacDonald DD, Carr RS, Calder FD, Long ER, Ingersoll CG. 1996. Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicol 5:253–278.

    Article  CAS  Google Scholar 

  • MacDonald DD, DiPinto LM, Field J, Ingersoll CG, Long ER, Swartz RC. 2000a. Development and evaluation of consensus-based sediment effect concentrations for polychlorinated biphenyls. Environ Toxicol Chem 19:1403–1413.

    Article  CAS  Google Scholar 

  • MacDonald DD, Ingersoll CG, Berger TA. 2000b. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31.

    Article  CAS  Google Scholar 

  • Maltby L, Boxall ABA, Forrow DM, Calow P, Betton CI. 1995. The effects of motorway runoff on fresh-water ecosystems. 2. Identifying major toxicants. Environ Toxicol Chem 14:1093–1101.

    Article  CAS  Google Scholar 

  • Maruya KA, Landrum PF, Burgess RM, Shine JP. 2012. Incorporating contaminant bioavailability into sediment quality assessment frameworks. Integr Environ Assess Manag 8:659–673.

    Google Scholar 

  • McCarty LS, Landrum PF, Luoma SN, Meador JP, Merten AA, Shephard BK, Van Wezel AP. 2011. Advancing environmental toxicology through chemical dosimetry: External exposures versus tissue residues. Integr Environ Assess Manag 7:7–27.

    Article  CAS  Google Scholar 

  • McElroy AE, Barron MG, Beckvar N, Driscoll SB, Meador JP, Parkerton TF, Preuss TG, Steevens JA. 2011. A review of the tissue residue approach for organic and organometallic compounds in aquatic organisms. Integr Environ Assess Manag 7:50–74.

    Article  CAS  Google Scholar 

  • McFarland VA, Clarke JU. 1999. Analysis of Uncertainty in TBP Estimation of PAH Bioaccumulation Potential in Sediments. EEDP-04-32. U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA. 14 p.

    Google Scholar 

  • McGrath JA, Parkerton TE, Hellweger FL, Di Toro DM. 2005. Validation of the narcosis target lipid model for petroleum products: Gasoline as a case study. Environ Toxicol Chem 24:2382–2394.

    Article  CAS  Google Scholar 

  • Mcleod PB, Van Den Heuvel-Greve M, Luoma SN, Luthy RG. 2007. Biological uptake of polychlorinated biphenyls by Macoma balthica from sediment amended with activated carbon. Environ Toxicol Chem 26:980–987.

    Article  CAS  Google Scholar 

  • Meador J. 2006. Rationale and procedures for using the tissue-residue approach for toxicity assessment and determination of tissue, water, and sediment quality guidelines for aquatic organisms. Hum Ecol Risk Assess 12:1018–1073.

    Article  CAS  Google Scholar 

  • Meador JP, McCarty LS, Escher BI, Adams WJ. 2008. 10th Anniversary critical review: The tissue-residue approach for toxicity assessment: Concepts, issues, application, and recommendations. J Environ Monit 10:1486–1498.

    Article  CAS  Google Scholar 

  • Meador JP, Adams WJ, Escher BI, McCarty LS, McElroy AE, Sappington KG. 2011. The tissue residue approach for toxicity assessment: findings and critical reviews from a Society of Environmental Toxicology and Chemistry Pellston Workshop. Integr Environ Assess Manag 7:2–6.

    Article  CAS  Google Scholar 

  • Mehler WT, Maul JD, You J, Lydy MJ. 2010. Identifying the causes of sediment-associated contamination in the Illinois river (USA) using a whole-sediment toxicity identification evaluation. Environ Toxicol Chem 29:158–167.

    Article  CAS  Google Scholar 

  • Melwani AR, Greenfield BK, Byron ER. 2009. Empirical estimation of biota exposure range for calculation of bioaccumulation parameters. Integr Environ Assess Manag 5:138–149.

    Article  CAS  Google Scholar 

  • Menzel R, Swain SC, Hoess S, Claus E, Menzel S, Steinberg CEW, Reifferscheid G, Sturzenbaum SR. 2009. Gene expression profiling to characterize sediment toxicity - a pilot study using Caenorhabditis elegans whole genome microarrays. BMC Genomics 10:160.

    Article  CAS  Google Scholar 

  • Menzie C, Henning MH, Cura J, Finkelstein K, Gentile J, Maughan J, Mitchell D, Petron S, Potocki B, Svirsky S, Tyler P. 1996. Special report of the Massachusetts weight-of-evidence workgroup: A weight-of-evidence approach for evaluating ecological risks. Hum Ecol Risk Assess 2:277–304.

    Article  Google Scholar 

  • Meyers MS, Fournie JW. 2002. Histopathological biomarkers as integrators of anthropogenic and environmental stressors. In Adams SM, ed, Biological Indicators of Aquatic Ecosystem Stress. American Fisheries Society, Bathesda, MD, USA, pp 221–287.

    Google Scholar 

  • Millward RN, Grant A. 2000. Pollution-induced tolerance to copper of nematode communities in the severely contaminated Restronguet Creek and adjacent estuaries, Cornwall, United Kingdom. Environ Toxicol Chem. 19:454–461.

    Article  CAS  Google Scholar 

  • Millward RN, Klerks PL. 2002. Contaminant-adaptation and community tolerance in ecological risk assessment: Introduction. Hum Ecol Risk Assess 8:921–932.

    Article  Google Scholar 

  • Millward RN, Bridges TS, Ghosh U, Zimmerman JR, Luthy RG. 2005. Addition of activated carbon to sediments to reduce PCB bioaccumulation by a polychaete (Neanthes arenaceodentata) and an amphipod (Leptocheirus plumulosus). Environ Sci Technol 39:2880–2887.

    Article  CAS  Google Scholar 

  • Monson PD, Ankley GT, Kosian PA. 1995. Phototoxic response of Lumbriculus variegatus to sediments contaminated by polycyclic aromatic hydrocarbons. Environ Toxicol Chem 14:891–894.

    CAS  Google Scholar 

  • Moore DW, Baudo R, Conder JM, Landrum PE, McFarland VA, Meador JP, Millward RN, Shine JP, Word JQ. 2005. Bioaccumulation in the assessment of sediment quality: Uncertainty and potential application. In Wenning RJ, Batley GE, Ingersoll CG, Moore DW, eds, Use of Sediment Quality Guidelines and Related Tools for the Assessment of Contaminated Sediments. SETAC Press, Pensacola, FL, USA, pp 429–496.

    Google Scholar 

  • Morrisey DJ, Underwood AJ, Howitt L. 1996. Effects of copper on the faunas of marine soft-sediments: An experimental field study. Mar Biol 125:199–213.

    Article  CAS  Google Scholar 

  • Mouneyrac C, Perrein-Ettajani H, miard-Triquet C. 2010. Influence of anthropogenic stress on fitness and behaviour of a key-species of estuarine ecosystems, the ragworm Nereis diversicolor. Environ Pollut 158:121–128.

    Article  CAS  Google Scholar 

  • Naber S, Fredette TJ, Lefkovitz L, Guza O. 2007. Predicting tissue bioaccumulation from sediment concentrations using data from multiple studies. In Proceedings of the 4th International Conference on Remediation of Contaminated Sediments, Savannah, GA, USA, January. Battelle Press, Columbus, OH, USA.

    Google Scholar 

  • NRC (National Research Council). 2001. A Risk Management Strategy for PCB-Contaminated Sediment. National Academies Press, Washington DC, USA. 452 p.

    Google Scholar 

  • Nesto N, Cassin D, Da Ros L. 2010. Is the polychaete, Perinereis rullieri (Pilato 1974), a reliable indicator of PCB and PAH contaminants in coastal sediments? Ecotoxicol Environ Saf 73:143–151.

    Article  CAS  Google Scholar 

  • Newcombe CP, MacDonald DD. 1991. Effects of suspended sediments on aquatic eosystems. North Am J Fish Manag 11:72–82.

    Article  Google Scholar 

  • Norberg-King TJ, Ausley LW, Burton DT, Goodfellow WL, Miller JL, Waller WT. 2005. Toxicity Reduction and Toxicity Identification Evaluations for Effluents, Ambient Waters, and other Aqueous Media. SETAC Press, Pensacola, FL, USA, 455 p.

    Google Scholar 

  • Oen AMP, Beckingham B, Ghosh U, KrussÃ¥, ME, Luthy RG, Hartnik T, Henriksen T, Cornelissen G. 2012. Sorption of organic compounds to fresh and field-aged activated carbons in soils and sediments. Environ Sci Technol 46:810–817.

    Article  CAS  Google Scholar 

  • Ohio Environmental Protection Agency. 1987. Biological Criteria for the Protection of Aquatic Life: Volume II: Users Manual for Biological Field Assessment of Ohio Surface Waters. Ohio Environmental Protection Agency, Ecological Assessment Section, Division of Water Quality, Columbus, OH, USA.

    Google Scholar 

  • Paller MH, Knox AS. 2010. Amendments for the in situ remediation of contaminated sediments: Evaluation of potential environmental impacts. Sci Total Environ 408:4894–4900.

    Article  CAS  Google Scholar 

  • Peakall DB. 1994. The role of biomarkers in environmental assessment (1). Introduction. Ecotoxicol 3:157–160.

    Article  Google Scholar 

  • Peters C, Parnell I, Marmorek D, Gregory R, Eppel T. 1998. Conclusions and Recommendations from the PATH Weight of Evidence Workshop, Vancouver, BC. ESSA Technologies, Vancouver, BC, Canada.

    Google Scholar 

  • Petersen DG, Sundback K, Larson F, Dahllof I. 2009. Pyrene toxicity is affected by the nutrient status of a marine sediment community: Implications for risk assessment. Aquat Toxicol 95:37–43.

    Article  CAS  Google Scholar 

  • PIANC. 2006. Biological Assessment Guidance for Dredged Material. PIANC EnviCom Working Group 8. The International Navigation Association, Brussels, Belgium. 56 p.

    Google Scholar 

  • Postma JF, Buckert-de Jong MC, Staats N, Davids C. 1994. Chronic toxicity of cadmium to Chironomus riparius (Diptera: Chronomidae) at different food levels. Arch Environ Contam Toxicol 26:143–148.

    Article  CAS  Google Scholar 

  • Power EA, Chapman PM. 1992. Assessing sediment quality. In Burton GA, ed, Contaminated Sediment Toxicity Assessment. CRC Press, Boca Raton, FL, USA, pp 1–18.

    Google Scholar 

  • Pridmore RD, Thrush SF, Wilcock RJ, Smith TJ, Hewitt JE, Cummings VJ. 1991. Effect of the organochlorine pesticide technical chlordane on the population-structure of suspension and deposit feeding bivalves. Mar Ecol Prog Ser 76:261–271.

    Article  CAS  Google Scholar 

  • Raisuddin S, Kwok KWH, Leung KMY, Schlenk D, Lee JS. 2007. The copepod Tigriopus: A promising marine model organism for ecotoxicology and environmental genomics. Aquat Toxicol 83:161–173.

    Article  CAS  Google Scholar 

  • Rehg KJ, Packman AI, Ren J. 2005. Effects of suspended sediment characteristics and bed sediment transport on streambed clogging. Hydrol Proc 19:413–427.

    Article  Google Scholar 

  • Reible D, Lampert D, Constant D, Mutch J, Zhu Y. 2006. Active capping demonstration in the Anacostia river, Washington, D.C. Remediat J 17:39–53.

    Article  Google Scholar 

  • Rocha-Olivares A, Fleeger JW, Foltz DW. 2001. Decoupling of molecular and morphological evolution in deep lineages of a meiobenthic harpacticoid copepod. Mol Biol Evol 18:1088–1102.

    Article  CAS  Google Scholar 

  • Rocha-Olivares A, Fleeger JW, Foltz DW. 2004. Differential tolerance among cryptic species: A potential cause of pollution-related reductions in genetic diversity. Environ Toxicol Chem 23:2132–2137.

    Article  CAS  Google Scholar 

  • Rodriguez P, Reynoldson T. 1999. Laboratory methods and criteria for sediment bioassessment. In Manual of Bioassessment of Aquatic Sediments Quality. Lewis, Boca Raton, FL, USA, pp 83–133.

    Google Scholar 

  • Roper DS, Hickey CW. 1995. Effects of food and silt on filtration, respiration and dondition of the fresh-water mussel Hyridella menziesi (Unionacea, Hyriidae) - Implications for bioaccumulation. Hydrobiologia 312:17–25.

    Article  Google Scholar 

  • Rosen G, Leather J, Kan J, Arias-Thode AM. 2011. Ecotoxicological response of marine organisms to inorganic and organic sediment amendments in laboratory exposure. Ecotoxicol Environ Saf 74:1921–1930.

    Article  CAS  Google Scholar 

  • Rosen G, Chadwick DB, Burton GA, Taulbee WK, Greenberg MS, Lotufo GR, Reible DD. 2012. A sediment ecotoxicity assessment platform for in situ measures of chemistry, bioaccumulation and toxicity. Part 2: Integrated application to a shallow estuary. Environ Pollut 162:457–465.

    Article  CAS  Google Scholar 

  • Rutgers M.1998. Rapid method for assessing pollution-induced community tolerance in contaminated soil. EnvironToxicol Chem 17:2210–2213.

    Article  Google Scholar 

  • Salazar MH, Salazar SM, Burton DT, Hall LW. 2005. An integrated case study for evaluating the impacts of an oil refinery effluent on aquatic biota in the Delaware River: Bivalve bioavailability studies. Hum Ecol Risk Assess 11:837–859.

    Article  CAS  Google Scholar 

  • Santos EM, Ball JS, Williams TD, Wu HF, Ortega F, van Aerle R, Katsiadaki I, Falciani F, Viant MR, Chipman JK, Tyler CR. 2010. Identifying health impacts of exposure to copper using transcriptomics and metabolomics in a fish model. Environ Sci Technol 44:820–826.

    Article  CAS  Google Scholar 

  • Sappington KG, Bridges TS, Bradbury SP, Erickson RJ, Hendriks AJ, Lanno RP, Meador JP, Mount DR, Salazar MH, Spry DJ. 2011. Application of the tissue residue approach in ecological risk assessment. Integr Environ Assess Manag 7:116–140.

    Article  CAS  Google Scholar 

  • Sarda N, Burton GA. 1995. Ammonia variation in sediments: Spatial, temporal and method-related effects. Environ Toxicol Chem 14:1499–1506.

    Article  CAS  Google Scholar 

  • Sasson-Brickson G, Burton GA. 1991. In situ and laboratory sediment toxicity testing with Ceriodaphnia dubia. Environ Toxicol Chem 10:201–207.

    CAS  Google Scholar 

  • Shurin JB, Gruner DS, Hillebrand H. 2006. All wet or dried up? Real differences between aquatic and terrestrial food webs. Proc R Soc B 273:1–9.

    Article  Google Scholar 

  • Sims JG, Moore DW. 1995. Risk of pore water hydrogen sulfide toxicity in dredged material bioassays. Miscellaneous Paper D-95-4. U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, USA. 39 p.

    Google Scholar 

  • Singh SP, Ma LQ, Harris WG. 2001. Heavy metal interactions with phosphatic clay: Sorption and desorption behavior. J Environ Qual 30:1961–1968.

    Article  CAS  Google Scholar 

  • Staton JL, Schizas NV, Chandler GT, Coull BC, Quattro JM. 2001. Ecotoxicology and population genetics: The emergence of ‘phylogeographic and evolutionary ecotoxicology’. Ecotoxicol 10:217–222.

    Article  CAS  Google Scholar 

  • Steevens JA, Reiss MR, Pawlisz AV. 2005. A methodology for deriving tissue residue benchmarks for aquatic biota: A case study for fish exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin and equivalents. Integr Environ Assess Manag 1:142–151.

    Article  CAS  Google Scholar 

  • Stewart-Oaten A, Bence JR. 2001. Temporal and spatial variation in environmental impact assessment. Ecol Monogr 71:305–309.

    Article  Google Scholar 

  • Street GT, Montagna PA. 1996. Loss of genetic diversity in Harpacticoida near offshore platforms. Mar Biol 126:271–282.

    Article  CAS  Google Scholar 

  • Sturmbauer C, Opadiya GB, Niederstatter H, Riedmann A, Dallinger R. 1999. Mitochondrial DNA reveals cryptic oligochaete species differing in cadmium resistance. Mol Biol Evol 16:967–974.

    Article  CAS  Google Scholar 

  • Style T, Fischenich C. 2002. Techniques for Measuring Substrate Embeddedness. ERDC TN-EMRRP-SR-36. US Army Engineer Research and Development Center, Vicksburg, MS, USA. 25 p.

    Google Scholar 

  • Sundelin B, Elmgren R. 1991. Meiofauna of an experimental soft bottom ecosystem - Effects of macrofauna and cadmium exposure. Mar Ecol Prog Ser 70:245–255.

    Article  Google Scholar 

  • Suter GW. 1993. Ecological Risk Assessment. Lewis Publishers, Boca Raton, FL, USA. 560 p.

    Google Scholar 

  • Swanson MB, Socha AC. 1997. Chemical Ranking and Scoring: Guidelines for Relative Assessments of Chemicals. Proceedings of the Pellston Workshop on Chemical Ranking and Scoring. SETAC Press, Pensacola, FL, USA. 154 p.

    Google Scholar 

  • Swartz RC. 1999. Consensus sediment quality guidelines for polycyclic aromatic hydrocarbon mixtures. Environ Toxicol Chem 18:780–787.

    Article  CAS  Google Scholar 

  • Taub FB. 1997. Unique information contributed by multispecies systems - Examples from the standardized aquatic microcosm. Ecol Appl 7:1103–1110.

    Article  Google Scholar 

  • Theodorakis CW. 2003. Establishing causality between population genetic alterations and environmental contamination in aquatic organisms. Hum Ecol Risk Assess 9:37–58.

    Article  Google Scholar 

  • Tracey GA, Hansen DJ. 1996. Use of biota-sediment accumulation factors to assess similarity of nonionic organic chemical exposure to benthically-coupled organisms of differing trophic mode. Arch Environ Contam Toxicol 30:467–475.

    Article  CAS  Google Scholar 

  • USACE. 2012a. BSAF Database. http://el.erdc.usace.army.mil/bsafnew. Accessed February 20, 2012, Charles H. Lutz, technical point of contact.

  • USACE. 2012b. The Environmental Residue-Effects Database (ERED). http://.el.erdc.usace.army.mil/ered. Accessed May 3, 2012, Charles H. Lutz, technical point of contact.

    Google Scholar 

  • USEPA (U.S. Environmental Protection Agency), USACE (U.S. Army Corps of Engineers). 1991. Evaluation of Dredged Material Proposed for Ocean Disposal - Testing Manual. EPA-503/8-91/001. Washington, DC, USA. 214 p.

    Google Scholar 

  • USEPA, USACE. 1998. Evaluation of Dredged Material Proposed for Disposal in Waters of the U.S. - Testing Manual. EPA-823-B-004. Washington, DC, USA.

    Google Scholar 

  • USEPA. 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments - Interim Final. EPA 540/R/97/006. Environmental Response Team, Edison, NJ, USA.

    Google Scholar 

  • USEPA. 2000. Methods for Measuring the Toxicity and Bioaccumulation of Sediment-Associated Contaminants with Freshwater Invertebrates. Second Edition. EPA-600/R-99/064. Office of Research and Development, Duluth, MN, USA.

    Google Scholar 

  • USEPA. 2001. Method for Assessing the Chronic Toxicity of Sediment-Associated Contaminants with Leptocheirus plumulosus. Office of Research and Development, Duluth, MN, USA.

    Google Scholar 

  • USEPA. 2002. A Guidance Manual to Support the Assessment of Contaminated Sediments in Freshwater Ecosystems. Volume III - Interpretation of the Results of Sediment Quality Investigations. EPA-905-B02-001-C. Great Lakes National Program Office, Chicago, IL, USA.

    Google Scholar 

  • USEPA. 2003a. Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: PAH mixtures. EPA-600-R-02-013. Office of Research and Development, Washington, DC, USA.

    Google Scholar 

  • USEPA. 2003b. Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Dieldrin. EPA-600-R-02-010. Office of Research and Development, Washington, DC, USA.

    Google Scholar 

  • USEPA. 2003c. Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Endrin. EPA-600-R-02-009. Office of Research and Development, Washington, DC, USA.

    Google Scholar 

  • USEPA. 2005a. Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Metal Mixtures (Cadmium, Copper, Lead, Nickel, Silver and Zinc). EPA/600/R-02/011. Office of Research and Development, Washington, DC, USA.

    Google Scholar 

  • USEPA. 2005b. Contaminated Sediment Remediation Guidance for Hazardous Waste Sites. EPA-540-R-05-012. Office of Solid Waste and Emergency Response. Washington, DC, USA.

    Google Scholar 

  • USEPA. 2007. Sediment Toxicity Identification Evaluation (TIE) Phases I, II, and III Guidance Document. EPA 600/R-07/080. Office of Research and Development, Washington, DC, USA.

    Google Scholar 

  • USEPA. 2008. Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Compendium of Tier 2 Values for Nonionic Organics. EPA/600/R-02/016. Office of Research and Development, Washington, DC, USA.

    Google Scholar 

  • Underwood AJ. 1981. Techniques of analysis of variance in experimental marine biology and ecology. Oceanogr Mar Biol Ann Rev 19:513–605.

    Google Scholar 

  • van Beelen P. 2003. A review on the application of microbial toxicity tests for deriving sediment quality guidelines. Chemosphere 53:795–808.

    Article  CAS  Google Scholar 

  • van der Oost R, Porte-Visa C, van den Brink NW. 2005. Biomarkers in environmental assessment. In den Besten PJ, Munawar M, eds, Ecotoxicological Testing of Marine and Freshwater Ecosystems: Emerging Techniques, Trends, and Strategies. CRC Press, Boca Raton, FL, USA, pp 87–152.

    Google Scholar 

  • Vidal DE, Bay SM. 2005. Comparative sediment quality guideline performance for predicting sediment toxicity in southern California, USA. Environ Toxicol Chem 24:3173–3182.

    Article  CAS  Google Scholar 

  • Vogel S. 1994. Life in Moving Fluids: The Physical Biology of Flow. Princeton University Press, Princeton, NJ, USA. 484 p.

    Google Scholar 

  • von Stackelberg KE, Menzie CA. 2002. A cautionary note on the use of species presence and absence data in deriving sediment criteria. Environ Toxicol Chem 21:466–472.

    Article  Google Scholar 

  • Ward D, Perez-Landa V, Spadaro D, Simpson S, Jolley D. 2011. An assessment of three harpacticoid copepod species for use in ecotoxicological testing. Arch Environ Contam Toxicol:1–12.

    Google Scholar 

  • Warren LW, Klaine SJ, Finley MT. 1995. Development of a field bioassay with juvenile mussels. J N Am Benthol Soc 14:341–346.

    Article  Google Scholar 

  • Warwick RM, Clarke KR. 1994. Relearning the ABC - Taxonomic changes and abundance biomass relationships in disturbed benthic communities. Mar Biol 118:739–744.

    Article  Google Scholar 

  • Watanabe H, Iguchi T. 2006. Using ecotoxicogenomics to evaluate the impact of chemicals on aquatic organisms. Mar Biol 149:107–115.

    Article  CAS  Google Scholar 

  • Watzin MC, Roscigno PF, Burke WD. 1994. Community-level field method for testing the toxicity of contaminated sediment in estuaries. Environ Toxicol Chem 13:1187–1194.

    Article  CAS  Google Scholar 

  • Weiss JM, Reice SR. 2005. The aggregation of impacts: Using species-specific effects to infer community-level disturbances. Ecol Appl 15:599–617.

    Article  Google Scholar 

  • Wenning RJ, Ingersoll CG. 2002. Summary of the SETAC Pellston Workshop on Use of Sediment Quality Guidelines and Related Tools for the Assessment of Contaminated Sediments - Executive Summary of a SETAC Pellston Workshop. SETAC Press, Pensacola, FL, USA. 48 p.

    Google Scholar 

  • Wenning RJ, Adams WJ, Batley GE, Berry WJ, Birge WJ, Burton GA, Douglas WS, Engler RM, Ingersoll CG, Moore DW, Stahl RG. 2005a. Executive summary. In Wenning RJ, Batley GE, Ingersoll CG, Moore DW, eds, Use of Sediment Quality Guidelines and Related Tools for the Assessment of Contaminated Sediments. SETAC Press, Pensacola, FL, USA, pp 11–38.

    Google Scholar 

  • Wenning RJ, Batley GE, Ingersoll CG, Moore DW. 2005b. Use of Sediment Quality Guidelines and Related Tools for the Assessment of Contaminated Sediments. SETAC Press, Pensacola, FL, USA, pp 1–815.

    Google Scholar 

  • Weston DP, Ding YP, Zhang MH and Lydy MJ. 2013. Identifying the cause of sediment toxicity in agricultural sediments: The role of pyrethroids and nine seldom-measured hydrophobic pesticides. Chemosphere 90:958–964.

    Google Scholar 

  • Wiegers JK, Feder HM, Mortensen LS, Shaw DG, Wilson VJ, Landis WG. 1998. A regional multiple-stressor rank-based ecological risk assessment for the fjord of Port Valdez, Alaska. Hum Ecol Risk Assess 4:1125–1173.

    Article  Google Scholar 

  • Winger PV, Albrecht B, Anderson BS, Bay SM, Bona F, Stephenson GL. 2003. Comparison of pore water and solid-phase sediment toxicity tests. In Carr RS, Nipper M, eds, Pore Water Toxicity Testing: Biological, Chemical, and Ecotoxicological Considerations. SETAC Press, Pensacola, FL, USA, pp 37–62.

    Google Scholar 

  • Word JQ, Gardiner WW, Moore DW. 2005. Influence of confounding factors on SGGs and their application to estuarine and marine sediment evaluations. In Wenning RJ, Batley GE, Ingersoll CG, Moore DW, eds, Use of Sediment Quality Guidelines and Related Tools for the Assessment of Contaminated Sediments. SETAC Press, Pensacola, FL, USA, pp 633–686.

    Google Scholar 

  • You J, Harwood AD, Li H, Lydy MJ. 2011. Chemical techniques for assessing bioavailability of sediment- associated contaminants: SPME versus Tenax extraction. J Environ Monit 13: 792–800.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lotufo, G.R., Burton, G.A., Rosen, G., Fleeger, J.W. (2014). Assessing Biological Effects. In: Reible, D. (eds) Processes, Assessment and Remediation of Contaminated Sediments. SERDP ESTCP Environmental Remediation Technology, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6726-7_6

Download citation

Publish with us

Policies and ethics