Skip to main content
Log in

Atmospheric chemistry of carbon disulphide

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

The oxidation of carbon disulphide has been studied under conditions which are likely to pertain in the atmosphere. The quantum yield for direct photo-oxidation of CS2 in air at 1 atm pressure, using near UV radiation was 0.012, with OCS as a major product. The rate coefficient (k 1) for the reaction of OH with CS2, was determined from measurements of OCS formation in the near UV photolysis of HONO−CS2−O2−N2 mixtures. k 1 was dependent on oxygen concentration rising from ≤4×10-14 cm3 molecule-1 s-1 at O2≤15 Torr to (2.0±1.0)×10-12 cm3 molecule-1 s-1 at 1 atm air and 300 K. Equimolar amounts of carbonyl sulphide and sulphur dioxide were the major reaction products.

The concentration of carbon disulphide in the ambient atmosphere was measured and the concentration to be expected in the background atmosphere was estimated. Rate and concentration data were used to show that carbon disulphide oxidation represents a major source for atmospheric carbonyl sulphide. It can also serve as an alternate source for atmospheric sulphur dioxide in addition to that produced from hydrogen sulphide and dimethyl sulphide.

A consideration of atmospheric concentrations and rate data for these trace sulphur gases suggests that the natural sulphur budget is much smaller than the yearly amounts of sulphur dioxide emitted from anthropogenic sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, D. F., Farwell, S. O., Pack, M. R., and Bamesberger, W. L., 1979, Preliminary measurements of biogenic sulphur-containing gas emissions from soils, J. Air Pollut. Control Ass. 29, 380–383.

    Google Scholar 

  • Atkins, D. H. F. and Cox, R. A., 1973, The 365 nm photolysis of nitrous acid vapour in air, AERE Report R-7615, HMSO, London.

    Google Scholar 

  • Atkinson, R., Perry, R. A., and Pitts, J. N. Jr., 1978, Rate constants for the reactions of OH radicals with COS, CS2 and CH3−S−CH3 over the temperature range 299–430 K, Chem. Phys. Lett. 54, 14–18.

    Google Scholar 

  • Baulch, D. L., Cox, R. A., Crutzen, P. J., Hampson, R. F. Jr., Kerr, J. A., Troe, J., and Watson, R. T., 1982, Evaluated kinetic and photochemical data for atmospheric chemistry: supplement 1, CO-DATA Task Group on chemical kinetics, J. Phys. Chem. Ref. Data, 11, 327–496.

    Google Scholar 

  • Barnard, W. R., Andreae, M. O., Watkins, W. E., Bingemer, H., and Georgii, H. W., 1982, The flux of dimethyl sulphide from the oceans to the atmosphere, J. Geophys. Res. 87, 8787–8793.

    Google Scholar 

  • Bandy, A. R., Maroulis, P. J. Shalaby, L., and Wilner, L. A., 1981, Evidence for a short tropospheric lifetime for carbon disulphide, Geophys. Res. Lett. 8, 1180–1183.

    Google Scholar 

  • Brice, K. A., Derwent, R. G., Eggleton, A. E. J., and Penkett, S. A., 1982, Measurements of CCl3F and CCl4 at Harwell over the period January 1975–June 1981 and the atmospheric lifetime of CCl3F, Atmos. Environ. 16, 2543–2554.

    Google Scholar 

  • Brus, L. E., 1971, Two exponential decay of 3371A laser excited CS2 fluorescence, Chem. Phys. Lett. 12, 116–119.

    Google Scholar 

  • Carter, W. P. L., Atkinson, R., Winer, A. M., and Pitts, J. N. Jr., 1974/5, Experimental investigation of chamber dependent radical sources, J. Photochem. 3, 291–299.

    Google Scholar 

  • Cox, R. A., 1974/5, The photolysis of gaseous nitrous acid, J. Photochem. 3, 175–188.

    Google Scholar 

  • Cox, R. A., Derwent, R. G., Kearsey, S. V., Batt, L., and Patrick, K. G., 1980, Photolysis of methyl nitrate: kinetics of the reaction of the methoxy radical with O2, J. Photochem. 13, 149–163.

    Google Scholar 

  • Cox, R. A. and Sheppard, D., 1980, Reactions of OH radicals with gaseous sulphur compounds, Nature 284, 330–331.

    Google Scholar 

  • Crutzen, P. J., 1976, The possible importance of OCS for the sulphate layer of the stratosphere, Geophys. Res. Lett. 3, 73–76.

    Google Scholar 

  • Crutzen, P. J., Heidt, L. E., Krasnec, J. P., Pollock, W. H., and Seiler, W., 1979, Biomas burning as a source of atmospheric gases, CO, H2, N2O, NO, CH3Cl and COS. Nature 282, 253–256.

    Google Scholar 

  • De Sorgo, M., Yarwood, A. J., Strausz, O. P., and Gunning, H. E., 1965, The photolysis of carbon disulphide and carbon disulphide-oxygen mixtures, Can. J. Chem. 43, 1886–1891.

    Google Scholar 

  • Delmas, R. and Servant, J., 1981, The origins of sulphur compounds in the atmosphere of a zone of high productivity (Gulf of Guinea), Paper presented at the 3rd IAMAP Conference Hamburg, August, 1981.

  • Douglas, A. E. and Milton, E. V. R., 1964, Zeeman effect and rotational analysis of the near Ultraviolet spectrum of CS2, J. Chem. Phys. 41, 357–362.

    Google Scholar 

  • Erikson, E., 1960, The yearly circulation of chloride and sulphur in nature: meteorological, geochemical and pedological implications, Part II, Tellus, 63–109.

  • Friend, J. P., 1973, The global sulphur cycle, in S. I. Rasool (ed.), Chemistry of the Lower Atmosphere, Plenum Press, New York, pp. 117–201.

    Google Scholar 

  • Graham, R. E. and Gutman, D., 1977, Temperature dependence of rate constants and branching ratios for the reaction of oxygen atoms with carbon disulphide, J. Phys. Chem. 81, 207–209.

    Google Scholar 

  • Granat, L., Hallberg, R. O., and Rodhe, H., 1976, The global sulphur cycle, in B. H. Svennson and R. Soderland (eds.), Nitrogen, Phosphorus and Sulphur, Scope Report No. 7, Ecol. Bull. (Stockholm).

  • Hitchcock, D. R., 1975, Dimethyl sulphide emissions to the global biosphere, Chemosphere 4, 137–138.

    Google Scholar 

  • Inn, E. Cy. Y. and Vedder, J. F., 1981, Measurements of stratospheric sulphur constituents, Geophys. Res. Lett. 8, 5–8.

    Google Scholar 

  • Johnson, J. E., 1981, The lifetime of carbonyl sulphide in the troposphere, Geophys. Res. Letts. 8 938–940.

    Google Scholar 

  • Jones, B. M. R. and Penkett, S. A., 1980, Improvements to a flame photometric detector to allow measurement of sulphur gases in ambient air, Harwell Report AERE R-9764, HMSO, London.

    Google Scholar 

  • Jones, B. M. R., Burrows, J. P., Cox, R. A., and Penkett, S. A., 1982, OCS formation in the reaction of OH with CS2, Chem. Phys. Lett. 88, 372–376.

    Google Scholar 

  • Junge, C. E., 1960, Sulphur in the atmosphere, J. Geophys. Res. 65, 227–237.

    Google Scholar 

  • Kellogg, W. W., Cadle, R. D., Allen, E. R., Lazrus, A. L., and Martell, E. A., 1972, The sulphur cycle, Science 175, 587–596.

    Google Scholar 

  • Kirk-Othmer, 1978, Encyclopedia of Chemical Technology, 3rd Edn, Vol. 4, Wiley-Interscience, New York.

    Google Scholar 

  • Kurylo, M. J., 1978, Flash photolysis resonance fluorescence investigation of the reactions of OH radicals with OCS and CS2, Chem. Phys. Lett. 58, 238–242.

    Google Scholar 

  • Lambert, C. and Kimbell, G. H., 1973, The fluorescence of CS2 vapour, Can. J. Chem. 2601–2608.

  • Leu, M. T. and Smith, R. M., 1982, Rate constants for the reaction between OH and CS2 at 298 and 520 K, J. Phys. Chem 86, 958–961.

    Google Scholar 

  • Liss, P. S. and Slater, P. G., 1974, Flux of gases across the air sea interface, Nature, 247, 181–184.

    Google Scholar 

  • Logan, J. A. M., McElroy, M. B., Wofsy, S. C., and Prather, M. J., 1979, Oxidation of CS2 and COS: sources for atmospheric SO2, Nature 281, 185–188.

    Google Scholar 

  • Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B., 1981, Tropospheric chemistry: a global perspective, J. Geophys. Res. 86, 7210–7254.

    Google Scholar 

  • Lovelock, J. E., Maggs, R. J., and Rasmussen, R. A., 1972, Atmospheric dimethyl sulphide and the natural sulphur cycle, Nature 267, 452–453.

    Google Scholar 

  • Lovelock, J. E., 1974, CS2 and the natural sulphur cycle, Nature 248, 625–626.

    Google Scholar 

  • Maroulis, P. J. and Bandy, A. R., 1980, Measurements of atmospheric concentrations of CS2 in the Eastern United States, Geophys. Res. Lett. 7, 681–684.

    Google Scholar 

  • Maroulis, P. J., Torres, A. L., Goldberg, A. B., and Bandy, A. R., 1980, Atmospheric SO2 measurements on project GAMETAG, J. Geophys. Res. 85, 7345–7349.

    Google Scholar 

  • Nguyen, B. C., Gaudry, A., Nadaud, P., and Lambert, G., 1981, Dimethyl sulphide production at the air sea interface, Paper presented at the 3rd IAMAP Conference, Hamburg, August, 1981.

  • Penkett, S. A., 1981, The application of analytical techniques to the understanding of chemical processes occurring in the atmosphere, Tox. Env. Chem. 3, 291–321.

    Google Scholar 

  • Rasmussen, R. A., Khalil, M. A. K., and Hoyt, S. D., 1982, The oceanic source of carbonyl sulphide (OCS), Atmos. Env. 16, 1591–1594.

    Google Scholar 

  • Ravishankara, A. R., Kreutter, N. M., Shah, R. C., and Wine, P. H., 1980, Rate of reaction of OH with COS, Geophys. Res. Lett. 7, 861–864.

    Google Scholar 

  • Robinson, E. and Robbins, R. C., 1970, Gaseous sulfur pollutants from urban and natural resources, J. Air Pollut. Control. Ass. 20, 253–255.

    Google Scholar 

  • Rowland, S., 1979, The atmospheric and oceanic sinks for carbonyl sulphide, 4th International Conference of the Commission on Atmospheric Chemistry and Global Pollution, Boulder, Colorado, Abstract IV-6, August, 1979.

  • Sandalls, F. J. and Penkett, S. A., 1977, Measurements of carbonyl sulphide and carbon disulphide in the atmosphere, Atmos. Env. 11, 197–199.

    Google Scholar 

  • Slatt, B. J., Natusch, D. F. S., Propero, J. M., and Savoie, D. C., 1978, Hydrogen sulphide in the atmosphere of the northern equitorial Atlantic Ocean and its relation to the global cycle, Atmos. Env. 12, 981–991.

    Google Scholar 

  • Subramonia Iyer, R. and Rowland, F. S., 1980, A significant upper limit for the rate of formation of OCS from the reaction of OH with CS2, Geophys. Res. Lett. 7, 797–800.

    Google Scholar 

  • Sze, N. D. and Ko, M. K. W., 1979, Is CS2 a precursor for atmospheric COS?, Nature 278, 731–732.

    Google Scholar 

  • Sze, N. D. and Ko, M., 1980, Photochemistry of COS, CS2, CH3SCH3 and H2S: Implications for the atmospheric sulphur cycle, Atmos. Env. 14, 1223–1239.

    Google Scholar 

  • Torres, A. L., Maroulis, P. J., Goldberg, A. B., and Bandy, A. R., 1980, Atmospheric OCS measurements on project GAMETAG. J. Geophys. Res. 85, 7357–7360.

    Google Scholar 

  • Turco, R. P., Whitten, R. C., Toon, O. B., Pollock, J. B., and Hamill, P., 1980, OCS, stratospheric aerosols and climate, Nature 283, 283–286.

    Google Scholar 

  • Turco, R. P., Cicerone, R. J., Inn, E. C. Y., and Capone, C. A., 1981, Long wavelength carbonyl sulphide photooxidation, J. Geophys. Res. 86, 5373–5377.

    Google Scholar 

  • Volz, A., Ehhalt, D. H., and Derwent, R. G., 1981, Seasonal and latitudinal variation of 14CO and the tropospheric concentration of OH radicals, J. Geophys. Res. 86, 5163–5171.

    Google Scholar 

  • Wine, P. H., Chameides, W. L., and Ravishankara, A. R., 1980, Potential role of CS2 photooxidation in tropospheric sulphur chemistry, J. Phys. Chem. 84, 2499–2503.

    Google Scholar 

  • Wine, P. H., Shah, R. C., and Ravishankara, A. R., 1980, Rate of reaction of OH with CS2, J. Phys. Chem. 84, 2499–2503.

    Google Scholar 

  • Wood, W. P. and Heicklen, J., 1971, The photooxidation of carbon disulphide, J. Phys. Chem. 75, 854–860.

    Google Scholar 

  • Wright, F. J., 1960, Flash photolysis of carbon disulphide and its photochemically initiated oxidation, J. Phys. Chem. 64, 1648–1652.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, B.M.R., Cox, R.A. & Penkett, S.A. Atmospheric chemistry of carbon disulphide. J Atmos Chem 1, 65–86 (1983). https://doi.org/10.1007/BF00113980

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00113980

Key Words

Navigation