Skip to main content
Log in

Direct oxidation of hydrogen sulfide over vanadium catalysts: I. Kinetics of the reaction

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The kinetics of H2S oxidation with atmospheric oxygen over V2O5 has been investigated at temperatures of 150–250°C, O2: H2S > 4 mol/mol, and initial H2S concentrations of up to 3 vol %. In spite of the large excess of oxygen over hydrogen sulfide, the H2S conversion rate depends on the oxygen concentration and does not depend on the hydrogen sulfide concentration. The temperature dependence of the H2S conversion rate differs markedly from the Arrhenius dependence and is nearly linear. The SO2 formation rate obeys the Arrhenius equation. The mechanism suggested for hydrogen sulfide oxidation includes SO2 and liquid sulfur formation steps and the interaction between H2S and SO2 in a liquid sulfur film. Reaction rates have been calculated for this reaction mechanism. The calculated rates coincide with experimental data. Numerical values of rate constants have been obtained for the liquid-phase interaction between H2S and SO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marshneva, V.I. and Mokrinskii, V.V., Kinet. Katal., 1988, vol. 29, no. 4, p. 989.

    CAS  Google Scholar 

  2. Batygina, M.V., Dobrynkin, N.M., Kirichenko, O.A., Khairulin, S.R., and Ismagilov, Z.R., React. Kinet. Catal. Lett., 1992, vol. 48, p. 55.

    Article  CAS  Google Scholar 

  3. Kovalenko, O.N., Kundo, N.N., Novopashina, V.M., and Khanaev, V.M., React. Kinet. Catal. Lett., 1998, vol. 64, no. 1, p. 129.

    Article  CAS  Google Scholar 

  4. Li, K. and Shyu, N., Ind. Eng. Chem. Res., 1997, vol. 36, no. 5, p. 1480.

    Article  CAS  Google Scholar 

  5. Barda, D., Palma, V., and Ciambelli, P., Int. J. Hydrogen Energy, 2013, vol. 38, no. 1, p. 238.

    Google Scholar 

  6. Sreeramamurthy, R. and Menon, P.G., J. Catal., 1975, vol. 37, no. 2, p. 287.

    Article  CAS  Google Scholar 

  7. Steijns, M., Derks, F., Verloop, A., and Mars, P., J. Catal., 1976, vol. 42, no. 1, p. 87.

    Article  CAS  Google Scholar 

  8. Dalai, A.K. and Tollefson, E.L., Can. J. Chem. Eng., 1998, vol. 76, no. 5, p. 902.

    Article  CAS  Google Scholar 

  9. Cariaso, O.C. and Walker, P.L., Carbon, 1975, vol. 13, no. 3, p. 233.

    Article  CAS  Google Scholar 

  10. Gardner, T.H., Berry, D.A., Lyons, K.D., Beer, S.K., and Freed, A.D., Fuel, 2002, vol. 81, no. 17, p. 2157.

    Article  CAS  Google Scholar 

  11. Klein, J. and Henning, K.-D., Fuel, 1984, vol. 63, no. 8, p. 1064.

    Article  CAS  Google Scholar 

  12. Puri, B., Kumar, G., and Kalra, K.C., Indian J. Chem., 1971, vol. 9, p. 970.

    CAS  Google Scholar 

  13. Prettre, M. and Sion, R., Z. Elektrochem., 1959, vol. 63, no. 1, p. 100.

    CAS  Google Scholar 

  14. Van der Brink, P.J., Terörde, R.J.A.M., Moors, J.H., van Dillin, A.J., and Geus, J.M., Stud. Surf. Sci. Catal., 1992, vol. 72, p. 123.

    Article  Google Scholar 

  15. Steijns, M. and Mars, P., J. Catal., 1974, vol. 35, no. 1, p. 11.

    Article  CAS  Google Scholar 

  16. Shchukin, V.P. and Ven’yaminov, S.A., Kinet. Katal., 1971, vol. 12, no. 2, p. 533.

    CAS  Google Scholar 

  17. Grunval’d, V.R., Tekhnologiya gazovoi sery (Gas Sulfur Production Technology), Moscow: Khimiya, 1992.

    Google Scholar 

  18. Alkhazov, T.G., Kozharov, A.I., and Mirzoev, I.M., Zh. Prikl. Khim., 1991, vol. 64, no. 2, p. 261.

    CAS  Google Scholar 

  19. Weckhuysen, B.M. and Keller, D.E., Catal. Today, 2003, vol. 78, no. 1, p. 25.

    Article  CAS  Google Scholar 

  20. Steudel, R., Strauss, R., and Koch, L., Angew. Chem., Int. Ed. Engl., 1985, vol. 24, p. 59.

    Article  Google Scholar 

  21. Steijns, M., Koopman, P., Nieuwenhuijse, B., and Mars, P., J. Catal., 1976, vol. 42, no. 1, p. 96.

    Article  CAS  Google Scholar 

  22. Dudzik, Z. and Ziólek, M., J. Catal., 1978, vol. 51, no. 3, p. 345.

    Article  CAS  Google Scholar 

  23. Wiewiorowski, T.K. and Touro, F.J., J. Phys. Chem., 1966, vol. 70, no. 1, p. 234.

    Article  CAS  Google Scholar 

  24. Touro, F.J. and Wiewiorowski, T.K., J. Phys. Chem., 1966, vol. 70, no. 11, p. 3531.

    Article  CAS  Google Scholar 

  25. Wiewiorowski, T.K. and Slaten, B.L., J. Phys. Chem., 1967, vol. 71, no. 9, p. 3014.

    Article  CAS  Google Scholar 

  26. Kerr, R.K., Sit, S.P., Jagodzinski, R.F., and Dillon, J., Oil Gas J., 1982, vol. 80, no. 30, p. 230.

    CAS  Google Scholar 

  27. Davydov, A.A., Marshneva, V.I., and Shepotko, M.L., Appl. Catal., A, 2003, vol. 244, p. 93.

    Article  CAS  Google Scholar 

  28. Mendioroz, S., Muñoz, V., Alvarez, E., and Palacios, J.M., Appl. Catal., A, 1995, vol. 132, no. 1, p. 111.

    Article  CAS  Google Scholar 

  29. El Masry, H.A., Appl. Catal., 1985, vol. 16, no. 3, p. 301.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Kovalenko.

Additional information

Original Russian Text © P.N. Kalinkin, O.N. Kovalenko, V.M. Khanaev, E.S. Borisova, 2015, published in Kinetika i Kataliz, 2015, Vol. 56, No. 1, pp. 115–124.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinkin, P.N., Kovalenko, O.N., Khanaev, V.M. et al. Direct oxidation of hydrogen sulfide over vanadium catalysts: I. Kinetics of the reaction. Kinet Catal 56, 106–114 (2015). https://doi.org/10.1134/S0023158415010061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158415010061

Keywords

Navigation