Skip to main content
Log in

Genetic variability in white-tailed deer (Odocoileus virginianus) and its relationship to environmental parameters and herd origin (Cervidae)

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Allozyme variation was examined in 1571 white-tailed deer (Odocoileus virginianus) from 29 localities in Tennessee by starch gel electrophoresis. For 11 polymorphic loci, sex-related, age-related and temporal differences were minimal. However, significant spatial hererogeneity was evident in genotypes (contingency table results), allele frequencies (F ST=0.057) and heterozygosity. Heterozygosity ranged from 16.9% to 26.8% with a mean of 22.9%. The spatial pattern of allele frequencies determined from Rogers' coefficients of genetic similarity indicated associations based on geographic proximity and stocking history. In hierarchial analyses, physiographic regions accounted for more of the total gene diversity than herd origin groups (populations of similar origin) but less than individual populations. For five loci, physiographic regions accounted for more of the gene diversity than populations, suggesting a selection role in the observed genetic variability. Bivariate and canonical correlation analyses revealed significant associations between environmental and genetic variables. Temperature variables and allele frequencies for three loci (alcohol dehydrogenase, alpha-glycerophosphate dehydrogenase, sorbitol dehydrogenase) had the prominent roles in the multivariate association between environmental and genetic variables. Herd origin, gene flow and selection appear to be involved in the gene diversity in deer from Tennesee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alahiotis, S. N., 1982. Adaptation of Drosophila enzymes to temperature. IV. Natural selection at the alcohol-dehydrogenase locus. Genetica 59: 81–87.

    Google Scholar 

  • Ayala, F. J., 1976. Molecular evolution. Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Baccus, R., Ryman, N., Smith, M. H., Reuterwall, C. & Cameron, D., 1983. Genetic variability and differentiation of large grazing mammals. J. Mammal. 64: 109–120.

    Google Scholar 

  • Baccus, R., Hillestad, H. O., Johns, P. E., Manlove, M. N., Marchinton, R. L. & Smith, M. H., 1977. Prenatal selection in white-tailed deer. Proc. Southeast. Assoc. Fish Wildl. Agencies 31: 173–179.

    Google Scholar 

  • Blackard, J. J., 1971. Restoration of the white-tailed deer in the southeastern United States. M.S. Thesis, Louislana State Univ., Baton Rouge.

  • Bryant, E. H., 1974. On the adaptive significance of enzyme polymorphisms in relation to environmental variability. Am. Nat. 108: 1–19.

    Google Scholar 

  • Charlesworth, B. & Giesel, J. T., 1972. Selection in populations with overlapping generations. II. Relations between gene frequency and demographic variables. Am. Nat. 106: 388–401.

    Google Scholar 

  • Chesser, R. K., 1980. Computer systems and programming for the analysis of population genetics data. Univ. Stockholm Spec. Publ., Rep. 3.

  • Chesser, R. K., 1983. Genetic variability within and among populations of the black-tailed prairie dog. Evolution 37: 320–331.

    Google Scholar 

  • Chesser, R. K., Reuterwall, C. & Ryman, N., 1982a. Genetic differentiation of Scandinavian moose Alces alces populations over short geographical distances. Oikos 39: 125–130.

    Google Scholar 

  • Chesser, R. K., Smith, M. H., Johns, P. E., Manlove, M. N., Straney, D. O. & Baccus, R., 1982b. Spatial, temporal, and age-dependent heterozygosity of beta-hemoglobin in white-tailed deer. J. Wildl. Mgmt. 46: 983–990.

    Google Scholar 

  • Christiansen, F. B., 1977. Population genetics of Zoarces viviparus (L.): a review. In: Measuring selection in natural populations (F. B. Christiansen & T. M. Fenchel, eds): pp. 21–47. Lecture Notes in Biomathematics, Vol. 19, Springer-Verlag (Berlin).

    Google Scholar 

  • DillonJr., R. T., 1984. Geographic distance, environmental difference, and divergence between isolated populations. Syst. Zool. 33: 69–82.

    Google Scholar 

  • Erickson, L. M., 1979. Genetics of white-tailed deer of south Texas. M.S. Thesis, Texas Tech Univ., Lubbock.

  • Gaines, M. S. & Whittam, T. S., 1980. Genetic changes in fluctuating vole populations: selective vs. nonselective forces. Genetics 96: 767–778.

    Google Scholar 

  • Gaines, M. S., McClenaghanJr., L. R. & Rose, R. K., 1978. Temporal patterns of allozymic variation in fluctuating populations of Microtus ochrogaster. Evolution 32: 723–739.

    Google Scholar 

  • Gyllensten, U., 1985. Temporal allozyme frequency changes in density fluctuating populations of willow grouse (Lagopus lagopus L.). Evolution 39: 115–121.

    Google Scholar 

  • Harris, H. & Hopkinson, D. A., 1976. Handbook of enzyme electrophoresis in human genetics. North-Holland Publ. Co. Amsterdam.

    Google Scholar 

  • Hartl, D. L., 1980. Principles of population genetics. Sinauer, Sunderland, Massachussetts.

    Google Scholar 

  • Hedrick, P. W., Ginevan, M. E. & Ewing, E. P., 1976. Genetic polymorphism in heterogeneous environments. Ann. Rev. Ecol. Syst. 7: 1–32.

    Google Scholar 

  • Henry, V. G., Farrar, J. W. & Murrey, J. D., 1974. Deor restoration in Tennessee: its history and present status. Unpubl. report, Tennessee Wildl. Resources Agency.

  • Hillestad, H. O., 1984. Stocking and genetic variability of white-tailed deer in the southeastern United States. Ph.D. Dissertation. Univ. Georgia, Athens.

  • Hines, S. A., Philipp, D. P., Childers, W. F. & Whitt, G. S., 1983. Thermal kinetic differences between allelic isozymes of malate dehydrogenase (Mdh-B locus) of largemouth bass, Micropterus salmoides. Biochem. Genet. 21: 1143–1151.

    Google Scholar 

  • Kennedy, P. K., 1985. Genetic variability in white-tailed deer (Odocoileus virginianus) and its relationship to environmental parameters and herd origin. Ph.D. Dissertation, Memphis State Univ., Memphis, Tennessee.

  • Levene, H., 1949. On a matching problem arising in genetics. Ann. math. Statist. 20: 91–94.

    Google Scholar 

  • Li, C. C. & Horvitz, D. G., 1953. Some methods of estimating the inbreeding coefficient. Am. J. hum. Genet. 5: 107–117.

    Google Scholar 

  • Manlove, M. N., 1979. Genetic similarity among contiguous and isolated populations of white-tailed deer in Michigan. M.S. Thesis, Michigan State Univ., East Lansing.

  • Manlove, M. N., Avise, J. C., Hillestad, H. O., Ramsey, P. R., Smith, M. H. & Strancy, D. O., 1975. Starch gel electrophoresis for the study of population genetics in white-tailed deer. Proc. Southeast. Assoc. Game Fish Comm. 29: 392–403.

    Google Scholar 

  • Manlove, M. N., Smith, M. H., Hillestad, H. O., Fuller, S. E., Johns, P. E. & Straney, D. O., 1976. Genetic subdivision in a herd of white-tailed deer as demonstrated by spatial shifts in gene frequencies. Proc. Southeast. Assoc. Game Fish Comm. 30: 487–492.

    Google Scholar 

  • McClenaghanJr., L. R., Smith, M. H. & Smith, M. W., 1985. Biochemical genetics of mosquitofish. IV. Changes of allele frequencies through time and space. Evolution 39: 451–460.

    Google Scholar 

  • Miller, R. A., 1974. The geologic history of Tennessee. Bull. 74, State Tennessee Dept. Conservation Div. Geology, Nashville.

    Google Scholar 

  • Miller, W. J., Haugen, A. O. & Roslien, D. J., 1965. Natural variation in the blood proteins of white-tailed deer. J. Wildl. Mgmt. 29: 717–723.

    Google Scholar 

  • Nei, M., 1972. Genetic distance between populations. Am. Nat. 106: 283–292.

    Google Scholar 

  • Nei, M., 1973. Analysis of gene diversity in subdivided populations. Proc. natn. Acad. Sci. U.S.A. 70: 3321–3323.

    Google Scholar 

  • Nei, M., 1977. F-statistics and analysis of gene diversity in subdivided populations. Ann. hum. Genet. 41: 225–233.

    Google Scholar 

  • Nevo, E., 1978. Genetic variation in natural populations: patterns and theory. Theor. Popul. Biol. 13: 121–177.

    Google Scholar 

  • Nichols, E. A., Chapman, V. M. & Ruddle, F. H., 1973. Polymorphism and linkage for mannosephosphate isomerase in Mus musculus. Biochem. Genet. 8: 47–53.

    Google Scholar 

  • Nie, N. H., Hull, C. H., Jenkins, J. G., Steinbrenner, K. & Bent, D. H., 1975. SPSS, Statistical package for the social sciences. McGraw-Hill Book Co., New York.

    Google Scholar 

  • Patton, J. L. & Feder, J. H., 1981. Microspatial genetic heterogeneity in pocket gophers: nonrandom breeding and drift. Evolution 35: 912–920.

    Google Scholar 

  • Place, A. R. & Powers, D. A., 1978. Genetic bases for protein polymorphism in Fundulus heteroclitus (L.). I. Lactate dehydrogenase (Ldh-B), malate dehydrogenase (Mdh-A), glucosephosphate isomerase (Gpi-B), and phosphoglucomutase (Pgm-A), Biochem. Genet. 16: 576–591.

    Google Scholar 

  • Price, P. K., Cartwright, M. & Rogers, M. J., 1979. Genic variation in white-tailed deer from Arkansas. Proc. Arkansas Acad. Sci. 33: 64–66.

    Google Scholar 

  • Ramsey, P. R., Avise, J. C., Smith, M. H. & Urbston, D. F., 1979. Biochemical variation and genetic heterogeneity in South Carolina deer populations. J. Wildl. Mgmt. 43: 136–142.

    Google Scholar 

  • Rogers, J. C., 1972. Measures of genetic similarity and genetic distance. Stud. Genet. VII. Univ. Texas Publs 7213: 145–153.

    Google Scholar 

  • Rohif, R. J., Kishpaugh, J. & Kirk, K., 1982. Numerical taxonomy system of multivariate statistical programs. State Univ. New York, Stony Brook.

    Google Scholar 

  • Ryman, N., Baccus, R., Reuterwall, C. & Smith, M. H., 1981. Effective population size, generation interval, and potential loss of genetic variability in game species under different hunting regimes. Oikos 36: 257–266.

    Google Scholar 

  • Schaffer, H. E. & Johnson, F. M., 1974. Isozyme allelic frequencies related to selection and gene-flow hypotheses. Genetics 77: 163–168.

    Google Scholar 

  • Schultz, V., 1955. Status of the white-tailed deer in Tennessee. J. Tennessee Acad. Sci. 30: 66–75.

    Google Scholar 

  • Selander, R. K., Smith, M. H., Yang, S. Y., Johnson, W. E. & Gentry, J. B., 1971. Biochemical polymorphism and systematics in the genus Peromyscus. I. Variation in the old-field mouse (Peromyscus polionotus). Stud. Genet. VI. Univ. Texas Publs 7103: 49–90.

    Google Scholar 

  • Sheffield, S. R., MorganII, R. P., Feldhamer, G. A. & Harman, D. M., 1985. Genetic variation in white-tailed deer (Odocoileus virginianus) populations in western Maryland. J. Mammal. 66: 243–255.

    Google Scholar 

  • Smith, M. H., Manlove, M. N. & Joule, J., 1978. Spatial and temporal dynamics of the genetic organization of small mammal populations. In: Populations of small mammals under natural conditions (D. P. Snyder, ed): pp. 99–113. Special Publs Series, Vol. 5. Pymatuning Lab. Ecol., Univ. Pittsburg, Pittsburg, Pennsylvania.

    Google Scholar 

  • Smith, M. H., Baccus, R., Hillestad, H. O. & Manlove, M. N., 1984. Population genetics. In: White-tailed deer: ecology and management (L. K. Halls, ed): pp. 119–128. Stackpole Books, Harrisburg, Pennsylvania.

    Google Scholar 

  • Smith, M. H., Chesser, R. K., Cothran, E. G. & Johns, P. E., 1982. Genetic variability and antler growth in a natural population of white-tailed deer. In: Antler development in Cervidae (R. D. Brown, ed): pp. 365–387. Caesar Kleberg Wildl. Res. Institute, Kingsville, Texas.

    Google Scholar 

  • Tabachnick, B. G. & Fidell, L. S., 1983. Using multivariate statistics. Harper and Row, New York.

    Google Scholar 

  • Taylor, C. E. & Mitton, J. B., 1974. Multivariate analysis of genetic variation. Genetics 76: 575–585.

    Google Scholar 

  • Tennessee Wildlife Rescources Agency, 1984. Big game harvest data and range surveys 1983–84. Tennessee Wildl. Res. Agency Technical Rep., 84-1, PCAN 0064/350.

  • Thornthwaite Associates, 1964. Average climatic water balance data of the continents. Lab. Climatol., Publs Climatol. 17: 419–615.

    Google Scholar 

  • Tinkle, D. W. & Selander, R. K., 1973. Age dependent allozymic variation in a natural population of lizards. Biochem. Genet. 8: 231–237.

    Google Scholar 

  • Tomaszewski, E. K., Schaffer, H. E. & Johnson, F. M., 1973. Isozyme genotype-environment associations in natural populations of the harvester ant, Pogonomyrmex badius. Genetics 75: 405–421.

    Google Scholar 

  • United States Department of Commerce, 1973. Climatography of the United States (by state). Monthly normals of temperature, precipitation, and heating and cooling degree days 1941–70.

  • Workman, P. L. & Niswander, J. D., 1970. Population studies on southwestern Indian tribes. II. Local genetic differentiation in the Papago. Am. J. hum. Genet. 22: 24–49.

    Google Scholar 

  • Wright, S., 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 9: 395–420.

    Google Scholar 

  • Wright, S., 1969. Evolution and genetics of populations. Vol. 2, The theory of gene frequencies. Univ. Chicago Press, Chicago.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kennedy, P.K., Kennedy, M.L. & Beck, M.L. Genetic variability in white-tailed deer (Odocoileus virginianus) and its relationship to environmental parameters and herd origin (Cervidae). Genetica 74, 189–201 (1987). https://doi.org/10.1007/BF00056114

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00056114

Keywords

Navigation