Skip to main content
Log in

The GAPDH gene system of the red alga Chondrus crispus: promotor structures, intron/exon organization, genomic complexity and differential expression of genes

  • Research Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Our previous phylogenetic analysis based on cDNA sequences of chloroplast and cytosolic glyceraldehyde-3-phosphate dehydrogenases (GAPDH; genes GapA and GapC, respectively) of the red alga Chondrus crispus suggested that rhodophytes and green plants are sister groups with respect to plastids and mitochondria and diverged at about the same time or somewhat later than animals and fungi. Here we characterize the genomic sequences of genes GapC and GapA of C. crispus with respect to promotor structures, intron/exon organization, genomic complexity, G+C content, CpG suppression and their transcript levels in gametophytes and protoplasts, respectively. To our knowledge this is the first report on nuclear protein genes of red algae. The GapC gene is G+C-rich, contains no introns and displays a number of classic sequence motifs within its promotor region, such as TATA, CAAT, GC boxes and several elements resembling the plant-specific G-box palindrome. The GapA gene has a moderate G+C content, a single CAAT box motif in its promotor region and a single intron of 115 bp near its 5′ end. This intron occupies a conserved position corresponding to that of intron 1 in the transit peptide region of chloroplast GAPDH genes (GapA and GapB) of higher plants. It has consensus sequences similar to those of yeast introns and folds into a conspicuous secondary structure of - 61.3 kJ. CpG profiles of genes GapC and GapA and their flanking sequences show no significant CpG depletion suggesting that these genomic sequences are not methylated. Genomic Southern blots hybridized with generic and gene specific probes indicate that both genes are encoded by single loci composed of multiple polymorphic alleles. Northern hybridizations demonstrate that both genes are expressed in gametophytes but not in protoplasts where appreciable amounts of transcripts can only be detected for GapC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antequera, F, Bird, AP: Unmethylated CpG islands associated with genes in higher plant DNA. EMBO J 7: 2295–2299 (1988).

    Google Scholar 

  2. Aota, S, Ikemura, T: Diversity in G+C content at the third base position of codons in vertebrate genes and its cause. Nucl Acids Res 14: 8129–8144 (1986).

    Google Scholar 

  3. Apt, KE, Grossman, AR: Characterization and transcript analysis of the major phycobiliprotein subunit genes from Aglaothamnion neglectum (Rhodophyta). Plant Mol Biol 21: 27–38 (1993).

    PubMed  Google Scholar 

  4. Belanger, FC, Hepburn, AG: The evolution of CpNpG methylation in plants. J Mol Evol 30: 26–35 (1990).

    Google Scholar 

  5. Bernardi, G, Olofsson, B, Filipski, J, Zerial, M, Salinas, J, Cuny, G, Meunier-Rotival, M, Rodier, F: The mosaic genome of warm-blooded vertebrates. Science 228: 953–958 (1985).

    PubMed  Google Scholar 

  6. Bird, AP: CpG-rich islands and the function of DNA methylation. Nature 321: 209–213 (1986).

    PubMed  Google Scholar 

  7. Branlant, G, Branlant, C: Nucleotide sequence of the Escherichia coli gap gene. Different evolutionary behaviour of the NAD +-binding domain and the catalytic domain of d-glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem 150: 61–66 (1985).

    PubMed  Google Scholar 

  8. Brinkmann, H, Cerff, R, Salomon, M, Soll, J: Cloning and sequence analysis of cDNAs encoding the cytosolic precursors of subunits GapA and GapB of chloroplast glyceraldehyde-3-phosphate dehydrogenase from pea and spinach. J Plant Mol Biol 13: 81–94 (1989).

    Article  Google Scholar 

  9. Brinkmann, H, Martinez, P, Martin, W, Quigley, F, Cerff, R: Endosymbiotic origin and codon bias of the nuclear gene for chloroplast glyceraldehyde 3-phosphate dehydrogenase from maize. J Mol Evol 26: 320–328 (1987).

    PubMed  Google Scholar 

  10. Cerff, R: Separation and purification of NAD- and NADP-linked glyceraldehyde-3-phosphate dehydrogenases from higher plants. In: Edelmann, M, Hallick, RB, Chua, NH (eds) Methods in Chloroplast Molecular Biology, pp. 683–694. Elsevier Biomedical Press, Amsterdam (1982).

    Google Scholar 

  11. Cerff, R, Kloppstech, K: Structural diversity and differential light control of mRNAs coding for angiosperm glyceraldehyde-3-phosphate dehydrogenases. Proc Natl Acad Sci USA 79: 7624–7628 (1982).

    Google Scholar 

  12. Doolittle, RF, Feng, DF, Anderson, KL, Alberro, MR: A naturally occuring horizontal gene transfer from a eukaryote to a prokaryote. J Mol Evol 31: 383–388 (1990).

    PubMed  Google Scholar 

  13. Doolittle, WF: The origin and function of intervening sequences in DNA: a review. Am Nat 130: 915–928 (1987).

    Article  Google Scholar 

  14. Dynan, WS, Tjian, R: Control of eukaryotic messenger RNA synthesis by sequence-specific DNA-binding proteins. Nature 316: 774–778 (1985).

    PubMed  Google Scholar 

  15. Feinberg, AP, Vogelstein, B: A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 137: 266–267 (1984).

    PubMed  Google Scholar 

  16. Fink, GR: Pseudogenes in yeast. Cell 49: 5–6 (1987).

    Article  PubMed  Google Scholar 

  17. Galun, E: Plant protoplasts as physiological tools. Annu Rev Plant Physiol 32: 237–266 (1981).

    Article  Google Scholar 

  18. Gardiner-Garden, M, Frommer, M: CpG islands in vertebrate genomes. J Mol Biol 196: 261–282 (1987).

    Article  PubMed  Google Scholar 

  19. Gardiner-Garden, M, Frommer, M: Significant CpG-rich regions in angiosperm genes. J Mol Evol 34: 231–245 (1992).

    Google Scholar 

  20. Gardiner-Garden, M, Sved, JA, Frommer, M: Methylation sites in angiosperm genes. J Mol Evol 34: 219–230 (1992).

    Google Scholar 

  21. Gilbert, W: The exon theory of genes. Cold Spring Harbor Symp Quant Biol 52: 901–905 (1987).

    PubMed  Google Scholar 

  22. Gruenbaum, Y, Stein, R, Cedar, H, Razin, A: Sequence specificity of methylation in higher plant DNA. Nature 292: 860–862 (1981).

    PubMed  Google Scholar 

  23. Guarente, L, Bermingham-McDonogh, O: Conservation and evolution of transcriptional mechanisms in eukaryotes. Trends Genet 8: 27–32 (1992).

    Article  PubMed  Google Scholar 

  24. Hanauer, A, Mandel, JL: The glyceraldehyde 3-phosphate dehydrogenase gene family: structure of a human cDNA and of an X chromosome linked pseudogene; amazing complexity of the gene family in mouse: EMBO J 3: 2627–2633 (1984).

    PubMed  Google Scholar 

  25. Hohn, B: In vitro packaging of I and cosmid DNA. Meth Enzymol 68: 299 (1979).

    PubMed  Google Scholar 

  26. Joshi, CP: An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucl Acids Res 15: 6643–6653 (1987).

    PubMed  Google Scholar 

  27. Katagiri, F, Chua, NH: Plant transcription factors: present knowledge and future challenges. Trends Genet 8: 22–27 (1992).

    Article  PubMed  Google Scholar 

  28. Kersanach R, Brinkmann H, Liaud M-F, Zhang D-X, Martin W, Cerff R: Five identical intron positions in ancient duplicated genes of eubacterial origin. Nature, in press (1993).

  29. Krainer, AR, Maniatis, T: RNA splicing. In: Hames, BD, Glover, DM (eds) Transcription and Splicing, pp. 131–206. IRL Press, Oxford (1988).

    Google Scholar 

  30. Kuhlemeier, C: Transcriptional and post-transcriptional regulation of gene expression in plants. Plant Mol Biol 19: 1–14 (1992).

    PubMed  Google Scholar 

  31. LeGall, Y, Braud, JP, Kloareg, B: Protoplast production in Chondrus crispus gametophytes (Gigartinales, Rhodophyta). Plant Cell Rep 8: 582–585 (1990).

    Article  Google Scholar 

  32. Liaud, M-F, Zhang, DX, Cerff, R: Differential intron loss and endosymbiotic transfer of chloroplast glyceraldehyde-3-phosphate genes to the nucleus. Proc Natl Acad Sci USA 87: 8918–8922 (1990).

    PubMed  Google Scholar 

  33. Liaud M-F, Valentin C, Martin W, Bouget FY, Kloareg B, Cerff R: The evolutionary origin of red algae as deduced from the nuclear genes encoding cytosolic and chloroplast glyceraldehyde-3-phosphate dehydrogenases from Chondrus crispus. J Mol Evol, in press (1993).

  34. Maniatis, T, Fritsch, EF, Sambrook, G: Construction of genomic libraries. In: Molecular Cloning: A Laboratory Manual, pp. 270–307. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982).

    Google Scholar 

  35. Martin, W, Brinkmann, H, Savona, C, Cerff, R: Evidence for a chimeric nature of nuclear genomes: Eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes. Proc Natl Acad Sci USA 90: 8692–8696 (1993).

    PubMed  Google Scholar 

  36. Martin, W, Cerff, R: Prokaryotic features of a nucleus-encoded enzyme. cDNA sequences for chloroplast and cytosolic glyceraldehyde-3-phosphate dehydrogenases from mustard (Sinapis alba). Eur J Biochem 159: 323–331 (1986).

    PubMed  Google Scholar 

  37. Martin, W, Gierl, A, Saedler, H: Molecular evidence for pre-Cretaceous angiosperm origins. Nature 339: 46–48 (1989).

    Article  Google Scholar 

  38. Martin, W, Lydiate, D, Brinkmann, H, Forkmann, G, Saedler, H, Cerff, R: Molecular phylogenies in angiosperm evolution. Mol Biol Evol 10: 140–162 (1993).

    PubMed  Google Scholar 

  39. Martinez, P, Martin, W, Cerff, R: Structure, evolution and anaerobic regulation of a nuclear gene encoding cytosolic glyceraldehyde-3-phosphate dehydrogenase from maize. J Mol Biol 208: 551–565 (1989).

    PubMed  Google Scholar 

  40. Michels, PAM, Marchand, M, Kohl, L, Allert, S, Wierenga, RK, Opperdoes, FR: The cytosolic and glycosomal isoenzymes of glyceraldehyde-3-phosphate dehydrogenase in Trypanosoma brucei have a distant evolutionary relationship. Eur J Biochem 198: 421–428 (1991).

    PubMed  Google Scholar 

  41. Oeda, K, Salinas, J, Chua, NH: A tobacco bZip transcription activator (TAF-1) binds to a G-box-like motif conserved in plant genes. EMBO J 10: 1793–1802 (1991).

    PubMed  Google Scholar 

  42. Oelmüller, R: Photooxidative destruction of chloroplasts and its effect on nuclear gene expression and extraplastidic enzyme levels. Photochem Photobiol 49: 229–239 (1989).

    Google Scholar 

  43. Perlman, PS, Peebles, CL, Daniels, C: Different types of introns and splicing mechanisms. In: Stone, EM, Schwartz, RJ (eds) Intervening Sequences in Evolution and Development, pp. 112–161. Oxford University Press, Oxford (1990).

    Google Scholar 

  44. Piechaczyk, M, Blanchard, JM, Sabouty, SRE, Dani, C, Marty, L, Jeanteur, P: Unusual abundance of glyceraldehyde 3-phosphate dehydrogenase pseudogenes in vertebrate genomes. Nature 312: 469–471 (1984).

    PubMed  Google Scholar 

  45. Prabhala, G, Rosenberg, GH, Käufer, NF: Architectural features of pre-mRNA introns in the fission yeast Schizosaccharomyces pombe. Yeast 8: 171–182 (1992).

    PubMed  Google Scholar 

  46. Quigley, F, Brinkmann, H, Martin, W, Cerff, R: Strong functional GC pressure in a light regulated maize gene encoding subunit GAPA of chloroplast glyceraldehyde-3-phosphate dehydrogenase: implications for the evolution of GAPA pseudogenes. J Mol Evol 29: 412–421 (1989).

    PubMed  Google Scholar 

  47. Quigley, F, Martin, W, Cerff, R: Intron conservation across the prokaryote-eukaryote boundary: Structure of the nuclear gene for chloroplast glyceraldehyde-3-phosphate dehydrogenase from maize. Proc Natl Acad Sci USA 85: 2672–2676 (1988).

    PubMed  Google Scholar 

  48. Ruby, SW, Abelson, J: Pre-mRNA splicing in yeast. Trends Genet 7: 79–85 (1991).

    PubMed  Google Scholar 

  49. Russell, DA, Sachs, MM: The maize cytosolic glyceraldehyde-3-phosphate dehydrogenase gene family: organ-specific expression and genetic analysis. Mol Gen Genet 229: 219–228 (1991).

    Article  PubMed  Google Scholar 

  50. Salinas, J, Matassi, G, Montero, LM, Bernardi, G: Compositional compartmentalization and compositional patterns in the nuclear genomes of plants. Nucl Acids Res 16: 4269–4285 (1988).

    PubMed  Google Scholar 

  51. Sambrook, J, Fritsch, EF, Maniatis, T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  52. Shapiro, HS: Distribution of purines and pyrimidines in deoxyribonucleic acids. In: Fasman, GD (ed.) Handbook of Biochemistry and Molecular Biology, pp. 241–275. CRC Press, Cleveland, OH (1976).

    Google Scholar 

  53. Shih, MC, Lazar, G, Goodman, HM: Evidence in favor of the symbiotic origin of chloroplasts: Primary structure and evolution of tobacco glyceraldehyde-3-phosphate dehydrogenases. Cell 47: 73–80 (1986).

    PubMed  Google Scholar 

  54. Shih, MC, Lazar, G, Goodman, HM: Cloning and chromosomal mapping of nuclear genes encoding chloroplast and cytosolic glyceraldehyde-3-phosphate- dehydrogenase from Arabidopsis thaliana (Corrigendum). Gene 119: 317–319 (1992).

    Article  PubMed  Google Scholar 

  55. Sinibaldi, RM, Mettler, IJ: Intron splicing and intron-mediated enhanced expression in monocots. Progr Nucl Acid Res Mol Biol 42: 229–257 (1992).

    Google Scholar 

  56. Smith, TL: Disparate evolution of yeasts and filamentous fungi indicated by phylogenetic analysis of glyceraldehyde-3-phosphate dehydrogenase genes. Proc Natl Acad Sci USA 86: 7063–7066 (1989).

    PubMed  Google Scholar 

  57. Stone, EM, Rothblum, KN, Alevy, MC, Kuo, TM, Schwartz, RJ: Complete sequence of the chicken glyceraldehyde-3-phosphate dehydrogenase gene. Proc Natl Acad Sci USA 82: 1628–1632 (1985).

    PubMed  Google Scholar 

  58. Taylor, WC: Regulatory interactions between nuclear and plastid genomes. Annu Rev Plant Physiol Plant Mol Biol 40: 211–233 (1989).

    Article  Google Scholar 

  59. Liaud MF, Valentin C, Bouget FY, Kloareg B, Cerff R: Molecular phylogeny of red algae as revealed by nuclear genes encoding chloroplast and cytosol specific proteins. In: Sato S, Ishida M, Ishikawa H (eds) Endocytobiology V, pp. 357–361. Tübingen University Press (1993).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liaud, MF., Valentin, C., Brandt, U. et al. The GAPDH gene system of the red alga Chondrus crispus: promotor structures, intron/exon organization, genomic complexity and differential expression of genes. Plant Mol Biol 23, 981–994 (1993). https://doi.org/10.1007/BF00021813

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00021813

Key words

Navigation