Skip to main content
Log in

A microbiologist's odyssey: Bacterial viruses to photosynthetic bacteria

  • Personal Perspective
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Perspective can be defined as the relationships or relative importance of facts or matters from any special point of view. Thus, my Personal perspective reflects the threads I followed in a 50-year journey of research in the complex tapestry of bioenergetics and various aspects of microbial metabolism. An early interest in biochemical and microbial evolution led to the fertile hunting grounds of anoxygenic photosynthetic bacteria. Viewed as a physiological class, these organisms show remarkable metabolic versatility in that certain individual species are capable of using all the known major types of energy conversion (photosynthetic, respiratory, and fermentative) to support growth. Since such anoxyphototrophs are readily amenable to molecular genetic/biological manipulation, it can be expected that they will eventually provide important clues for unraveling the evolutionary relationships of the several kinds of energy conversion. I gradually came to believe that understanding the evolution of phototrophs would require detailed knowledge not only of how light is converted to chemical energy, but also of a) pathways of monomer production from extracellular sources of carbon and nitrogen and b) mechanisms cells use for integrating ATP regeneration with the energy-requiring biosyntheses of biological macromolecules. Serendipic observation of photoproduction of H2 from organic compounds by Rhodospirillum rubrum in 1949 led to discovery of N2 fixation by anoxyphototrophs, and this capacity was later exploited for the isolation of hitherto unknown species of photosynthetic prokaryotes, including the heliobacteria. Recent studies on the reaction centers of the heliobacteria suggest the possibility that these bacteria are descendents of early phototrophs that gave rise to oxygenic photosynthetic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMP:

adenosine monophosphate

ADP:

adenosine diphosphate

ATP:

adenosine triphosphate

ATPase:

adenosine triphosphatase

Bchl:

bacteriochlorophyll

DMSO:

dimethyl sulfoxide

NADH:

reduced nicotinamide adenine dinucleotide

nif :

genes for dinitrogen fixation

Nif :

bacterial mutants incapable of dinitrogen fixation

O/R:

oxidation/reduction

Pi :

inorganic orthophosphate

R. capsulatus :

Rhodobacter capsulatus

R. sphaeroides :

Rhodobacter sphaeroides

Rps. :

Rhodopseudomonas

TMAO:

trimethyl amine-N-oxide

References

  • Arnold WA (1991) Experiments. Photosynth Res 27: 73–82

    Google Scholar 

  • Atkinson DE (1968) The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7: 4030–4034

    PubMed  Google Scholar 

  • Atkinson DE and Walton GM (1967) Adenosine triphosphate conservation in metabolic regulation. J Biol Chem 242: 3239–3241

    PubMed  Google Scholar 

  • Bauld J, Favinger JL, Madigan MT and Gest H (1987) Obligately halophilic Chromatium vinosum from Hamelin Pool, Shark Bay, Australia. Current Microbiol 14: 335–339

    Google Scholar 

  • Beatty JT and Gest H (1981a) Biosynthetic and bioenergetic functions of citric acid cycle reactions in Rhodopseudomonas capsulata. J Bacteriol 148: 584–593

    PubMed  Google Scholar 

  • Beatty JT and Gest H (1981b) Generation of succinyl-Coenzyme A in photosynthetic bacteria. Arch Microbiol 129: 335–340

    Article  Google Scholar 

  • Beer-Romero P and Gest H (1987) Heliobacillus mobilis, a peritrichously flagellated anoxyphototroph containing bacteriochlorophyll g. FEMS Microbiol Lett 41: 109–114

    Article  Google Scholar 

  • Beer-Romero P, Favinger JL and Gest H (1988) Distinctive properties of bacilliform photosynthetic heliobacteria. FEMS Microbiol Lett 49: 451–454

    Article  Google Scholar 

  • Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosynth Res 33: 91–111

    PubMed  Google Scholar 

  • Bose SK and Gest H (1962) Hydrogenase and light-stimulated electron transfer reactions in photosynthetic bacteria. Nature (London) 195: 1168–1171

    Google Scholar 

  • Bose SK and Gest H (1963a) Relationships between energy-generation and net electron transfer in bacterial photosynthesis. In: Chance B (ed) Energy-linked Functions of Mitochondria, pp 207–218. Academic Press, New York

    Google Scholar 

  • Bose SK and Gest H (1963b) Bacterial photophosphorylation: Regulation by redox balance. Proc Natl Acad Sci USA 49: 337–345

    PubMed  Google Scholar 

  • Bose SK and Gest H (1965) Properties of adenosine triphosphatase in a photosynthetic bacterium. Biochim Biophys Acta 96: 159–162

    PubMed  Google Scholar 

  • Buchanan BB and Arnon DI (1990) A reverse Krebs cycle in photosynthesis: Consensus at last. Photosynth Res 24: 47–53

    PubMed  Google Scholar 

  • Burlant L, Datta P and Gest H (1965) Control of enzyme activity in growing bacterial cells by concerted feedback inhibition. Science 148: 1351–1353

    PubMed  Google Scholar 

  • Chance B and Hollunger G (1961) The interaction of energy and electron transfer reactions in mitochondria I. General properties and nature of the products of succinate-linked reduction of pyridine nucleotide. J Biol Chem 236: 1534–1543

    PubMed  Google Scholar 

  • Chance B and Olson JM (1960) Primary metabolic events associated with photosynthesis. Arch Biochem Biophys 88: 54–58

    PubMed  Google Scholar 

  • Cohen-Bazire G and Kunisawa R (1960) Some observations on the synthesis and function of the photosynthetic apparatus in Rhodospirillum rubrum. Proc Natl Acad Sci USA 46: 1543–1553

    Google Scholar 

  • Coryell CD (1940) The proposed terms ‘exergonic’ and ‘endergonic’ for thermodynamics. Science 92: 380

    Google Scholar 

  • Cox JC, Madigan MT, Favinger JL and Gest H (1980) Redox mechanisms in ‘oxidant-dependent’ hexose fermentation by Rhodopseudomonas capsulata. Arch Biochem Biophys 204: 10–17

    PubMed  Google Scholar 

  • Datta P and Gest H (1964a) Alternative patterns of end-product control in biosynthesis of amino-acids of the aspartic family. Nature (London) 203: 1259–1261

    Google Scholar 

  • Datta P and Gest H (1964b) Control of enzyme activity by concerted feedback inhibition. Proc Natl Acad Sci USA 52: 1004–1009

    PubMed  Google Scholar 

  • Datta P and Gest H (1965) Homoserine dehydrogenase of Rhodospirillum rubrum: Purification, properties, and feedback control of activity. J Biol Chem 240: 3023–3033

    PubMed  Google Scholar 

  • Datta P, Gest H and Segal HL (1964) Effects of feedback modifiers on the state of aggregation of homoserine dehydrogenase of Rhodospirillum rubrum. Proc Natl Acad Sci USA 51: 125–130

    PubMed  Google Scholar 

  • Favinger J, Stadtwald R and Gest H (1989) Rhodospirillum centenum, sp. nov., a thermotolerant cyst-forming anoxygenic photosynthetic bacterium. A v Leeuwenhoek J Microbiol 55: 291–296

    Google Scholar 

  • Frenkel AW (1993) Recollections. Photosynth Res 35: 103–116

    Google Scholar 

  • Fruton JS (1992) A Skeptical Biochemist. Harvard University Press, Cambridge

    Google Scholar 

  • Fruton JS and Simmonds S (1953) General Biochemistry. John Wiley, New York

    Google Scholar 

  • Gest H (1943) The effects of inorganic salts on the multiplication of bacterial viruses. J Infect Dis 73: 158–166

    Google Scholar 

  • Gest H (1951) Metabolic patterns in photosynthetic bacteria. Bacteriol Revs 15: 183–210

    Google Scholar 

  • Gest H (1963) Metabolic aspects of bacterial photosynthesis. In: Gest H, San Pietro A and Vernon LP (eds) Bacterial Photosynthesis, pp 129–150. Antioch Press, Yellow Springs, OH

    Google Scholar 

  • Gest H (1966) Comparative biochemistry of photosynthetic processes. Nature (London) 209: 879–882

    Google Scholar 

  • Gest H (1972) Energy conversion and generation of reducing power in bacterial photosynthesis. In: Rose AH and Tempest DW (eds) Adv Microbial Physiol 7: 243–282. Academic Press, London and New York

  • Gest H (1973) Coupling of energy conversion and biosynthetic processes in growing bacteria. In: Vanek Z, Hostalek Z and Cudlin J (eds) Genetics of Industrial Microorganisms, pp 131–143. Academia, Publishing House of the Czechoslovak Academy of Sciences, Prague

    Google Scholar 

  • Gest H (1980) The evolution of biological energy-transducing systems. FEMS Microbiol Lett 7: 73–77

    Google Scholar 

  • Gest H (1981) Evolution of the citric acid cycle and respiratory energy conversion in prokaryotes. FEMS Microbiol Lett 12: 209–215

    Article  Google Scholar 

  • Gest H (1982) The comparative biochemistry of photosynthesis; milestones in a conceptual zigzag. In: Kaplan NO and Robinson A (eds) From Cyclotrons to Cytochromes; Essays in Molecular Biology and Chemistry, pp 305–321. Academic Press, New York

    Google Scholar 

  • Gest H (1983) Evolutionary roots of anoxygenic photosynthetic energy conversion. In: Ormerod JG (ed) The Phototrophic Bacteria: Anaerobic Life in the Light, pp 215–235. Blackwell Scientific, Oxford

    Google Scholar 

  • Gest H (1991a) Dr. Martin Arrowsmith: Scientist and medical hero. Persp Biol Med 35: 116–124

    Google Scholar 

  • Gest H (1991b) The legacy of Hans Molisch (1856–1937), photosynthesis savant. Photosynth Res 30: 49–59

    Google Scholar 

  • Gest H (1992) A long trail of serendipity-directed research on photosynthetic bacteria. FEMS Microbiol Lett 100: 417–422

    Article  Google Scholar 

  • Gest H (1993a) History of concepts of the comparative biochemistry of oxygenic and anoxygenic photosyntheses. Photosynth Res 35: 87–96

    Google Scholar 

  • Gest H (1993b) Photosynthetic and quasi-photosynthetic bacteria. FEMS Microbiol Lett 112: 1–6

    Article  Google Scholar 

  • Gest H (1994) Discovery of the heliobacteria. Photosynth Res 41 (in press)

  • Gest H and Cordts E (1942) Effect of inorganic salts on the interaction of virus T with E. coli. Ann Report The Biological Laboratory, Long Island Biological Association. Cold Spring Harbor, New York

  • Gest H and Favinger JL (1983) Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a new form of bacteriochlorophyll. Arch Microbiol 136: 11–16

    Google Scholar 

  • Gest H and Glendenin LE (1951) Half-life and radiations of Se75. In: Coryell CD and Sugarman N (eds) Radiochemical Studies: The Fission Products; National Nuclear Energy Series, Vol IV-9, pp 1924–1930. McGraw Hill, New York

    Google Scholar 

  • Gest H and Kamen MD (1948) Studies on the phosphorus metabolism of green algae and purple bacteria in relation to photosynthesis. J Biol Chem 176: 299–318

    Google Scholar 

  • Gest H and Kamen MD (1949) Photoproduction of molecular hydrogen by Rhodospirillum rubrum. Science 109: 558–559

    Google Scholar 

  • Gest H, Edwards RR and Davies TH (1951) Chemical effects of nuclear transformations. I. β decay of lanthanum to cerium of mass 143. In: Coryell CD and Sugarman N (eds) Radiochemical Studies: The Fission Products; National Nuclear Energy Series, Vol IV-9, pp 232–236. McGraw Hill, New York

    Google Scholar 

  • Gest H, Ormerod JG and Ormerod KS (1962) Photometabolism of Rhodospirillum rubrum: Light-dependent dissimilation of organic compounds to carbon dioxide and molecular hydrogen by an anaerobic citric acid cycle. Arch Biochem Biophys 97: 21–33

    PubMed  Google Scholar 

  • Gest H, Dits MW and Favinger JL (1983) Characterization of Rhodopseudomonas sphaeroides strain ‘cordata/81–1’. FEMS Microbiol Lett 17: 321–325

    Article  Google Scholar 

  • Gest H, Favinger JL and Madigan M (1985) Exploitation of N2-fixation capacity for enrichment of anoxygenic photosynthetic bacteria in ecological studies. FEMS Microbiol Ecol 31: 317–322

    Google Scholar 

  • Hershey AD, Kamen MD, Kennedy JW and Gest H (1951) The mortality of bacteriophage containing assimilated radioactive phosphorus. J Gen Physiol 34: 305–319

    Article  PubMed  Google Scholar 

  • Hillmer P and Gest H (1977a) H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. J Bacteriol 129: 724–731

    PubMed  Google Scholar 

  • Hillmer P and Gest H (1977b) H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: Production and utilization of H2 by resting cells. J Bacteriol 129: 732–739

    PubMed  Google Scholar 

  • Johansson BC and Gest H (1976) Inorganic nitrogen assimilation by the photosynthetic bacterium Rhodopseudomonas capsulata. J Bacteriol 128: 683–688

    PubMed  Google Scholar 

  • Johansson BC and Gest H (1977) Adenylylation/deadenylylation control of the glutamine synthetase of Rnodopseudomonas capsulata. Europ J Biochem 81: 365–371

    PubMed  Google Scholar 

  • Kamen MD (1963) Primary Processes in Photosynthesis. Academic Press, New York and London

    Google Scholar 

  • Kamen MD (1986) Radiant Science, Dark Politics. First paperback printing. University of California Press, Berkeley and Los Angeles

    Google Scholar 

  • Kamen MD and Gest H (1949) Evidence for a nitrogenase system in the photosynthetic bacterium Rhodospirillum rubrum. Science 109: 560

    Google Scholar 

  • Karunairatnam MC, Spizizen J and Gest H (1958) Preparation and properties of protoplasts of Rhodospirillum rubrum. Biochim Biophys Acta 29: 649–650

    Article  PubMed  Google Scholar 

  • Klemme J-H and Gest H (1971a) Regulatory properties of an inorganic pyrophosphatase from the photosynthetic bacterium Rhodospirillum rubrum. Proc Natl Acad Sci USA 68: 721–725

    PubMed  Google Scholar 

  • Klemme J-H and Gest H (1971b) Regulation of the cytoplasmic inorganic pyrophosphatase of Rhodospirillum rubrum. Europ J Biochem 22: 529–537

    PubMed  Google Scholar 

  • Kohlmiller EFJr and Gest H (1951) A comparative study of the light and dark fermentations of organic acids by Rhodospirillum rubrum. J Bacteriol 61: 269–282

    PubMed  Google Scholar 

  • Lavoisier A-L (1790) Elements of Chemistry. Republication, in 1965, of an English translation first published in 1790, pp xiv, xv. Dover Publications, New York

    Google Scholar 

  • Lien S and Gest H (1973) On the identity of photo- and oxidative phosphorylation coupling factors in Rhodopseudomonas capsulata. Arch Biochem Biophys 159: 730–737

    Google Scholar 

  • Lien S, San Pietro A and Gest H (1971) Mutational and physiological enhancement of photosynthetic energy-conversion in Rhodopseudomonas capsulata. Proc Natl Acad Sci USA 68: 1912–1915

    PubMed  Google Scholar 

  • Lien S, Gest H and San Pietro A (1973) Regulation of chlorophyll synthesis in photosynthetic bacteria. J Bioenergetics 4: 423–434

    Google Scholar 

  • Lipmann F (1956) Attempts at the formulation of some basic biochemical questions. In: Green DE (ed) Currents in Biochemical Research, pp 241–250. Interscience Publishers, New York

    Google Scholar 

  • Lipmann F (1971) Wanderings of a Biochemist. Wiley-Interscience, New York

    Google Scholar 

  • Madigan MT and Gest H (1978) Growth of a photosynthetic bacterium anaerobically in darkness, supported by ‘oxidant-dependent’ sugar fermentation. Arch Microbiol 117: 119–122

    Article  PubMed  Google Scholar 

  • Madigan MT and Gest H (1979) Growth of the photosynthetic bacterium Rhodopseudomonas capsulata chemoautotrophically in darkness with H2 as the energy source. J Bacteriol 137: 524–530

    PubMed  Google Scholar 

  • Madigan MT and Gest H (1988) Selective enrichment and isolation of Rhodopseudomonas palustris using trans-cinnamic acid as sole carbon source. FEMS Microbiol Ecol 53: 53–58

    Google Scholar 

  • Madigan M, Cox JC and Gest H (1982) Photopigments in Rhodopseudomonas capsulata cells grown anaerobically in darkness. J Bacteriol 150: 1422–1429

    PubMed  Google Scholar 

  • Mangels LA, Favinger JL, Madigan MT and Gest H (1986) Isolation and characterization of the N2_fixing marine photosynthetic bacterium Rhodopseudomonas marina, variety agilis. FEMS Microbiol Lett 36: 99–104

    Article  Google Scholar 

  • Marrs BL (1974) Genetic recombination in Rhodopseudomonas capsulata. Proc Natl Acad Sci USA 71: 971–973

    PubMed  Google Scholar 

  • Marrs B and Gest H (1973) Genetic mutations affecting the respiratory electron-transport system of the photosynthetic bacterium Rhodopseudomonas capsulata. J Bacteriol 114: 1045–1051

    PubMed  Google Scholar 

  • Melandri BA, Baccarini-Melandri A, San Pietro A and Gest H (1970) Role of phosphorylation coupling factor in light-dependent proton translocation by Rhodopseudomonas capsulata membrane preparations. Proc Natl Acad Sci USA 67: 477–484

    PubMed  Google Scholar 

  • Michaelis L (1930) Oxidation-Reduction Potentials. JB Lippincott, Philadelphia and London

    Google Scholar 

  • Michalski TJ, Hunt JE, Bowman MK, Smith U, Bardeen K, Gest H, Norris JR and Katz JJ (1987) Bacteriopheophytin g: Properties and some speculations on a possible primary role for bacteri-ochlorophylls b and g in the biosynthesis of chlorophylls. Proc Natl Acad Sci USA 84: 2570–2574

    Google Scholar 

  • Ormerod JG and Gest H (1962) Hydrogen photosynthesis and alternative metabolic pathways in photosynthetic bacteria. Bacteriol Revs 26: 51–66

    Google Scholar 

  • Ormerod JG, Ormerod KS and Gest H (1961) Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria: Relationships with nitrogen metabolism. Arch Biochem Biophys 94: 449–463

    PubMed  Google Scholar 

  • Palmer RR and Colton J (1965) A History of the Modern World. AA Knopf, New York

    Google Scholar 

  • Peck HDJr and Gest H (1956) A new procedure for assay of bacterial hydrogenases. J Bacteriol 71: 70–80

    PubMed  Google Scholar 

  • Peck HDJr and Gest H (1957a) Formic dehydrogenase and the hydrogenlyase enzyme complex in coli-aerogenes bacteria. J Bacteriol 73: 706–721

    PubMed  Google Scholar 

  • Peck HDJr and Gest H (1957b) Hydrogenase of Clostridium butylicum. J Bacteriol 73: 569–580

    PubMed  Google Scholar 

  • Peck HDJr, Smith OH and Gest H (1957) Comparative biochemistry of the biological reduction of fumaric acid. Biochim Biophys Acta 25: 142–147

    Article  PubMed  Google Scholar 

  • Pellerin NB and Gest H (1983) Diagnostic features of the photosynthetic bacterium Rhodopseudomonas sphaeroides. Current Microbiol 9: 339–344

    Google Scholar 

  • Ragatz L, Jiang Z-Y, Gest H, and Bauer C (1994) Phototactic motility of Rhodospirillum centenum swarm colonies. Abstracts 93rd General Meeting, American Society of Microbiology, Las Vegas, Nevada

  • Ruben S (1943) Photosynthesis and phosphorylation. J Am Chem Soc 65: 279–282

    Google Scholar 

  • Schachman HK, Pardee AB and Stanier RY (1952) Studies on the macromolecular organization of microbial cells. Arch Biochem Biophys 38: 245–260

    PubMed  Google Scholar 

  • Schmidt LS, Yen H and Gest H (1974) Bioenergetic aspects of bacteriophage replication in the photosynthetic bacterium Rhodopseudomonas capsulata. Arch Biochem Biophys 165: 229–239

    PubMed  Google Scholar 

  • Sojka GA and Gest H (1968) Integration of energy conversion and biosynthesis in the photosynthetic bacterium Rhodopseudomonas capsulata. Proc Natl Acad Sci USA 61: 1486–1493

    PubMed  Google Scholar 

  • Sojka GA, Din GA and Gest H (1967) Integration of energy conversion and biosynthetic processes in bacterial photosynthesis. Nature (London) 216: 1021–1022

    Google Scholar 

  • Stadtwald-Demchick R, Turner FR and Gest H (1990) Rhodopseudomonas cryptolactis, sp. nov., a new thermotolerant species of budding phototrophic purple bacteria. FEMS Microbiol Lett 71: 117–122

    Article  Google Scholar 

  • Stanier RY (1980) The journey, not the arrival, matters. Ann Rev Microbiol 34: 1–48

    Article  Google Scholar 

  • Tronick SR, Ciardi JE and Stadtman ER (1973) Comparative biochemical and immunological studies of bacterial glutamine synthetases. J Bacteriol 115: 858–868

    PubMed  Google Scholar 

  • Tuttle AL and Gest H (1959) Subcellular particulate systems and the photochemical apparatus of Rhodospirillum rubrum. Proc Natl Acad Sci USA 45: 1261–1269

    Google Scholar 

  • Uffen RL and Wolfe RS (1970) Anaerobic growth of purple nonsulfur bacteria under dark conditions. J Bacteriol 104: 462–472

    PubMed  Google Scholar 

  • VanNiel CB (1941) The bacterial photosyntheses and their importance for the general problem of photosynthesis. Advan Enzymol 1: 263–328

    Google Scholar 

  • Vatter AE and Wolfe RS (1958) The structure of photosynthetic bacteria. J Bacteriol 75: 480–488

    PubMed  Google Scholar 

  • Wall JD and Gest H (1979) Derepression of nitrogenase activity in glutamine auxotrophs of Rhodopseudomonas capsulata. J Bacteriol 137: 1459–1463

    PubMed  Google Scholar 

  • Wall JD, Weaver PF and Gest H (1975a) Genetic transfer of nitrogenase-hydrogenase activity in Rhodopseudomonas capsulata. Nature (London) 258: 630–631

    Google Scholar 

  • Wall JD, Weaver PF and Gest H (1975b) Gene transfer agents, bacteriophages, and bacteriocins of Rhodopseudomonas capsulata. Arch Microbiol 105: 217–224

    PubMed  Google Scholar 

  • Weaver PF, Wall JD and Gest H (1975) Characterization of Rhodopseudomonas capsulata. Arch Microbiol 105: 207–216

    PubMed  Google Scholar 

  • Woese CR, Debrunner-Vossbrinck BA, Oyaizu H, Stackebrandt E and Ludwig W (1985) Gram-positive bacteria: Possible photosynthetic ancestry. Science 229: 762–765

    PubMed  Google Scholar 

  • Wood HG (1985) Then and now. Ann Rev Biochem 54: 1–41

    Article  PubMed  Google Scholar 

  • Yang Z and Bauer CE (1990) Rhodobacter capsulatus genes involved in early steps of the bacteriochlorophyll biosynthetic pathway. J Bacteriol 172: 5001–5010

    PubMed  Google Scholar 

  • Yen H-C and Gest H (1974) Regulation of biosynthesis of aspartate family amino acids in the photosynthetic bacterium Rhodopseudomonas palustris. Arch Microbiol 101: 187–210

    PubMed  Google Scholar 

  • Yen H-C and Marrs BL (1976) Map of genes for carotenoid and bacteriochlorophyll biosynthesis in Rhodopseudomonas capsulata. J Bacteriol 126: 619–629

    PubMed  Google Scholar 

  • Yen H-C and Marrs B (1977) Growth of Rhodopseudomonas capsulata under anaerobic dark conditions with dimethyl sulfoxide. Arch Biochem Biophys 181: 411–418

    PubMed  Google Scholar 

  • Yildiz FH, Gest H and Bauer CE (1991) Attenuated effect of oxygen on photopigment synthesis in Rhodospirillum centenum. J Bacteriol 173: 5502–5506

    PubMed  Google Scholar 

  • Yildiz FH, Gest H and Bauer CE (1992) Conservation of the photosynthesis gene cluster in Rhodospirillum centenum. Mol Microbiol 6: 2683–2691

    PubMed  Google Scholar 

  • Zilinsky JW, Sojka GA and Gest H (1971) Energy charge regulation in photosynthetic bacteria. Biochem Biophys Res Commun 42: 955–961

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Written at the invitation of Govindjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gest, H. A microbiologist's odyssey: Bacterial viruses to photosynthetic bacteria. Photosynth Res 40, 129–146 (1994). https://doi.org/10.1007/BF00019331

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00019331

Key words

Navigation