Skip to main content
Log in

The metabolism of organic matter in the hyporheic zone of a mountain stream, and its spatial distribution

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Community respiration in hyporheic sediments (HCR) was studied in a characteristic riffle-pool-sequence of a mountain stream. HCR activity at the riffle site strongly exceeded that at the corresponding pool site with a mean ratio of 5.3. The vertical distribution of HCR activity was homogeneous in the pool, while there was a distinct maximum in the uppermost layer in the riffle. Similarly, the spatial distribution of certain fractions of particulate organic matter (POM), and their turnover, was largely determined by stream morphology. Mean annual HCR per unit area of stream bed was estimated as 1.71 g O2 m−2 d−1. Hence, HCR contributes significantly to total heterotrophic activity in streams, thus enhancing the relative importance of heterotrophic processes in running waters containing hyporheic zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bärlocher, F. & J. H. Murdoch, 1989. Hyporheic biofilms — a potential food source for interstitial animals. Hydrobiologia 184: 61–67.

    Google Scholar 

  • Benner, R., J. Lay, E. K'nees & R. E. Hodson, 1988. Carbon conversion efficiency for bacterial growth on lignocellulose: Implications for detritus-based food-webs. Limnol. Oceanogr. 33: 1514–1526.

    CAS  Google Scholar 

  • Bott, T. L., J. T. Brock, C. E. Cushing, S. V. Gregory, D. King & R. C. Petersen, 1978. A comparison of methods for measuring primary productivity and community respiration in streams. Hydrobiologia 60: 3–12.

    Article  CAS  Google Scholar 

  • Bott, T. L., J. T. Brock, C. S. Dunn, R. J. Naiman, R. W. Ovink & R. C. Petersen, 1985. Benthic community respiration in four temperate stream systems: An inter-biome comparison, and evaluation of the river continuum concept. Hydrobiologia 123: 3–45.

    Article  Google Scholar 

  • Bott, T. L. & L. A. Kaplan, 1985. Bacterial biomass, metabolic state, and activity in stream sediments: relation to environmental variables and multiple assay comparisons. Appl. Envir. Microbiol. 50:.508–522.

    Google Scholar 

  • Cahill, R. A. & A. D. Autrey, 1987. Improved measurement of the organic carbon content of various river components. J. Freshwat. Ecology 4: 219–222.

    CAS  Google Scholar 

  • Cummins, K. W., J. R. Sedell, F. J. Swanson, G. W. Minshall, S. G. Fisher, C.E. Cushing, R. C. Petersen & R. L. Vannote, 1983. Organic matter budgets for stream ecosystems: problems in their evaluation. In J. R. Barnes & G. W. Minshall (eds), Stream ecology. Application and testing of general ecological theory. Plenum: 299–353.

  • Decho, A. W. & D. J. W. Moriarty, 1990. Bacterial exopolymer utilization by a harpacticoid copepod: a methodology, and results. Limnol. Oceanogr. 35: 1039–1049.

    CAS  Google Scholar 

  • Eisma, D., 1993. Suspended matter in the aquatic environment. Springer.

  • Fiebig, D. M. & M. A. Lock, 1991. Immobilization of dissolved organic matter from groundwater discharging through the stream bed. Freshwat. Biol. 26: 45–55.

    Article  CAS  Google Scholar 

  • Fisher, S. G., 1977. Organic matter processing by a stream-segment ecosystem: Fort River, Massachusetts, U.S.A. Intern. Revue ges. Hydrobiologia 62: 701–727.

    Google Scholar 

  • Grimm, N. B. & S. G. Fisher, 1984. Exchange between interstitial, and surface water: implications for stream metabolism, and nutrient cycling. Hydrobiologia 111: 219–228.

    Article  CAS  Google Scholar 

  • Hedin, L. O., 1990. Factors controlling sediment community respiration in woodland stream ecosystems. Oikos 57: 94–105.

    Google Scholar 

  • Hendricks, S. P., 1993. Microbial ecology of the hyporheic zone: a perspective integrating hydrology and biology. J. N. Am. Benthol. Soc. 12: 70–78.

    Article  Google Scholar 

  • Hynes, H. B. N., 1983. Groundwater, and stream ecology. Hydrobiologia 100: 93–99.

    Article  Google Scholar 

  • Kaplan, L. A. & T. L. Bout, 1989. Diel fluctuations in bacterial activity on stream bed substrata during vernal algal blooms: Effects of temperature, water chemistry, and habitat. Limnol. Oceanogr. 34: 718–733.

    Article  CAS  Google Scholar 

  • Lampert, W., 1971. The measurement of respiration. In J. A. Downing & F. H. Rigler (ed.), A manual on methods for the assessment of secondary productivity in fresh waters. IBP Hdbk 17, Blackwell: 413–468.

  • Leichtfried, M., 1988. Bacterial substrates in gravel beds of a second order alpine stream (Project Ritrodat-Lunz, Austria). Verh. int. Ver. Limnol. 23: 1325–1332.

    CAS  Google Scholar 

  • Meyer, E., J. Schwoerbel & G. C. Tillmans, 1990. Physikalische, chemische und hydrographische Untersuchungen eines Mittelgebirgsbaches: Ein Beitrag zur Typisierung kleiner Fließgewässer. Aquat. Sci. 52: 236–255.

    Article  Google Scholar 

  • Meyer, E. & J. Schwoerbel, 1991. Stoffhaushalt und Stoffumsetzungen in einem kleinen Mittelgebirgsbach des südlichen Schwarzwaldes. Unpubl. final report of DFG project Az. Schw. 63/27-1, 2, 3.

  • Metzler, G. M. & L. A. Smock, 1990. Storage and dynamics of subsurface detritus in a sand-bottomed stream. Can. J. Fish. aquat. Sci. 47: 588–594.

    Article  Google Scholar 

  • Middelboe, M., B. Nielsen & M. Sondergaard, 1992. Bacterial utilization of dissolved organic carbon (DOC) in coastal waters. Determination of growth yield. Arch. Hydrobiol. Beih. Ergebn. Limnol. 37: 51–61.

    CAS  Google Scholar 

  • Minshall, G. W., R. C. Petersen, K. W. Cummins, T. L. Bott, J. R. Sedell, C. E. Cushing & R. L. Vannote, 1983. Interbiome comparison of stream ecosystem dynamics. Ecol. Monogr. 53: 1–25.

    Article  Google Scholar 

  • Naiman, R. J., J. M. Melillo, M. A. Lock, T. E. Ford & S. R. Reice, 1987. Longitudinal patterns of ecosystem processes, and community structure in a subarctic river continuum. Ecology 68: 1139–1156.

    Article  Google Scholar 

  • Paul, B. J., K. E. Corning & H. C. Duthie, 1989. An evaluation of the metabolism of sestonic, and epilithic communities in running waters using an improved chamber technique. Freshwat. Biol. 21: 207–215.

    Article  Google Scholar 

  • Pusch, M., 1993. Heterotropher Stoffumsatz und faunistische Besiedlung des hyporheischen Interstitials eines Mittelgebirgsbaches (Steina, Schwarzwald). Ph. D. Thesis Univ. Freiburg/Br.

  • Pusch, M., 1995. Community respiration in the hyporheic zones of riffles, and pools. In J. Gibert (ed.), Groundwater and surface water ecotones, Cambridge Univ. Press, in press.

  • Pusch, M. & J. Schwoerbel, 1994. Community respiration in hyporheic sediments of a mountain stream (Steina, Black Forest). Arch. Hydrobiol. 130: 35–52.

    Google Scholar 

  • Pusch, M. H. E., M. Pusch & U. Braukmann, 1991. Restoration of channelized streams — a benthological study. Verh. int. Ver. Limnol. 24: 1851–1855.

    Google Scholar 

  • Rausch, T., 1981. The estimation of micro-algal protein content and its meaning to the evaluation of algal biomass. I. Comparison of methods for extracting protein. Hydrobiologia 78: 237–251.

    Article  CAS  Google Scholar 

  • Rounick, J. S. & M. J. Winterbourn, 1983. The formation, structure and utilization of stone surface organic layers in two New Zealand streams. Freshwat. Biol. 13: 57–72.

    Article  CAS  Google Scholar 

  • Rutherford, J. E. & H. B. N. Hynes, 1987. Dissolved organic carbon in streams, and groundwater. Hydrobiolgia 154: 33–48.

    Article  CAS  Google Scholar 

  • SAS Inst., 1987. SAS/STAT guide for personal computers, version 6 edition. Cary, NC, USA.

  • Schwoerbel, J., 1961. Über die Lebensbedingungen und die Besiedlung des hyporheischen Lebensmums. Arch. Hydrobiol. Supp. 25: 182–214.

    Google Scholar 

  • Stock, M. S. & A. K. Ward, 1989. Establishment of a bedrock epilithic community in a small stream: Microbial (algal and bacterial) metabolism and physical structure. Can. J. Fish. aquat. Sci. 46: 1874–1883.

    Article  Google Scholar 

  • Triska, F. J., V. C. Kennedy, R. J. Avanzino, G. W. Zellweger & K. E. Bencala, 1989. Retention, and transport of nutrients in a third-order stream in northwestern California: hyporheic processes. Ecology 70: 1893–1905.

    Article  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Can. J. Fish. aquat. Sci. 37: 130–137.

    Google Scholar 

  • White, D. S., C. H. Elzinga & S. P. Hendricks, 1987. Temperature patterns within the hyporheic zone of a northern Michigan River. J. North Am. Benthol. Soc. 6: 85–91.

    Article  Google Scholar 

  • Williams, D. D., 1993. Nutrient and flow dynamics at the hyporheic/groundwater interface and their effects on the interstitial fauna. Hydrobiologia 251: 185–198.

    Article  CAS  Google Scholar 

  • Winterbourn, M. J., 1986. Recent advances in our understanding of stream ecosystems. In N. Polunin (ed.), Ecosystem theory and application. Wiley: 240–268.

  • Winterboum, M. J. & C. R. Townsend, 1991. Streams and rivers: One-way flow systems. In R. S. K. Barnes & K. H. Mann (eds), Fundamentals of aquatic ecology, 2nd edn. Blackwell: 230–244.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pusch, M. The metabolism of organic matter in the hyporheic zone of a mountain stream, and its spatial distribution. Hydrobiologia 323, 107–118 (1996). https://doi.org/10.1007/BF00017588

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00017588

Key words

Navigation