Skip to main content
Log in

Groundwater and stream ecology

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In the light of findings in recent years about the extent and nature of the hyporheal zone, the rate of uptake of organic matter by stream beds, and the fact that groundwater contains dissolved organic matter, it is suggested that stream ecologists should learn much more than they now know about groundwater. It seems probable that it is an important source of organic matter to the stream ecosystem which has escaped consideration to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bishop, J. E., 1973. Observations on the vertical distribution of the benthos in a Malaysian stream. Freshwat. Biol. 3: 147–156.

    Google Scholar 

  • Bou, C. & Rouch, R., 1967. Un nouveau champ de recherches sur la faune aquatique souterraine. C. Acad. Sci. Paris D 265: 369–370.

    Google Scholar 

  • Bretschko, G., 1980. Vertical distribution of zoobenthos in an alpine brook of the Ritrodat-Lunz study area. Verh. int. Ver. Limnol. 21: 873–876.

    Google Scholar 

  • Coleman, M. J. & Hynes, H. B. N., 1970. The vertical distribution of the fauna in the bed of a stream. Limnol. Oceanogr. 15: 31–40.

    Google Scholar 

  • Danielpol, D. L., 1976. The distribution of the fauna in the interstitial habitats of riverine sediments of the Danube and the Piesting (Austria). Int. J. Speleol. 8: 23–51.

    Google Scholar 

  • Danielpol, D. L., 1980. The role of the limnologist in groundwater studies. Int. Revue ges. Hydrobiol. Hydrogr. 65: 777–791.

    Google Scholar 

  • Ferrarese, U. & Samburgar, B., 1976. Ricerche sulla fauna interstitiale iporreica dell'Adige in relazione allo stato di inquinamente del fiume. Riv. Idrobiol. 15: 47–127.

    Google Scholar 

  • Fisher, S. G. & Likens, G. E., 1973. Energy flow in Bear Brook, New Hampshire: An integrative approach to stream ecosystem metabolism. Ecol. Monogr. 43: 421–439.

    Google Scholar 

  • Foster, S. S. D., Cripps, A. C. & Smith-Carington, A., 1982. Nitrate leaching to groundwater. Phil. Trans. Soc. Lond. 296: 477–489.

    Google Scholar 

  • Frape, S. K. & Fritz, P., 1982. The chemistry and isotopic composition of saline groundwaters from the Sudbury basin, Ontario. Can. J. Earth Sci. 19: 645–661.

    Google Scholar 

  • Frape, S. K. & Patterson, R. J., 1981. Chemistry of interstitial water and bottom sediments as indicators of patterns in Perch Lake, Chalk River, Ontario. Limnol. Oceanogr. 26: 500–517.

    Google Scholar 

  • Freeze, R. A. & Cherry, J. A., 1979. Groundwater. Prentice-Hall, Englewood, Cliffs, New Jersey, 604 pp.

    Google Scholar 

  • Godbout, L. & Hynes, H. B. N., 1982. The three dimensional distribution of the fauna in a single riffle in a stream in Ontario. Hydrobiologia 97: 87–96.

    Google Scholar 

  • Gourbault, N. & Lescher-Moutoué, F., 1968. Sur la faune hypogée peuplant le sous-écoulement d'une rivière de moyenne altitude. C. Acad. Sci. Paris D 265: 1813–1816.

    Google Scholar 

  • Hansen, E. A., 1975. Some effects of groundwater on brown trout redds. Trans. am. Fish. Soc. 104: 100–110.

    Google Scholar 

  • Husmann, S., 1966. Versuch einer ökologischen Gleiderung des interstitiellen Grundwassers in Lebensbereiche eigener Prägung. Arch. Hydrobiol. 62: 231–268.

    Google Scholar 

  • Husmann, S., 1971. Eine neue Methode zur Entnahme von Interstitialwasser aus subaquatischen Lockersteinen. Arch. Hydrobiol. 68: 519–527.

    Google Scholar 

  • Husmann, S., 1978. Die Bedeutung der Grundwasserfauna für biologische Reinigungsvorgänge im Interstitial von Lockergesteinen. ‘G W F’ Wass. Abwass. 119: 293–302.

    Google Scholar 

  • Hynes, H. B. N., 1970. The ecology of running waters. Liverpool University Press, Liverpool, 555 pp.

    Google Scholar 

  • Hynes, H. B. N., 1974. Further studies on the distribution of stream animals within the substratum. Limnol. Oceanogr. 19: 92–99.

    Google Scholar 

  • Hynes, H. B. N., 1975. The stream and its valley. Verb. int. Ver. Limnol. 19: 1–15.

    Google Scholar 

  • Hynes, H. B. N., Williams, D. D. & Williams, N. E., 1976. Distribution of the benthos within the substratum of a Welsh mountain stream. Oikos 27: 307–310.

    Google Scholar 

  • Johnson, R. A., 1980. Oxygen transport in salmon spawning gravels. Can. J. Fish. aquat. Sci. 37: 155–162.

    Google Scholar 

  • Kaplan, L. A. & Bott, T. L., 1982. Diel fluctuations of DOC generated by algae in a piedmont stream. Limnol. Oceanogr. 27: 1091–1100.

    Google Scholar 

  • Koboyashi, D., 1981. Separation of runoff components by stream temperature. Verh. Int. Verein. Limnol. 21: 150–154.

    Google Scholar 

  • Lee, D. R. & Cherry, J. A., 1978. A field exercise on groundwater flow using seepage meters and mini-piezometers. J. Geol. Educ. 27: 6–10.

    Google Scholar 

  • Lee, D. R. & Hynes, H. B. N., 1977/78. Identification of groundwater discharge zones in a reach of Hillman Creek in southern Ontario. Wat. Pollut. Res. Can. 13: 121–133.

    Google Scholar 

  • Lock, M. A., 1981. River epilithon — a light and energy transducer. In: Lock, M. A. & Williams, D. D. (Eds.) Perspectives in running water ecology. Plenum Press, New York, 430 pp. 3–40.

    Google Scholar 

  • Lock, M. A. & Hynes, H. B. N., 1975. The disappearance of four leaf leachates in a hard and soft water stream in South Western Ontario, Canada. Int. Revue ges. Hydrobiol. Hydrogr. 60: 847–855.

    Google Scholar 

  • Lock, M. A. & Hynes, H. B. N., 1976. The fate of ‘dissolved’ organic carbon derived from autumn-shed maple leaves (Acer saccharum) in a temperate hardwater stream. Limnol. Oceanogr. 21: 436–443.

    Google Scholar 

  • Lock, M. A., Wallace, R. R., Costerton, J. W., Ventullo, R. M. & Charlton, S. E., in press. River epilithon: toward a structural-functional model. Oikos.

  • Lush, D. L. & Hynes, H. B. N., 1978a. Particulate and dissolved organic matter in a small partly forested stream. Hydrobiologia 60: 177–185.

    Google Scholar 

  • Lush, D. L. & Hynes, H. B. N., 1978b. The uptake of dissolved organic matter by a small spring stream. Hydrobiologia 60: 271–275.

    Google Scholar 

  • Manny, B. A. & Wetzel, R. G., 1973. Diurnal changes in dissolved organic and inorganic carbon and nitrogen in a headwater stream. Freshwat. Biol. 3: 31–43.

    Google Scholar 

  • McDowell, W. H. & Fisher, S. G., 1976. Autumnal processing of dissolved organic matter in a small woodland stream ecosystem. Ecology 57: 561–569.

    Google Scholar 

  • Meŝtrov, M. & Lattinger-Penko, R., 1977/78. Ecological investigations of the influence of a polluted river on surrounding interstitial underground waters. Int. J. Speleol. 9: 331–355.

    Google Scholar 

  • Meŝtrov, M. & Lattinger-Penko, R., 1981. Investigation of the mutual influence between a polluted river and its hyporheic. Int. J. Speleol. 11: 159–171.

    Google Scholar 

  • Meŝtrov, M., Lattinger-Penko, R. & Tavcar, V., 1976. La dynamique de l'Isopode Proasellus slavus ssp. n. et les larves de Chironomides dans l'hyporhéique de la Drave du point de vue de la pollution. Int. J. Speleol. 8: 156–166.

    Google Scholar 

  • Morris, D. L. & Brooker, M. P., 1979. The vertical distribution of macroinvertebrates in the upper reaches of the River Wye, Wales. Freshwat. Biol. 9: 573–584.

    Google Scholar 

  • Naiman, R. G., 1982. Characteristics of sediment and organic carbon export from pristine boreal forest watersheds. Can. J. Fish. aquat. Sci. 39: 1699–1718.

    Google Scholar 

  • Newbold, J. D., Mulholland, P. J., Elwood, J. W. & O'Neill, R. V., 1982. Organic carbon spiralling in stream ecosystems. Oikos 38: 266–272.

    Google Scholar 

  • Ottaway, E. M., Carling, P. A., Clark, A. & Reader, N. A., 1981. Observations on the structure of brown trout, Salmo trutta Linnaeus, redds. J. Fish Biol. 19: 593–607.

    Google Scholar 

  • Poole, W. C. & Stewart, K. W., 1976. The vertical distribution of macrobenthos within the substratum of the Brazos River, Texas. Hydrobiologia 50: 151–160.

    Google Scholar 

  • Pugsley, C. W. & Hynes, H. B. N., in press. A modified freezecore technique to quantify the depth distribution of fauna in stony streambeds. Can. J. Fish. aquat. Sci. 40:

  • Radford, D. S. & Hartland-Rowe, R., 1971. Subsurface and surface sampling of benthic invertebrates in two streams. Limnol. Oceanogr. 16: 114–120.

    Google Scholar 

  • Rounick, J. S., Winterbourn, M. J. & Lyon, G. L., 1982. Differential utilization of allochthonous and autochthonous inputs by aquatic invertebrates in some New Zealand streams: a stable carbon isotope study. Oikos 39: 191–198.

    Google Scholar 

  • Schwoerbel, J., 1961. Über die Lebensbedingungen und die Besiedlung des hyporheischen Lebensraumes. Arch. Hydrobiol. Suppl. 25: 181–214.

    Google Scholar 

  • Schwoerbel, J., 1967. Das hyporheische Interstitial als Grenzbiotop zwischen oberirdischem und subteränem Ökosystem und seine Bedeutung für die Primär-Evolution von Kleinsthöhlenbewohnern. Arch. Hydrobiol. Suppl. 33: 1–62.

    Google Scholar 

  • Sherr, E. B., 1982. Carbon isotope composition of organic seston and sediments in a Georgia salt marsh estuary. Geochim. cosmochim. Acta 46: 1227–1232.

    Google Scholar 

  • Sklash, M. G., Farvolden, R. N. & Fritz, P., 1976. A conceptual model of watershed response to rainfall, developed through the use of oxygen-18 as a natural tracer. Can. J. Earth Sci. 13: 271–283.

    Google Scholar 

  • Stanford, J. A. & Gaufin, A. R., 1974. Hyporheic communities of two Montana rivers. Science 185: 700–702.

    Google Scholar 

  • Štěrba, O., 1978. Stratifikation der Organismen in der Oberschicht der Sand kiessedimente unter der aktiven Strömung der Flüsse. Vešt. čsk. Spol. zool. 42: 60–68.

    Google Scholar 

  • Štěrba, O. & Holzer, M., 1977. Fauna de interstitiellen Gewässer der Sandkiessedimente unter der aktiven Strömung. Vešt. čsk. Spol. zool. 41: 144–159.

    Google Scholar 

  • Telang, S. A., Baker, B. L., Costerton, J. W., Ladd, T., Mutch, R., Wallis, P. M. & Hodgson, G. W., 1982. Biogeochemistry of mountain stream waters: the Marmot system. Scient. Ser. 101. Inland Waters Directorate, Ottawa, 101 pp.

    Google Scholar 

  • Vaux, W. G., 1962. Interchange of stream and intergravel water in a salmon spawning riffle. Spec. Sci. Publ., U.S. Fish Wildl. Serv., Fish. 405, 11 pp.

  • Wallis, P. M., Hynes, H. B. N. & Telang, S. A., 1981. The importance of groundwater in the transportation of allochthonous dissolved organic matter to the streams draining a small mountain basin. Hydrobiologia 79: 77–90.

    Google Scholar 

  • Webster, D. A. & Eriksdotter, G., 1976. Upwelling water as a factor influencing choice of spawning sties by brook trout (Salvelinus fontinalis). Trans. am. Fish. Soc. 105: 416–421.

    Google Scholar 

  • Welton, J. A., Ladle, M., Bass, J. A. B. & Chapman, K., 1981. Invertebrate sampling in the substratum of an experimental recirculating stream. Int. Revue ges. Hydrobiol. Hydrogr. 66: 407–414.

    Google Scholar 

  • Whitman, R. L. & Clark, W. J., 1982. Availability of dissolved oxygen in interstitial waters of a sandy creek. Hydrobiologia 92: 651–658.

    Google Scholar 

  • Williams, D. D., 1976. Aquatic invertebrates inhabiting agricultural drainage tile systems in Ontario. Can. Fd. Nat. 90: 193–195.

    Google Scholar 

  • Williams, D. D. & Hynes, H. B. N., 1974. The occurrence of benthos deep in the substratum of a stream. Freshwat. Biol. 4: 233–256.

    Google Scholar 

  • Winograd, I. J. & Robertson, F. N., 1982. Deep oxygenated ground water: anomaly or common occurrence? Science 216: 1227–1230.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hynes, H.B.N. Groundwater and stream ecology. Hydrobiologia 100, 93–99 (1983). https://doi.org/10.1007/BF00027424

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00027424

Keywords

Navigation