Skip to main content
Log in

Benthic community metabolism in four temperate stream systems: An inter-biome comparison and evaluation of the river continuum concept

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Benthic community metabolism was studied on four stream systems located in different biomes in the United States: the eastern deciduous forest (Pennsylvania, PA, and Michigan, MI), the high desert (Idaho, ID), and the coniferous forest (Oregon, OR). Studies were designed to test the hypothesis advanced within the River Continuum Concept that a transition in community metabolism will occur from a predominance of heterotrophy in headwaters to a predominance of autotrophy in mid-sized reaches, with a return to heterotrophy further downstream. Both gross primary productivity (GPP) and community respiration (CR24) increased with downstream direction on all systems. Net daily metabolism (NDM, or GPP − CR24) shifted from heterotrophy (−NDM, GPP < CR24) to autotrophy (+NDM, GPP > CR24) with downstream direction at all sites, supporting the hypothesis. Annual metabolism in the most upstream reach of all sites was dominated by respiration; however, the farthest downstream reach was not necessarily the most autotrophic. Site-specific factors affected manifestation of the trend. Photosynthesis predominated annual metabolism in reaches (designated 1–4 in order of increasing size) 2–4 in ID, 3 and 4 in OR, and 4 in MI. In PA annual photosynthesis was slightly greater than respiration only at Station 3. Photosynthesis was predominant most consistently in ID and respiration most often in PA. About half the reaches that were heterotrophic annually were autotrophic at one or more seasons. Annual means of benthic GPP, CR24 and NDM ranged from 0.16 to 3.37, 0.36 to 2.88 and −0.73 to 0.50 g O2 · m2 · d1, respectively. Metabolic rates were usually high in PA and MI (and sometimes ID) and almost always lowest in OR. Parameters accounting for most variance in multiple linear regression analyses of the combined metabolism data from all sites were indicators of stream size, photosynthetically active radiation, temperature, and chlorophyll a concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Public Health Association, 1975. Standard methods for the examination of water and wastewater, 14th Edn. Am. Publ. Hlth. Ass., N.Y.

    Google Scholar 

  • Axler, R. P., G. W. Redfield & C. R. Goldman, 1981. The importance of regenerated nitrogen to phytoplankton productivity in a subalpine lake. Ecology 62: 345–354.

    Google Scholar 

  • Bidwell, R. G. S., 1977. Photosynthesis and light and dark respiration in freshwater algae. Can. J. Bot. 55: 809–818.

    Google Scholar 

  • Bombowna, M., 1972. Primary production of a montane river. In Z. Kajak & A. Hillbricht-Ilkowska (eds.), Proc. IBPUNESCO Symp. Productivity Problems of Freshwaters. Kazimierz Dolny, Poland: 661–671.

    Google Scholar 

  • Bott, T. L., J. T. Brock, C. E. Cushing, S. V. Gregory, D. King & R. C. Petersen, 1978. A comparison of methods for measuring primary productivity and community respiration in streams. Hydrobiologia 60: 3–12.

    Google Scholar 

  • Bott, T. L. & F. P. Ritter, 1981. Benthic algal productivity in a piedmont stream measured by 14C and dissolved oxygen change procedures. J. Freshwat. Biol. 1: 267–278.

    Google Scholar 

  • Brezonik, P. L., 1972. Nitrogen: sources and transformations in natural waters. In H. E. Allen & J. R. Kramer (eds.), Nutrients in natural waters. Envir. Sci. & Technol. Ser., Wiley-Interscience, N.Y.: 1–50.

    Google Scholar 

  • Brock, J. T., 1980. Annual metabolism of a desert stream-segment ecosystem: Rock Creek, Idaho. M.S. Thesis, Idaho St. Univ., Pocatello, Idaho.

    Google Scholar 

  • Busch, D. E. & S. G. Fisher, 1981. Metabolism of a desert stream. Freshwat. Biol. 11: 301–307.

    Google Scholar 

  • Cohen, R. R. H., M. G. Kelly & M. R. Church, 1982. The effect of CO2 on the relationship of photosynthetic rate to light intensity in laboratory phytoplankton cultures. Arch. Hydrobiol. 94: 326–340.

    Google Scholar 

  • Cushing, C. E., 1967. Periphyton productivity and radionuclide accumulation in the Columbia River, Washington, U.S.A. Hydrobiologia 29: 125–139.

    Google Scholar 

  • Cushing, C. E., K. W. Cummins, G. W. Minshall & R. L. Vannote, 1983. Periphyton, chlorophyll a and diatoms of the Middle Fork of the Salmon River, Idaho. Hol. Ecol. 6: 221–227.

    Google Scholar 

  • Cushing, C. E. & E. G. Wolf, 1982. Organic energy budget of Rattlesnake Springs, Washington. Am. Midl. Nat. 107: 404–407.

    Google Scholar 

  • de la Cruz, A. A. & H. A. Post, 1977. Production and transport of organic matter in a woodland stream. Arch. Hydrobiol. 80: 227–238.

    Google Scholar 

  • Duffer, W. & T. C. Dorris, 1966. Primary productivity in a southern Great Plains stream. Limnol. Oceanogr. 11: 143–151.

    Google Scholar 

  • Edwards, R. W. & M. Owens, 1962. The effects of plants on river conditions, 4. The oxygen balance of a chalk stream. J. Ecol. 50: 207–220.

    Google Scholar 

  • Elwood, J. W. & D. J. Nelson, 1972. Periphyton production and grazing rates in a stream measured with a P-32 material balance method. Oikos 23: 295–303.

    Google Scholar 

  • Eppley, R. W., 1981. Autotrophic production of particulate matter. In A. R. Longhurst (ed.), Analysis of Marine Ecosystems. Academic Press, N.Y.: 343–361.

    Google Scholar 

  • Fisher, S. G. & S. R. Carpenter, 1976. Ecosystem and macrophyte primary production of the Fort River, Massachusetts. Hydrobiologia 47: 175–187.

    Google Scholar 

  • Fisher, S. G., L. J. Gray, N. B. Grimm & D. E. Busch, 1982. Temporal succession in a desert stream ecosystem following flash flooding. Ecol. Monogr. 32: 93–110.

    Google Scholar 

  • Fisher, S. G. & G. E. Likens, 1973. Energy flow in Bear Brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecol. Monogr. 43: 421–439.

    Google Scholar 

  • Flemer, D. A., 1970. Primary productivity of the north branch of the Raritan River, New Jersey. Hydrobiologia 35: 273–296.

    Google Scholar 

  • Gelroth, J. V. & G. R. Marzolf, 1978. Primary production and leaf-litter decomposition in natural and channelized portions of a Kansas stream. Am. Midl. Nat. 99: 238–243.

    Google Scholar 

  • Grzenda, A. R. & M. L. Brehmer, 1960. A quantitative method for the collection and measurement of stream periphyton. Limnol. Oceanogr. 5: 190–194.

    Google Scholar 

  • Gunnerson, C. G. & T. E. Bailey, 1963. Oxygen relationships in the Sacramento River. Proc. Am. Soc. Civ. Engrs. 89 SA4: 95–124.

    Google Scholar 

  • Hall, C. A. S., 1972. Migration and metabolism in a temperate stream ecosystem. Ecology 53: 586–604.

    Google Scholar 

  • Hannan, H. A. & T. C. Dorris, 1970. Succession of a macrophyte community in a constant temperature river. Limnol. Oceanogr. 15: 442–453.

    Google Scholar 

  • Hansmann, E. W., C. B. Lane & J. D. Hall, 1971. A direct method of measuring benthic primary production in streams. Limnol. Oceanogr. 16: 822–826.

    Google Scholar 

  • Hargrave, B. T., 1972. Aerobic decomposition of sediment and detritus as a function of particle surface area and organic content. Limnol. Oceanogr. 17: 583–596.

    Google Scholar 

  • Hill, B. H. & J. R. Webster, 1982. Periphyton production in an Appalachian river. Hydrobiologia 97: 275–280.

    Google Scholar 

  • Holm-Hansen, O. & B. Riemann, 1978. Chlorophyll a determination: improvements in methodology. Oikos 30: 438–447.

    Google Scholar 

  • Hornberger, G. M., M. G. Kelly & B. J. Cosby, 1977. Evaluating eutrophication potential from river community productivity. Wat. Res. 11: 65–69.

    Google Scholar 

  • Horner, R. R. & E. B. Welch, 1981. Stream periphyton development in relation to current velocity and nutrients. Can. J. Fish. aquat. Sci. 38: 449–457.

    Google Scholar 

  • Hornick, L. E., J. R. Webster & E. F. Benfield, 1981. Periphyton production in an Appalachian mountain trout stream. Am. Midl. Nat. 106: 22–36.

    Google Scholar 

  • Hornuff, L., 1957. A survey of four Oklahoma streams with reference to production. Oklahoma Fish. Res. Lab. Rep. 62: 1–22.

    Google Scholar 

  • Hoskin, C. M., 1959. Studies of oxygen metabolism of streams of North Carolina. Publs Inst. mar. Sci. Texas 6: 186–192.

    Google Scholar 

  • Hough, R. A., 1976. Light and dark respiration and release of organic carbon in marine macrophytes. Aust. J. Pl. Physiol. 3: 63–68.

    Google Scholar 

  • Kobayasi, H., 1961a. Chlorophyll content in sessile algal community of Japanese mountain river. Bot. Mag. Tokyo 74: 228–235.

    Google Scholar 

  • Kobayasi, H., 1961b. Productivity in sessile algal community of Japanese mountain river. Bot. Mag. Tokyo 74: 331–341.

    Google Scholar 

  • Kobayasi, H., 1972. Chlorophyll content and primary production of the sessile algal community in the mountain stream Chigonozowa running close to the Kiso Biological Station of the Kyoto University. Mem. Fac. Sci., Kyoto Univ., Ser. Biol. 5: 89–107.

    Google Scholar 

  • Kowalczewski, A. & T. J. Lack, 1971. Primary production and respiration of phytoplankton of the Rivers Thames and Kennet at Reading. Freshwat. Biol. 1: 197–212.

    Google Scholar 

  • Leopold, L. B., M. G. Wolman & J. P. Miller, 1964. Fluvial processes in geomorphology. W. H. Freeman & Co., S. Francisco.

    Google Scholar 

  • Lewis, M. A. & S. D. Gerking, 1979. Primary productivity in a polluted intermittent desert stream. Am. Midl. Nat. 102: 172–174.

    Google Scholar 

  • Liaw, W. K. & H. R. MacCrimmon, 1978. Assessing changes in biomass of riverbed periphyton. Int. Revue ges. Hydrobiol. 63: 155–179.

    Google Scholar 

  • Lorenzen, C. J., 1967. Determination of chlorophyll and pheopigments: Spectrophotometric equations. Limnol. Oceanogr. 12: 343–346.

    Google Scholar 

  • Lotspeich, F. B., 1980. Watersheds as the basic ecosystem: this conceptual framework provides a basis for a natural classification system. Wat. Res. Bull. 16: 581–586.

    Google Scholar 

  • Lyford, J. H., Jr. & S. V. Gregory, 1975. The dynamics and structure of periphyton communities in three Cascade Mountain streams. Verh. int. Ver. theor. angew. Limnol. 19: 1610–1616.

    Google Scholar 

  • Mahan, D. C. & K. W. Cummins, 1978. A profile of Augusta Creek in Kalamazoo and Barry Counties, Michigan. Tech. Rep. 3: W. K. Kellogg biol. Stn, Mich. St. Univ., Lansing, Mich.

    Google Scholar 

  • Marker, A. F. H., 1976a. The benthic algae of some streams in southern England, 1. Biomass of the epilithon in some small streams. J. Ecol. 64: 343–358.

    Google Scholar 

  • Marker, A. F. H., 1976b. The benthic algae of some streams in southern England, 2. The primary production of epilithon in a small chalk-stream. J. Ecol. 64: 359–373.

    Google Scholar 

  • McConnell, W. J. & W. F. Sigler, 1959. Chlorophyll and productivity in a mountain stream. Limnol. Oceanogr. 4: 335–351.

    Google Scholar 

  • McCree, K. J., 1972. Test of current definition of photosynthetically active radiation against leaf photosynthesis data. Agric. Meterol. 10: 443–453.

    Google Scholar 

  • McDiffet, W. F., A. E. Carr & D. L. Young, 1972. An estimate of primary productivity in a Pennsylvania trout stream using a diurnal curve technique. Am. Midl. Nat. 87: 564–570.

    Google Scholar 

  • Minshall, G. W., 1978. Autotrophy in stream ecosystems. BioSci. 28: 767–771.

    Google Scholar 

  • Minshall, G. W., J. T. Brock & T. W. LaPoint, 1982. Characterization and dynamics of benthic organic matter and invertebrate functional feeding group relationships in the upper Salmon River, Idaho (USA). Int. Revue ges. Hydrobiol. 67: 793–820.

    Google Scholar 

  • Minshall, G. W., J. T. Brock, D. A. McCullough, R. Dunn, M. R. McSorley & R. Pace, 1975. Process studies related to the Deep Creek ecosystem. U.S./IBP Desert Biome Research Memorandum, 75–46. Utah St. Univ., Logan.

    Google Scholar 

  • Minshall, G. W., R. C. Petersen, K. W. Cummins, T. L. Bott, J. R. Sedell, C. E. Cushing & R. L. Vannote, 1983. Interbiome comparison of stream ecosystem dynamics. Ecol. Monogr. 53: 1–25.

    Google Scholar 

  • Moeller, J. R., G. W. Minshall, K. W. Cummins, R. C. Petersen, C. E. Cushing, J. R. Sedell, R. A. Larson & R. L. Vannote, 1979. Transport of dissolved organic carbon in streams of different physiographic characteristics. Org. Geochem. 1: 139–150.

    Google Scholar 

  • Naiman, R. J., 1976. Primary production, standing stock and export of organic matter in a Mohave Desert thermal stream. Limnol. Oceanogr. 21: 60–73.

    Google Scholar 

  • Naiman, R. J., 1983. The annual pattern and spatial distribution of aquatic oxygen metabolism in boreal forest watersheds. Ecol. Monogr. 53: 73–94.

    Google Scholar 

  • Naiman, R. J. & J. R. Sedell, 1979. Benthic organic matter as a function of stream order in Oregon. Arch. Hydrobiol. 87: 404–422.

    Google Scholar 

  • Naiman, R. J. & J. R. Sedell, 1980. Relationships between metabolic parameters and stream order in Oregon. Can. J. Fish. aquat. Sci. 37: 834–847.

    Google Scholar 

  • Nelson, D. J. & D. C. Scott, 1962. Role of detritus in the productivity of a rock outcrop community of a piedmont stream. Limnol. Oceanogr. 7: 396–413.

    Google Scholar 

  • Nie, N. H., C. H. Hull, J. G. Jenkins, K. Steinbrenner & D. H. Bent, 1975. SPSS: Statistical package for the social sciences. McGraw Hill Publishing Co. Ltd., N.Y.

    Google Scholar 

  • Odum, E. P., 1971. Fundamentals of ecology. W. B. Saunders Co., Philadelphia.

    Google Scholar 

  • Odum, H. T., 1966. Primary production in flowing waters. Limnol Oceanogr. 1: 102–117.

    Google Scholar 

  • Odum, H. T., 1957. Trophic structure and productivity of Silver Springs, Florida. Ecol. Monogr. 27: 55–112.

    Google Scholar 

  • Owens, M., 1965. Some factors involved in the use of dissolved oxygen distribution in streams to determine productivity. In C. R. Goldman (ed.), Primary productivity in aquatic environments. Mem. Ist. ital. Idrobiol. 18, Suppl., University of California Press, Berkeley: 209–224.

    Google Scholar 

  • Pennak, R. W. & J. W. Lavelle, 1979. In situ measurements of net primary productivity in a Colorado mountain stream. Hydrobiologia 66: 227–235.

    Google Scholar 

  • Petersen, R. C. & K. W. Cummins, 1974. Leaf processing in a woodland stream. Freshwat. Biol. 4: 343–368.

    Google Scholar 

  • Pfeifer, R. F. & W. F. McDiffett, 1975. Some factors affecting primary productivity of stream riffle communities. Arch. Hydrobiol. 75: 306–317.

    Google Scholar 

  • Pryfogle, P. A. & R. L. Lowe, 1979. Sampling and interpretation of epilithic lotic diatom communities. In R. L. Weitzel (ed.), Methods and measurements of periphyton communities: A review. Am. Soc. Test. Mater., Philadelphia: 77–81.

    Google Scholar 

  • Seyfer, J. R. & J. Wilhm, 1977. Variation with stream order in species composition, diversity, biomass and chlorophyll of periphyton in Otter Creek, Oklahoma. SWest. Nat. 22: 455–467.

    Google Scholar 

  • Scheffe, H., 1959, The analysis of variance. John Wiley & Sons, N. Y.

    Google Scholar 

  • Shreve, R. L., 1975. Statistical law of stream numbers. J. Geol. 74: 17–37.

    Google Scholar 

  • Simonsen, J. F. & P. Harremoes, 1978. Oxygen and pH fluctuations in rivers. Wat. Res. 12: 477–489.

    Google Scholar 

  • Solorzano, L., 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 14: 799–801.

    Google Scholar 

  • Stockner, J. G. & K. R. S. Shortreed, 1976. Autotrophic production in Carnation Creek, a coastal rainforest stream on Vancouver Island, British Columbia. J. Fish. Res. Bd Can. 33: 1553–1563.

    Google Scholar 

  • Strahler, A. N., 1957. Quantitative analyses of watershed geomorphology. Trans. Am. Geophys. Un. 38: 913–920.

    Google Scholar 

  • Strickland, J. D. H. & T. Parsons, 1972. A practical handbook of seawater analysis. Fish. Res. Bd Can., Ottawa.

    Google Scholar 

  • Sumner, W. T. & S. G. Fisher, 1979. Periphyton production in Fort River, Massachusetts. Freshwat. Biol. 9: 205–212.

    Google Scholar 

  • Syrett, P. J., 1962. Nitrogen assimilation, In R. A. Lewin (ed.), Physiology and Biochemistry of Algae, Academic Press, N.Y.: 171–188.

    Google Scholar 

  • Talling, T. F., 1973. The application of some electrochemical methods to the measurement of photosynthesis and respiration in fresh water. Freshwat. Biol. 3: 335–362.

    Google Scholar 

  • Tett, P., C. Gallegos, M. G. Kelly, G. M. Hornberger & B. J. Cosby, 1978. Relationships among substrate, flow, and benthic microalgal pigment density in the Mechums River, Virginia. Limnol. Oceanogr. 23: 785–797.

    Google Scholar 

  • Thomas, N. A. & R. I., O'Connell, 1966. A method for measuring primary production by stream benthos. Limnol. Oceanogr. 11: 386–392.

    Google Scholar 

  • Tilley, L. J. & W. L. Hauschild, 1975. Use of productivity of periphyton to estimate water quality. J. Wat. Pollut. Cont. Fed. 47: 2157–2171.

    Google Scholar 

  • Tominaga, H. & S. Ichimura, 1966. Ecological studies on the organic matter production in a mountain river ecosystem. Bot. Mag., Tokyo 79: 815–829.

    Google Scholar 

  • Vannote, R. L., 1981. The River Continuum: A theoretical construct for the analysis of river ecosystems. In R. D. Cross & D. L. Williams (eds.), Proc. natn. Symp. Freshwat. Inflow to Estuaries, V. 2: Fish & Wildlife Serv., U.S. Dep. Interior, Washington: 209–304.

    Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Can. J. Fish. aquat. Sci. 37: 130–137.

    Google Scholar 

  • Wetzel, R. G., 1975. Primary production. In B. A. Whitton (ed.), River Ecology, University of California Press, Berkeley: 239–247.

    Google Scholar 

  • Wilhm, J., J. Cooper & H. Namminga, 1978. Species composition, diversity, biomass, and chlorophyll of periphyton in Greasy Creek, Red Rock Creek, and the Arkansas River, Oklahoma. Hydrobiologia 57: 17–23.

    Google Scholar 

  • Wissmar, R. C., J. E. Richey, R. F. Stallard & J. M. Edmund, 1981. Plankton metabolism and carbon processes in the Amazon River, its tributaries, and foodplain waters, Peru-Brazil, May–June 1977. Ecology 62: 1622–1633.

    Google Scholar 

  • Woodwell, G. M. & R. H. Whittaker, 1968. Primary production in terrestrial ecosystems. Am. Zool. 8: 19–30.

    Google Scholar 

  • Wright, J. C. & I. K. Mills, 1967. Productivity studies on the Madison River, Yellowstone National Park. Limnol. Oceanogr. 12: 568–577.

    Google Scholar 

  • Yallop, M. L., 1982. Some effects of light on algal respiration and the validity of the light and dark bottle technique for measuring primary productivity. Freshwat. Biol. 12: 427–433.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bott, T.L., Brock, J.T., Dunn, C.S. et al. Benthic community metabolism in four temperate stream systems: An inter-biome comparison and evaluation of the river continuum concept. Hydrobiologia 123, 3–45 (1985). https://doi.org/10.1007/BF00006613

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00006613

Keywords

Navigation