Skip to main content

Omics Tools: Approaches for Microbiomes Analysis to Enhance Bioenergy Production

  • Chapter
  • First Online:
Waste to Energy: Prospects and Applications

Abstract

Exponentially increasing energy demand and decreasing fossil fuel resources signal alarming conditions in the coming future. Need of renewable, sustainable and eco-friendly energy sources thus becomes obligatory. Biological energy sources and means of production show high potential to meet the scarcity. Biofuels like bioalcohols, biodiesel and biogas are efficiently replacing and supplementing fossil fuel energy. Microorganisms play vital role in biofuel production by catabolizing biomass through in-built pathways or itself can be used as energy source. Till date, complex microbiomes are prevalent for large scale production, resulting in biomass consumption even by less efficient or inhibitory microbes, hence decreasing process efficiency and energy yield. Omics tools comprising transcriptomics, genomics, proteomics and metabolomics have provided ultimate techniques for microbial strain development or improvement to deal such limitations. Henceforth, this chapter focuses on conventional as well as improved microbial systems developed by contribution of omics tools, to meet the current global energy demand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aguiar-Pulido V, Huang W, Suarez-Ulloa V et al (2016) Metagenomics, meta transcriptomics, and metabolomics approaches for microbiome analysis. Evol Bioinform Online 12:5–16

    PubMed  PubMed Central  Google Scholar 

  • Alalayah WM, Kalil MS, Kadhum AAH et al (2009) Effect of environmental parameters on hydrogen production using Clostridium saccharoperbutylacetonicum N1-4(ATCC 13564). Am J Environ Sci 5:80–86

    Article  CAS  Google Scholar 

  • Anand V, Singh PK, Banerjee C et al (2017) Proteomic approaches in microalgae: perspectives and applications. 3. Biotech 7:1–10

    Google Scholar 

  • Anand V, Kashyap M, Samadhiya K et al (2019) Strategies to unlock lipid production improvement in algae. Int J Environ Sci Technol 16:1829–1838

    Article  Google Scholar 

  • Anasontzis GE, Kourtoglou E, Mamma D et al (2014) Constitutive homologous expression of phosphoglucomutase and transaldolase increases the metabolic flux of Fusarium oxysporum. Microb Cell Factories 13:1–12

    Article  CAS  Google Scholar 

  • Araújo K, Mahajan D, Kerr R et al (2017) Global biofuels at the crossroads: an overview of technical, policy, and investment complexities in the sustainability of biofuel development. Agriculture 7:1–22

    Article  CAS  Google Scholar 

  • Au J, Choi J, Jones SW et al (2014) Parallel labeling experiments validate Clostridium acetobutylicum metabolic network model for C metabolic flux analysis. Metab Eng 26:23–33

    Article  CAS  PubMed  Google Scholar 

  • Azhar SHM, Abdullaab R, Jambo SA et al (2017) Yeasts in sustainable bioethanol production: A review. Biochem Biophys Rep 10:52–61

    Google Scholar 

  • Beall DS, Ohta K, Ingram LO (1991) Parametric studies of ethanol production from xylose and other sugars by recombinant Escherichia coli. Biotechnol Bioeng 38:296–303

    Article  CAS  PubMed  Google Scholar 

  • Behera S, Singh R, Arora R et al (2015) Scope of algae as third generation biofuels. Front Bioeng Biotechnol 2:1–13

    Article  Google Scholar 

  • Biofuels for transport (2017) Tracking clean energy progress, International Energy Agency. https://www.iea.org/tcep/transport/biofuels/. Accessed 24 Apr 2019

  • Blum BC, Mousavic F, Emili A (2018) Single-platform ‘multi-omic’ profiling: unified mass spectrometry and computational workflows for integrative proteomics–metabolomics analysis. Mol. Omics 14:307–319

    Article  CAS  PubMed  Google Scholar 

  • Boone M, Koker AD, Callewaert N (2018) Capturing the ‘ome’: the expanding molecular toolbox for RNA and DNA library construction. Nucleic Acids Res 46:2701–2721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bušić A, Marđetko N, Kundas S et al (2018) Bioethanol production from renewable raw materials and its separation and purification: a review. Food Technol Biotechnol 56:289–311

    PubMed  PubMed Central  Google Scholar 

  • Campanaro S, Treu L, Kougias PG et al (2016) Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy. Biotechnol Biofuels 9:1–17

    Article  CAS  Google Scholar 

  • Cao G, Sheng Y, Zhang L et al (2016) Biobutanol production from Lignocellulosic biomass: prospective and challenges. J Bioremed Biodegr 7:1–6

    Article  CAS  Google Scholar 

  • Carere CR, Sparling R, Cicek N et al (2008) Third generation biofuels via direct cellulose fermentation. Int J Mol Sci 9:1342–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carere CR, Rydzak T, Verbeke TJ et al (2012) Linking genome content to biofuel production yields: a meta-analysis of major catabolic pathways among select H2 and ethanol-producing bacteria. BMC Microbiol 12:1–21

    Article  CAS  Google Scholar 

  • Chakravorty D, Banerjee K, Saha S (2018) In: Singh S (ed) Synthetic biology omics tools and their applications. Singapore, Springer

    Google Scholar 

  • Chen Y, Banerjee D, Mukhopadhyay A, Petzold CJ (2020) Systems and synthetic biology tools for advanced bioproduction hosts. Curr Opin Biotechnol 64:101–109

    Article  CAS  PubMed  Google Scholar 

  • Choi YJ, Park JH, Kim TY et al (2012) Metabolic engineering of Escherichia coli for the production of 1-propanol. Metab Eng 14:477–486

    Article  PubMed  CAS  Google Scholar 

  • Commisso M, Strazzer P, Toffali K et al (2013) Untargeted metabolomics: an emerging approach to determine the composition of herbal products. Comput Struct Biotechnol J 4:1–7

    Article  Google Scholar 

  • Cordova LT, Cipolla RM, Swarup A et al (2017) 13C metabolic flux analysis of three divergent extremely thermophilic bacteria: Geobacillus sp. LC300, Thermus thermophilus HB8, and Rhodothermus marinus DSM 4252. Metab Eng 44:182–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dashtban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues: opportunities & perspectives. Int J Biol Sci 5:578–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dien BS, Cotta MA, Jeffries TW (2004) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266

    Article  CAS  Google Scholar 

  • Dusséaux S, Croux C, Soucaille P et al (2013) Metabolic engineering of Clostridium acetobutylicum ATCC 824 for the high-yield production of a biofuel composed of an isopropanol/butanol/ethanol mixture. Metab Eng 18:1–8

    Article  PubMed  CAS  Google Scholar 

  • Dyk JSV, Lia L, Leal DB et al (2016) The potential of biofuels in China. IEA Bioenergy 39:1–43

    Google Scholar 

  • Ebner JH, Labatut RA, Lodge JS et al (2016) Anaerobic co-digestion of commercial food waste and dairy manure: characterizing biochemical parameters and synergistic effects. Waste Manag 52:286–294

    Article  CAS  PubMed  Google Scholar 

  • Fernandez AV, Vargas G, Alarcon N et al (2008) Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass Bioenergy 32:338–344

    Article  CAS  Google Scholar 

  • Gasperskaja E, Kučinskas V (2017) The most common technologies and tools for functional genome analysis. Acta Med Lituanica 24:1–11

    Article  Google Scholar 

  • Gaubert-Boussarie J, Prado S, Hubas C (2020) An untargeted metabolomic approach for microphytobenthic biofilms in intertidal mudflats. Front Mar Sci 7:1–16

    Article  Google Scholar 

  • George HA, Johnson JL, Moore WE (1983) Acetone, isopropanol, and butanol production by Clostridium beijerinckii (syn. Clostridium butylicum) and Clostridium aurantibutyricum. Appl Environ Microbiol 45:1160–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gharechahi J, Salekdeh GH (2018) A metagenomic analysis of the camel rumen’s microbiome identifies the major microbes responsible for lignocellulose degradation and fermentation. Biotechnol Biofuels 11:1–19

    Article  CAS  Google Scholar 

  • Global Bioenergy Statistics (2017), World Bioenergy Association. www.worldbioenergy.org. Accessed 24 Apr 2019

  • Global Energy Statistical Yearbook (2019) World energy statistics, Enerdata. https://yearbookenerdatanet/. Accessed 17 Oct 2019

  • Gouveia L, Oliveira AC (2009) Micro algae as a raw material for biofuels production. J Ind Microbial Biotech 36:269–274

    Article  CAS  Google Scholar 

  • Grohmann A, Vainshtein Y, Euchner E et al (2018) Genetic repertoires of anaerobic microbiomes driving generation of biogas. Biotechnol Biofuels 11:1–13

    Article  CAS  Google Scholar 

  • Hasona A, York SW, Yomano LP et al (2002) Decreasing the level of ethyl acetate in ethanolic fermentation broths of Escherichia coli KO11 by expression of Pseudomonas putida estZ esterase. Appl Environ Microbiol 68:2651–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Xiao Y, Gebreselassie N et al (2014) Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysis. Biotechnol Bioeng 111:575–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry VJ, Bandrowski AE, Pepin AS et al (2014) OMICtools: an informative directory for multi-omic data analysis. Database 2014:1–5

    Article  CAS  Google Scholar 

  • Ho NW, Chen Z, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollinshead W, He L, Tang YJ (2014) Biofuel production: an odyssey from metabolic engineering to fermentation scale-up. Front Microbiol: Microbial Physiol Metab 5:1–8

    Article  Google Scholar 

  • Horgan RP, Kenny LC (2011) ‘Omic’ technologies: genomics, transcriptomics, proteomics and metabolomics. Obstet Gynaecolog 13:189–195

    Article  Google Scholar 

  • Hrdlickova R, Toloue M, Tian B (2016) RNA-Seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA 8:1–24

    Article  Google Scholar 

  • Huo YX, Cho KM, Rivera JGL et al (2011) Conversion of proteins into biofuels by engineering nitrogen flux. Nat Biotechnol 29:346–351

    Article  CAS  PubMed  Google Scholar 

  • Ingram LO, Conway T (1988) Expression of different levels of ethanologenic enzymes from Zymomonas mobilis in recombinant strains of Escherichia coli. Appl Environ Microbiol 54:397–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingram LO, Conway T, Clark DP et al (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53:2420–2425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ire FS, Ezebuiro V, Ogugbue CJ (2016) Production of bioethanol by bacterial co-culture from agro-waste-impacted soil through simultaneous saccharification and co-fermentation of steam-exploded bagasse. Bioresour Bioprocess 3:1–12

    Article  Google Scholar 

  • Ivanova C, Ramoni J, Aouam T et al (2017) Genome sequencing and transcriptome analysis of Trichoderma reesei QM9978 strain reveals a distal chromosome translocation to be responsible for loss of vib1 expression and loss of cellulase induction. Biotechnol Biofuels 10:1–15

    Article  CAS  Google Scholar 

  • Jagadevan S, Banerjee A, Banerjee C et al (2018) Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production. Biotechnol Biofuels 11:1–21

    Article  CAS  Google Scholar 

  • Jin YS, Ni H, Laplaza JM et al (2003) Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl Environ Microbiol 69:495–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung SK, Parisutham V, Jeong SH et al (2012) Heterologous expression of plant cell wall degrading enzymes for effective production of cellulosic biofuels. J Biomed Biotechnol 405842:1–10

    Article  CAS  Google Scholar 

  • Khan S, Siddique R, Sajjad W et al (2017) Biodiesel production from algae to overcome the energy crisis. Hayati J Biosci 24:163–167

    Article  Google Scholar 

  • Khan MI, Shin JH, Kim JD (2018a) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Factories 17:1–21

    Article  Google Scholar 

  • Khan V, Putluri N, Sreekumar A et al (2018b) Current applications of metabolomics in cirrhosis. Meta 8:1–12

    Google Scholar 

  • Kirtipal N, Shanker A (2020) Integrating omics and microbial biotechnology for the production of biofuel. In: Kumar N (ed) Biotechnology for biofuels: a sustainable green energy solution. Springer, Singapore, pp 221–239

    Chapter  Google Scholar 

  • Kleinováa A, Cvengrošováa Z, Rimarčíka J et al (2012) Biofuels from algae. Procedia Eng 42:231–238

    Article  CAS  Google Scholar 

  • Kolesinska B, Fraczyk J, Binczarski M, Modelska M et al (2019) Butanol synthesis routes for biofuel production: trends and perspectives. Materials 12:1–22

    Article  CAS  Google Scholar 

  • Kosmides AK, Kamisoglu K, Calvano SE et al (2013) Metabolomic fingerprinting: challenges and opportunities. Crit Rev Biomed Eng 41:205–221

    Article  PubMed  PubMed Central  Google Scholar 

  • Kukurba KR, Montgomery SB (2015) RNA sequencing and analysis. Cold Spring Harb Protoc 2015:951–969

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuo J, Dow J (2017) Biogas production from anaerobic digestion of food waste and relevant air quality implications. J Air Waste Manag Assoc 67:1000–1011

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Hall AS, Kim JD et al (2012) A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem Mater 24:1158–1164

    Article  CAS  Google Scholar 

  • Lillington SP, Leggieri PA, Heom KA, O’Malley MA (2020) Nature’s recyclers: anaerobic microbial communities drive crude biomass deconstruction. Curr Opin Biotechnol 62:38–47

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Chen L, Wang J et al (2012) Proteomic analysis reveals resistance mechanism against biofuel hexane in Synechocystis sp. PCC 6803. Biotechnol Biofuels 5:1–17

    Article  CAS  Google Scholar 

  • Lowe R, Shirley N, Bleackley M et al (2017) Transcriptomics technologies. PLoS Comput Biol 13:1–23

    Article  CAS  Google Scholar 

  • Luo G, Xie L, Zhou Q et al (2011) Enhancement of bioenergy production from organic wastes by two-stage anaerobic hydrogen and methane production process. Bioresour Technol 102:8700–8706

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Ding Y, Zhang L et al (2017) Genomic prediction of genotypic effects with epistasis and environment interactions for yield-related traits of rapeseed (Brassica napus L.). Front Genet 8:1–9

    Article  Google Scholar 

  • Luque R, Herrero-Davila L, Campelo JM et al (2008) Biofuels: a technological perspective. Energy Environ Sci 1:542–564

    Article  CAS  Google Scholar 

  • Maki M, Leung KT, Qin W (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5:500–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandad S, Rahman RU, Centeno TP et al (2018) The codon sequences predict protein lifetimes and other parameters of the protein life cycle in the mouse brain. Sci Rep 8:1–19

    Article  CAS  Google Scholar 

  • Manzoni C, Kia DA, Vandrovcova J et al (2016) Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief Bioinform 19:286–302

    Article  PubMed Central  CAS  Google Scholar 

  • Mao S, Luo Y, Zhang T et al (2010) Proteome reference map and comparative proteomic analysis between a wild type Clostridium acetobutylicum DSM 1731 and its mutant with enhanced butanol tolerance and butanol yield. J Proteome Res 9:3046–3061

    Article  CAS  PubMed  Google Scholar 

  • Martien JI, Amador-Noguez D (2017) Recent applications of metabolomics to advance microbial biofuel production. Curr Opin Biotechnol 43:118–126

    Article  CAS  PubMed  Google Scholar 

  • Martín HG, Kumar VS, Weaver D et al (2015) A method to constrain genome-scale models with 13C labeling data. PLoS Comput Biol 11:1–34

    Google Scholar 

  • Mataa TM, Martinsa AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renewab Sustainab Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Merrill SA, Mazza AM (eds) (2006) Reaping the benefits of genomic and proteomic research: intellectual property rights, innovation, and public health. National Research Council (US) committee on intellectual property rights in genomic and protein research and innovation, Washington, DC

    Google Scholar 

  • Mesri M (2014) Advances in proteomic technologies and its contribution to the field of cancer. Adv Med 2014:1–25

    Article  Google Scholar 

  • Metallo CM, Heiden MGV (2013) Understanding metabolic regulation and its influence on cell physiology. Mol Cell 49:388–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millat T, Winzer K (2017) Mathematical modelling of clostridial acetone-butanol-ethanol fermentation. Appl Microbiol Biotechnol 101:2251–2271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirza B, Wang W, Wang J et al (2019) Machine learning and integrative analysis of biomedical big data. Genes 10:1–30

    Article  CAS  Google Scholar 

  • Misra N, Panda PK, Parida BK (2013) Agrigenomics for microalgal biofuel production: an overview of various bioinformatics resources and recent studies to link OMICS to bioenergy and bioeconomy. OMICS A J Integr Biol 17:537–549

    Article  CAS  Google Scholar 

  • Mondal M, Goswami S, Ghosh A et al (2017) Production of biodiesel from microalgae through biological carbon capture: a review. 3. Biotech 7:1–21

    CAS  Google Scholar 

  • Moysés DN, Reis VC, de Almeida JR et al (2016) Xylose fermentation by Saccharomyces cerevisiae: challenges and prospects. Int J Mol Sci 17:1–18

    Article  CAS  Google Scholar 

  • Mudhoo A, Torres-Mayanga PC, Forster-Carneiro T et al (2018) A review of research trends in the enhancement of biomass-to-hydrogen conversion. Waste Manag 79:580–594

    Article  CAS  PubMed  Google Scholar 

  • Nasir IM, Ghazi TIM, Omar R (2012) Production of biogas from solid organic wastes through anaerobic digestion: a review. Appl Microbiol Biotechnol 95:321–329

    Article  CAS  Google Scholar 

  • Ness JN, Moghtaderi B (2007) Biomass and bioenergy. In: Moghtaderi B, Ness J (eds) Coal-biomass cofiring handbook. Cooperative Research Centre for Coal in Sustainable Development, pp 1–36

    Google Scholar 

  • Oliveira FCD, Coelho ST (2018) Biodiesel in Brazil should take off with the newly introduced domestic biofuels policy: RenovaBio. In: Qubeissi MA (ed) Biofuels - challenges and opportunities. IntechOpen limited, London, pp 161–177

    Google Scholar 

  • Ombrello MJ, Sikora KA, Kastner DL (2014) Genetics, genomics, and their relevance to pathology and therapy. Best Pract Res Clin Rheumatol 28:175–189

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey A, Tiwari S, Jadhav SK et al (2014) Efficient microorganism for bioethanol production from Lignocellulosic Azolla. Res J Environ Sci 8:350–355

    Article  Google Scholar 

  • Pareek CS, Smoczynski R, Tretyn A (2011) Sequencing technologies and genome sequencing. J Appl Genet 52:413–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paritosh K, Kushwaha SK, Yadav M (2017) Food waste to energy: an overview of sustainable approaches for food waste management and nutrient recycling. BioMed Res Int 2017:1–19

    Article  CAS  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A et al (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raut MP, Couto N, Pham TK et al (2016) Quantitative proteomic analysis of the influence of lignin on biofuel production by Clostridium acetobutylicum ATCC 824. Biotechnol Biofuels 9:1–16

    Article  CAS  Google Scholar 

  • Riekeberg E, Powers R (2017) New frontiers in metabolomics: from measurement to insight. F1000 Res 6:1–10

    Article  CAS  Google Scholar 

  • Rismani-Yazdi H, Haznedaroglu BZ, Bibby K et al (2011) Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genom 12:1–17

    Article  CAS  Google Scholar 

  • Rismani-Yazdi H, Haznedaroglu BZ, Hsin C et al (2012) Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation. Biotechnol Biofuels 5:1–16

    Article  CAS  Google Scholar 

  • Rojo F (2008) Biofuels from microbes: a comprehensive view. Microb Biotechnol 1:208–210

    Article  PubMed  PubMed Central  Google Scholar 

  • Rutherford BJG (2011) Proteomic applications for engineering Escherichia coli for biofuel production. University of California, Berkeley, CA

    Google Scholar 

  • Sánchez ÓJ, Montoya S (2013) Production of bioethanol from biomass: an overview. In: Gupta V, Tuohy M (eds) Biofuel technologies. Springer, Berlin, pp 397–441

    Chapter  Google Scholar 

  • Sauer M (2016) Industrial production of acetone and butanol by fermentation-100 years later. FEMS Microbiol Lett 363:1–4

    Article  CAS  Google Scholar 

  • Schneider H, Jeffries TW (1989) Conversion of pentoses to ethanol by yeasts and fungi. Crit Rev Biotechnol 9:1–40

    Article  CAS  PubMed  Google Scholar 

  • Schneider MV, Orchard S (2011) Omics technologies, data and bioinformatics principles. Methods Mol Biol 719:3–30

    Article  CAS  PubMed  Google Scholar 

  • Sharif HABM, Salleh A, Boyce AN et al (2008) Biodiesel fuel production from algae as renewable energy. Am J Biochem Biotech 4:250–254

    Article  Google Scholar 

  • Shereena KM, Thangaraj T (2009) Biodiesel: an alternative fuel produced from vegetable oils by transesterification. Electron J Biol 5:67–74

    Google Scholar 

  • Shigechi H, Koh J, Fujita Y et al (2004) Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and alpha-amylase. Appl Environ Microbiol 70:5037–5040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder DA, Chen Y, Denissova NG et al (2005) Comparisons of NMR spectral quality and success in crystallization demonstrate that NMR and X-ray crystallography are complementary methods for small protein structure determination. J Am Chem Soc 127:16505–16511

    Article  CAS  PubMed  Google Scholar 

  • Soleimani SS, Adiguzel A, Nadaroglu H (2017) Production of bioethanol by facultative anaerobic bacteria. J Inst Brew 123:402–406

    Article  CAS  Google Scholar 

  • Subhadra B, Edwards M (2010) An integrated renewable energy park approach for algal biofuel production in United States. Energy Policy 38:4897–4902

    Article  CAS  Google Scholar 

  • Tang J (2011) Microbial metabolomics. Curr Genomics 12:391–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulaganathan K, Sravanthi Goud B, Reddy MM et al (2015) Genome sequence of Saccharomyces cerevisiae NCIM3107, used in bioethanol production. Genome Announc 3:1–2

    Article  Google Scholar 

  • Vardar-Schara G, Maeda T, Wood TK (2008) Metabolically engineered bacteria for producing hydrogen via fermentation. Microb Biotechnol 1:107–125

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Vasudevan V, Kashyap BK, Samsudeen TI, Meghvansi MK, Singh L, Kamboj DV (2018) Direct Lysis glass Milk method of genomic DNA extraction reveals greater Archaeal diversity in anaerobic biodigester slurry as assessed through denaturing gradient gel electrophoresis. J Exp Biol Agric Sci 6(2):315–323. https://doi.org/10.18006/2018.6(2).315.323

    Article  CAS  Google Scholar 

  • Waldron K (ed) (2010) Bioalcohol production: biochemical conversion of lignocellulosic biomass. Woodhead Publishers, Cambridge, UK

    Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Xin F, Kong X et al (2018) Enhanced isopropanol-butanol-ethanol mixture production through manipulation of intracellular NAD(P)H level in the recombinant Clostridium acetobutylicum XY16. Biotechnol Biofuels 11:1–10

    Article  CAS  Google Scholar 

  • Wang T, Li B, Nelson CE et al (2019) Comparative analysis of differential gene expression analysis tools for single-cell RNA sequencing data. BMC Bioinform 20:1–16

    Article  Google Scholar 

  • Warnecke F, Luginbuhl P, Ivanova N et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565

    Article  CAS  PubMed  Google Scholar 

  • Whitacre PT (ed) (2011) Renewable fuel standard: potential economic and environmental effects of U.S. biofuel policy. National Academies Press, Washington, DC

    Google Scholar 

  • Xin F, Chen T, Jiang Y et al (2017) Strategies for improved isopropanol-butanol production by a Clostridium strain from glucose and hemicellulose through consolidated bioprocessing. Biotechnol Biofuels 10:1–13

    Article  CAS  Google Scholar 

  • Yang S, Fei Q, Zhang Y et al (2016) Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microb Biotechnol 9:699–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zabed H, Faruq G, Sahu JN et al (2014) Bioethanol production from fermentable sugar juice. Corp Sci World J 2014:1–11

    Article  CAS  Google Scholar 

  • Zabed H, Sahu JN, Suely A et al (2017) Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sust Energ Rev 71:475–501

    Article  CAS  Google Scholar 

  • Zahan KA, Kano M (2018) Biodiesel production from palm oil, its by-products, and mill effluent: a review. Energies 11:1–25

    Article  CAS  Google Scholar 

  • Zamanzadeh M, Hagen LH, Svensson K et al (2017) Biogas production from food waste via co-digestion and digestion- effects on performance and microbial ecology. Sci Rep 7:1–12

    Article  CAS  Google Scholar 

  • Zhang M, Eddy C, Deanda K et al (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Fonslow BR, Shan B et al (2013) Protein analysis by shotgun/bottom-up proteomics. Chem Rev 113:2343–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Wang S, Wang Y (2016) Biobutanol production from renewable resources: recent advances. Adv Bioenergy 1:1–68

    Article  CAS  Google Scholar 

  • Zhao L, Cao GL, Wang AJ et al (2014) Consolidated bioprocessing performance of Thermoanaerobacterium thermosaccharolyticum M18 on fungal pretreated cornstalk for enhanced hydrogen production. Biotechnol Biofuels 7:1–10

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, S., Pandey, A.K. (2020). Omics Tools: Approaches for Microbiomes Analysis to Enhance Bioenergy Production. In: Kashyap, B.K., Solanki, M.K., Kamboj, D.V., Pandey, A.K. (eds) Waste to Energy: Prospects and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-33-4347-4_9

Download citation

Publish with us

Policies and ethics