Skip to main content

Next Generation Biofuel Production in the Omics Era: Potential and Prospects

  • Chapter
  • First Online:
Omics Technologies for Sustainable Agriculture and Global Food Security (Vol II)

Abstract

The surging global population has led to an ever-increasing demand for fossil fuel, and as a result, fossil fuel reserves are depleting sharply and negatively impacting environmental health. The quest for sustainable environmental friendly fuels has presented us renewable energy sources like wind, solar, and biofuels after two decades of research. The usage of biofuels as an alternative fuel has picked up pace in many countries with an aim for sustainable development. However, global production remains a big challenge due to various reasons associated with their sustainable production. Furthermore, omics technology like genomics, transcriptomics, proteomics, and metabolomics has generated quantum of information of biological organisms and their associated pathways in differential interaction with their environment. The deciphering of molecular information associated in biofuel-producing organisms with these technologies is still in its incipient stage. A sustainable production of biofuels might be accomplished by the contribution of information generated with the application of these technologies. The researchers are on course for utilizing this information for understanding molecular mechanism involved in biofuel production. This chapter presents the status of global biofuel production and application of different omics technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdullah B, Safas M, Shokravi Z, Ismail S, Kassim KA, Mahmood AN, MMA A (2019) Fourth generation biofuel: a review on risks and mitigation strategies. Renew Sust Energ Rev 107:37–50

    Article  Google Scholar 

  • Alotaibi SS, Elseehy MM, Aljuaid BS, El-Shehawi AM (2020) Transcriptome analysis of jojoba (Simmondsia chinensis) during seed development and liquid wax Ester biosynthesis. Plan Theory 9:588

    CAS  Google Scholar 

  • Aro E-M (2016) From first generation biofuels to advanced solar biofuels. Ambio 45:24–31

    Article  CAS  Google Scholar 

  • Banerjee A, Banerjee C, Negi S, Chang J-S, Shukla P (2018) Improvements in algal lipid production: a systems biology and gene editing approach. Crit Rev Biotechnol 38:369–385

    Article  CAS  PubMed  Google Scholar 

  • Behera BK, Varma A (2019) Bioenergy for sustainability and security. Springer, Cham

    Book  Google Scholar 

  • Bertrand E, Vandenberghe LP, Soccol CR, Sigoillot J-C, Faulds C (2016) First generation bioethanol. In: Green fuels technology. Springer, Cham, pp 175–212

    Chapter  Google Scholar 

  • Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A, Brown S, Fennell PS, Fuss S, Galindo A, Hackett LA (2018) Carbon capture and storage (CCS): the way forward. Energy Environ Sci 11:1062–1176

    Article  CAS  Google Scholar 

  • Burkholder JM, Glibert PM, Skelton HM (2008) Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 8:77–93

    Article  CAS  Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. In: Pachauri RK, Meyer LA (eds) Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, 151 pp

    Google Scholar 

  • Deng Y-L, Kuo M-Y, Juang Y-J (2014) Development of flow through dielectrophoresis microfluidic chips for biofuel production: sorting and detection of microalgae with different lipid contents. Biomicrofluidics 8:064120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae Chlorella sp. in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412

    Article  Google Scholar 

  • Foust TD, Aden A, Dutta A, Phillips S (2009) An economic and environmental comparison of a biochemical and a thermochemical lignocellulosic ethanol conversion processes. Cellulose 16:547–565

    Article  CAS  Google Scholar 

  • Gao C, Wang Y, Shen Y, Yan D, He X, Dai J, Wu Q (2014) Oil accumulation mechanisms of the oleaginous microalga Chlorella protothecoides revealed through its genome, transcriptomes, and proteomes. BMC Genom 15:582

    Article  Google Scholar 

  • Gao K, Wu Y, Li G, Wu H, Villafane VE, Helbling EW (2007) Solar UV radiation drives CO2 fixation in marine phytoplankton: a double-edged sword. Plant Physiol 144:54–59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gronenberg LS, Marcheschi RJ, Liao JC (2013) Next generation biofuel engineering in prokaryotes. Curr Opin Chem Biol 17:462–471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guarnieri MT, Nag A, Smolinski SL, Darzins A, Seibert M, Pienkos PT (2011) Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga. PLoS One 6:e25851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hansson J, Hackl R, Taljegard M, Brynolf S, Grahn M (2017) The potential for electrofuels production in Sweden utilizing fossil and biogenic CO2 point sources. Front Energy Res 5:4

    Article  Google Scholar 

  • Hassan MH, Kalam MA (2013) An overview of biofuel as a renewable energy source: development and challenges. Procedia Eng 56:39–53

    Article  Google Scholar 

  • Hsu AF, Jones K, Foglia TA, Marmer WN (2002) Immobilized lipase-catalysed production of alkyl esters of restaurant grease as biodiesel. Biotechnol Appl Biochem 36:181–186

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Wang S, Li J, Wang Q, He Z, Feng Y, Abomohra AE-F, Afonaa-Mensah S, Hui C (2018) Co-pyrolysis and co-hydrothermal liquefaction of seaweeds and rice husk: comparative study towards enhanced biofuel production. J Anal Appl Pyrolysis 129:162–170

    Article  CAS  Google Scholar 

  • Kagale S, Nixon J, Khedikar Y, Pasha A, Provart NJ, Clarke WE, Bollina V, Robinson SJ, Coutu C, Hegedus DD (2016) The developmental transcriptome atlas of the biofuel crop Camelina sativa. Plant J 88:879–894

    Article  CAS  PubMed  Google Scholar 

  • Kaye Y, Grundman O, Leu S, Zarka A, Zorin B, Didi-Cohen S, Khozin-Goldberg I, Boussiba S (2015) Metabolic engineering toward enhanced LC-PUFA biosynthesis in Nannochloropsis oceanica: overexpression of endogenous Δ12 desaturase driven by stress-inducible promoter leads to enhanced deposition of polyunsaturated fatty acids in TAG. Algal Res 11:387–398

    Article  Google Scholar 

  • Kumar A, Sharma S (2011) Potential non-edible oil resources as biodiesel feedstock: an Indian perspective. Renew Sust Energ Rev 15:1791–1800

    Article  CAS  Google Scholar 

  • Lee RA, Lavoie J-M (2013) From first-to third-generation biofuels: challenges of producing a commodity from a biomass of increasing complexity. Anim Front 3:6–11

    Article  Google Scholar 

  • Légeret B, Schulz-Raffelt M, Nguyen H, Auroy P, Beisson F, Peltier G, Blanc G, Li-Beisson Y (2016) Lipidomic and transcriptomic analyses of Chlamydomonas reinhardtii under heat stress unveil a direct route for the conversion of membrane lipids into storage lipids. Plant Cell Environ 39:834–847

    Article  CAS  PubMed  Google Scholar 

  • Li S, Huang L, Ke C, Pang Z, Liu L (2020) Pathway dissection, regulation, engineering and application: lessons learned from biobutanol production by solventogenic clostridia. Biotechnol Biofuels 13:1–25

    Article  CAS  Google Scholar 

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467

    Article  CAS  Google Scholar 

  • Longworth J, Wu D, Huete-Ortega M, Wright PC, Vaidyanathan S (2016) Proteome response of Phaeodactylum tricornutum, during lipid accumulation induced by nitrogen depletion. Algal Res 18:213–224

    Article  PubMed Central  PubMed  Google Scholar 

  • Lowrey J, Brooks MS, McGinn PJ (2015) Heterotrophic and mixotrophic cultivation of microalgae for biodiesel production in agricultural wastewaters and associated challenges—a critical review. J Appl Phycol 27:1485–1498

    Article  CAS  Google Scholar 

  • Mat Aron NS, Khoo KS, Chew KW, Show PL, Chen WH, Nguyen THP (2020) Sustainability of the four generations of biofuels–a review. Int J Energy Res 44:9266–9282

    Article  CAS  Google Scholar 

  • Mathimani T, Mallick N (2018) A comprehensive review on harvesting of microalgae for biodiesel–key challenges and future directions. Renew Sust Energ Rev 91:1103–1120

    Article  CAS  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38:522–550

    Article  CAS  Google Scholar 

  • Mishra A, Medhi K, Malaviya P, Thakur IS (2019) Omics approaches for microalgal applications: prospects and challenges. Bioresour Technol 291:121890

    Article  CAS  PubMed  Google Scholar 

  • Mudalkar S, Golla R, Ghatty S, Reddy AR (2014) De novo transcriptome analysis of an imminent biofuel crop, Camelina sativa L using Illumina GAIIX sequencing platform and identification of SSR markers. Plant Mol Biol 84:159–171

    Article  CAS  PubMed  Google Scholar 

  • Munoz R, Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815

    Article  CAS  PubMed  Google Scholar 

  • Ndikubwimana T, Zeng X, Murwanashyaka T, Manirafasha E, He N, Shao W, Lu Y (2016) Harvesting of freshwater microalgae with microbial bioflocculant: a pilot-scale study. Biotechnol Biofuels 9:1–11

    Article  CAS  Google Scholar 

  • Nguyen HM, Baudet M, Cuine S, Adriano JM, Barthe D, Billon E, Bruley C, Beisson F, Peltier G, Ferro M (2011) Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism. Proteomics 11:4266–4273

    Article  CAS  PubMed  Google Scholar 

  • Niphadkar S, Bagade P, Ahmed S (2018) Bioethanol production: insight into past, present and future perspectives. Biofuels 9:229–238

    Article  CAS  Google Scholar 

  • Niu Y-F, Zhang M-H, Li D-W, Yang W-D, Liu J-S, Bai W-B, Li H-Y (2013) Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum. Mar Drugs 11:4558–4569

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Patade VY, Meher LC, Grover A, Gupta SM, Nasim M (2018) Omics approaches in biofuel technologies: toward cost effective, eco-friendly, and renewable energy. In: Omics technologies and bio-engineering. Elsevier, Amsterdam, pp 337–351

    Chapter  Google Scholar 

  • Philbrook A, Alissandratos A, Easton CJ (2013) Biochemical processes for generating fuels and commodity chemicals from lignocellulosic biomass. In: Environmental biotechnology. Intechopen, pp 39–63

    Google Scholar 

  • Poelman E, De Pauw N, Jeurissen B (1997) Potential of electrolytic flocculation for recovery of micro-algae. Resour Conserv Recycl 19:1–10

    Article  Google Scholar 

  • Popko J, Herrfurth C, Feussner K, Ischebeck T, Iven T, Haslam R, Hamilton M, Sayanova O, Napier J, Khozin-Goldberg I (2016) Metabolome analysis reveals betaine lipids as major source for triglyceride formation, and the accumulation of sedoheptulose during nitrogen-starvation of Phaeodactylum tricornutum. PLoS One 11:e0164673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rai V, Muthuraj M, Gandhi MN, Das D, Srivastava S (2017) Real-time iTRAQ-based proteome profiling revealed the central metabolism involved in nitrogen starvation induced lipid accumulation in microalgae. Sci Rep 7:45732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raut MP, Couto N, Pham TK, Evans C, Noirel J, Wright PC (2016) Quantitative proteomic analysis of the influence of lignin on biofuel production by Clostridium acetobutylicum ATCC 824. Biotechnol Biofuels 9:1–16

    Article  CAS  Google Scholar 

  • Rismani-Yazdi H, Haznedaroglu BZ, Hsin C, Peccia J (2012) Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation. Biotechnol Biofuels 5:74

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saha S, Sharma A, Purkayastha S, Pandey K, Dhingra S (2019) Bio-plastics and biofuel: is it the way in future development for end users? In: Plastics to energy. Elsevier, Amsterdam, pp 365–376

    Google Scholar 

  • Sajjadi B, Chen W-Y, Raman AAA, Ibrahim S (2018) Microalgae lipid and biomass for biofuel production: a comprehensive review on lipid enhancement strategies and their effects on fatty acid composition. Renew Sust Energ Rev 97:200–232

    Article  CAS  Google Scholar 

  • Scaife MA, Merkx-Jacques A, Woodhall DL, Armenta RE (2015) Algal biofuels in Canada: status and potential. Renew Sust Energ Rev 44:620–642

    Article  Google Scholar 

  • Shang C, Bi G, Yuan Z, Wang Z, Alam MA, Xie J (2016) Discovery of genes for production of biofuels through transcriptome sequencing of Dunaliella parva. Algal Res 13:318–326

    Article  Google Scholar 

  • Shang C, Zhu S, Wang Z, Qin L, Alam MA, Xie J, Yuan Z (2017) Proteome response of Dunaliella parva induced by nitrogen limitation. Algal Res 23:196–202

    Article  Google Scholar 

  • Shokravi H, Shokravi Z, Aziz MMA, Shokravi H (2019a) 11 Algal biofuel: a promising alternative for fossil fuel. In: Fossil free fuels. CRC Press, Boca Raton, FL

    Google Scholar 

  • Shokravi Z, Shokravi H, Aziz MMA, Shokravi H (2019b) The fourth-generation biofuel: a systematic review on nearly two decades of research from 2008 to 2019. In: Fossil free fuels trends renewable energy. Taylor and Francis, London

    Google Scholar 

  • Sims RE, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101:1570–1580

    Article  CAS  PubMed  Google Scholar 

  • Soccol CR, Faraco V, Karp SG, Vandenberghe LP, Thomaz-Soccol V, Woiciechowski AL, Pandey A (2019) Lignocellulosic bioethanol: current status and future perspectives. In: Biofuels: alternative feedstocks and conversion processes for the production of liquid and gaseous biofuels. Elsevier, Amsterdam, pp 331–354

    Chapter  Google Scholar 

  • Sreeharsha RV, Mudalkar S, Singha KT, Reddy AR (2016) Unravelling molecular mechanisms from floral initiation to lipid biosynthesis in a promising biofuel tree species, Pongamia pinnata using transcriptome analysis. Sci Rep 6:34315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tian L, Perot SJ, Stevenson D, Jacobson T, Lanahan AA, Amador-Noguez D, Olson DG, Lynd LR (2017) Metabolome analysis reveals a role for glyceraldehyde 3-phosphate dehydrogenase in the inhibition of C. thermocellum by ethanol. Biotechnol Biofuels 10:276. https://doi.org/10.1186/s13068-017-0961-3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tian X, Chen L, Wang J, Qiao J, Zhang W (2013) Quantitative proteomics reveals dynamic responses of Synechocystis sp. PCC 6803 to next-generation biofuel butanol. J Proteome 78:326–345

    Article  CAS  Google Scholar 

  • Tran N-AT, Padula MP, Evenhuis CR, Commault AS, Ralph PJ, Tamburic B (2016) Proteomic and biophysical analyses reveal a metabolic shift in nitrogen deprived Nannochloropsis oculata. Algal Res 19:1–11

    Article  Google Scholar 

  • Wu Q, Cao Y, Chen C, Gao Z, Yu F, Guy RD (2020) Transcriptome analysis of metabolic pathways associated with oil accumulation in developing seed kernels of Styrax tonkinensis, a woody biodiesel species. BMC Plant Biol 20:1–17

    Article  CAS  Google Scholar 

  • Xie M, Wang W, Zhang W, Chen L, Lu X (2017) Versatility of hydrocarbon production in cyanobacteria. Appl Microbiol Biotechnol 101:905–919

    Article  CAS  PubMed  Google Scholar 

  • Yadugiri V (2009) Milking diatoms–a new route to sustainable energy. Curr Sci 97:748–750

    Google Scholar 

  • Yang C, Li R, Cui C, Liu S, Qiu Q, Ding Y, Wu Y, Zhang B (2016) Catalytic hydroprocessing of microalgae-derived biofuels: a review. Green Chem 18:3684–3699

    Article  CAS  Google Scholar 

  • Yang Z-K, Ma Y-H, Zheng J-W, Yang W-D, Liu J-S, Li H-Y (2014) Proteomics to reveal metabolic network shifts towards lipid accumulation following nitrogen deprivation in the diatom Phaeodactylum tricornutum. J Appl Phycol 26:73–82

    Article  CAS  PubMed  Google Scholar 

  • You W, Wei L, Gong Y, El Hajjami M, Xu J, Poetsch A (2020) Integration of proteome and transcriptome refines key molecular processes underlying oil production in Nannochloropsis oceanica. Biotechnol Biofuels 13:1–19

    Article  CAS  Google Scholar 

  • Yu X-J, Sun J, Sun Y-Q, Zheng J-Y, Wang Z (2016) Metabolomics analysis of phytohormone gibberellin improving lipid and DHA accumulation in Aurantiochytrium sp. Biochem Eng J 112:258–268

    Article  CAS  Google Scholar 

  • Zhang F, Cheng L-H, Xu X-H, Zhang L, Chen H-L (2011) Screening of biocompatible organic solvents for enhancement of lipid milking from Nannochloropsis sp. Process Biochem 46:1934–1941

    Article  CAS  Google Scholar 

  • Zhang L, Xu CC, Champagne P (2010) Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers Manag 51:969–982

    Article  CAS  Google Scholar 

  • Zhang Y, Wu H, Sun M, Peng Q, Li A (2018) Photosynthetic physiological performance and proteomic profiling of the oleaginous algae Scenedesmus acuminatus reveal the mechanism of lipid accumulation under low and high nitrogen supplies. Photosynth Res 138:73–102. https://doi.org/10.1007/s11120-018-0549-1

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors have no competing interest to declare.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Singh, N.K., Kumar, A., Shukla, P. (2021). Next Generation Biofuel Production in the Omics Era: Potential and Prospects. In: Kumar, A., Kumar, R., Shukla, P., Patel, H.K. (eds) Omics Technologies for Sustainable Agriculture and Global Food Security (Vol II). Springer, Singapore. https://doi.org/10.1007/978-981-16-2956-3_11

Download citation

Publish with us

Policies and ethics