Skip to main content

Understanding Biomass Recalcitrance: Conventional Physical, Chemical, and Biological Pretreatment Methods for Overcoming Biomass Recalcitrance

  • Chapter
  • First Online:
Thermochemical and Catalytic Conversion Technologies for Future Biorefineries

Abstract

Pretreatment of lignocellulosic waste is one of the costliest phases in transforming cellulosic material into fermentable sugars. It represents one-third of the overall process cost, and about 90% of the dry weight constitutes cellulose, hemicellulose, lignin, and pectin. Hydrogen bonds and some covalent bonds bind the carbohydrate polymers to lignin firmly. The existence of lignin in lignocelluloses barricades the plant cell against the breakdown action by fungi and bacteria. The purpose of the pretreatment procedure is to disrupt the crystalline phase of cellulose and disintegrate the lignin structure, improving the porosity of the lignocellulosic material.

It further provides acids and enzymes access to hydrolyze cellulose by expanding the porosity of the lignocellulosic material so that it readily attacks to break down the cellulose. Pretreatment is therefore done: (i) to facilitate hydrolysis for the formation of sugars, (ii) to keep away the decaying or waste of carbohydrates, (iii) to prevent the creation of by-products that hinder the hydrolytic activities and fermentation that follow, and (iv) make it economical. Numerous pretreatment protocols are employed for treating biomass to overcome the problem faced during pretreatment. In this study, we have dealt with various pretreatment adopted against lignocellulosic biomass, which is a measure of their potential as feedstock for biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AFEX:

Ammonia fiber explosion

HMF:

5-hydroxymethylfurfural

HPSE:

High-pressure steam explosion

OLP:

Oxidative lime pretreatment

References

  • Abdullah R, Ueda K, Saka S (2014) Hydrothermal decomposition of various crystalline celluloses as treated by semi-flow hot-compressed water. J Wood Sci 60(4):278–286

    Article  CAS  Google Scholar 

  • Agrawal K, Verma P (2020) Production optimization of yellow laccase from Stropharia sp. ITCC 8422 and enzyme-mediated depolymerization and hydrolysis of lignocellulosic biomass for biorefinery application. Biomass Convers Biorefin:1–20. https://doi.org/10.1007/s13399-020-00869-w

  • Agrawal K, Verma P (2021) Fungal metabolites: a recent trend and its potential biotechnological applications. In: Gupta V (ed) New and future developments in microbial biotechnology and bioengineering. Elsevier, pp 1–14

    Google Scholar 

  • Alalwan HA, Alminshid AH, Aljaafari HAS (2019) Promising Evolution of Biofuel Generations. Subject Rev Renew Energy Focus 28:127–139

    Article  Google Scholar 

  • Alam A, Agrawal K, Verma P (2021) Fungi and its by-products in food industry: an unexplored area. In: Arora PK (ed) Microbial products for health, environment and agriculture. Microorganisms for sustainability, vol 31. Springer, Singapore, pp 103–120

    Chapter  Google Scholar 

  • Alencar BRA, Reis ALS, de Souza RDFR, Morais MA, Menezes RSC, Dutra ED (2017) Recycling the liquid fraction of alkaline hydrogen peroxide in the pretreatment of corn stover. Bioresour Technol 241:928–935

    Article  CAS  PubMed  Google Scholar 

  • Ali SS, Abomohra AE-F, Sun J (2017) Effective bio-pretreatment of sawdust waste with a novel microbial consortium for enhanced biomethanation biofuels Institute, School of the Environment and Safety Engineering, Jiangsu. Bioresour Technol 238:425–432

    Article  CAS  PubMed  Google Scholar 

  • Andrée BPJ, Diogo V, Koomen E (2017) Effciency of second-generation biofuel crop subsidy schemes: spatial heterogeneity and policy design. Renew Sust Energ Rev 67:848–862

    Article  Google Scholar 

  • Ayeni AO, Oyekunle DT, Shodipe OC, Folayan JA (2019) Data on the enzymatic conversion of alkaline peroxide oxidative pretreated sugarcane bagasse for the production of fermentable sugars. Data Brief 24:103867

    Article  PubMed  PubMed Central  Google Scholar 

  • Azevedo SG, Sequeira T, Santos M, Mendes L (2019) Biomass-related sustainability: a review of the literature and interpretive structural modeling. Energy 171:1107–1125

    Article  Google Scholar 

  • Azuma J, Tanaka F, Koshijima T (1984) Enhancement of enzymatic susceptibility of lignocellulosic wastes by microwave irradiation. J Ferment Technol 62:377–384

    CAS  Google Scholar 

  • Azuma JI, Tanaka F, Koshijima T (1985) Enhancement of enzymatic susceptibility of lignocellulosic wastes by microwave irradiation. Wood Res 71:13–24

    CAS  Google Scholar 

  • Baba Y, Matsuki Y, Mori Y, Suyama Y, Tada C, Fukuda Y, Saito M, Nakai Y (2017) Pretreatment of lignocellulosic biomass by cattle rumen fluid for methane production: bacterial flora and enzyme activity analysis. J Biosci Bioeng 123:489–496

    Article  CAS  PubMed  Google Scholar 

  • Bajpai P (2016) Pretreatment of lignocellulosic biomass. Springer, Singapore, pp 17–70

    Google Scholar 

  • Behera S, Arora R, Nandhagopal N, Kumar S (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sustain Energy Rev J 36:91–106

    Article  CAS  Google Scholar 

  • Ben-Ghedalia D, Miron J (1981) The effect of combined chemical and enzyme treatments on the saccharification and in vitro digestion rate of wheat straw. Biotechnol Bioeng 23(4):823–831

    Article  CAS  Google Scholar 

  • Bhardwaj N, Kumar B, Verma P (2020a) Microwave-assisted pretreatment using alkali metal salt in combination with orthophosphoric acid for generation of enhanced sugar and bioethanol. Biomass Convers Biorefin:1–8

    Google Scholar 

  • Bhardwaj N, Kumar B, Agrawal K, Verma P (2020b) Bioconversion of rice straw by synergistic effect of in-house produced ligno-hemicellulolytic enzymes for enhanced bioethanol production. Bioresour Technol Rep 10:100352

    Article  Google Scholar 

  • Bhardwaj N, Kumar B, Agrawal K, Verma P (2021) Current perspective on production and applications of microbial cellulases: a review. Bioresour Bioprocess 8(1):1–34

    Article  CAS  Google Scholar 

  • Bhutto AW, Qureshi K, Harijan K, Abro R, Abbas T, Bazmi AA, Karim S, Yu G (2017) Insight into progress in pretreatment of lignocellulosic biomass. Energy 122:724–745

    Article  CAS  Google Scholar 

  • Bondy SC, Guo-Ross SX, Pien J (1998) Mechanisms underlying the aluminum-induced potentiation of the pro-oxidant properties of transition metals. Neurotoxicology 19(1):65–71

    CAS  PubMed  Google Scholar 

  • Brennan W, Hoagland W, Schell DJ, Scott CD (1986) High temperature acid hydrolysis of biomass using an engineering-scale plug flow reactor: Results of low solids testing. Biotechnol Bioeng Symp 17:53–70

    CAS  Google Scholar 

  • Bule MV, Gao AH, Hiscox B, Chen S (2013) Structural modification of lignin and characterisation of pretreated wheat straw by ozonation. J Agric Food Chem 61(16):3916–3925

    Article  CAS  PubMed  Google Scholar 

  • Chandra R, Takeuchi H, Hasegawa T, Vijay VK (2015) Experimental evaluation of substrate's particle size of wheat and rice straw biomass on methane production yield. Agric Eng Int CIGR J 17:93–104

    Google Scholar 

  • Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. In: Twenty-first symposium on biotechnology for fuels and chemicals. Humana Press, Totowa, NJ

    Google Scholar 

  • Chen W, Cheng N (2011) Disruption of sugarcane bagasse lignocellulosic structure by means of dilute. Elsevier

    Google Scholar 

  • Chen CL, Chang HM, Gratzl JS, Pan GY (1984) Studies an ozone bleaching. I. the effect of pH, temperature, buffer systems and heavy metal-ions on stability of ozone in aqueous solution. J Wood Chem Technol 4(3):367–387

    Article  Google Scholar 

  • Correa DF, Beyer HL, Fargione JE, Hill JD, Possingham HP, Thomas-Hall SR, Schenk PM (2019) Towards the implementation of sustainable biofuel production systems. Renew Sust Energ Rev 107:250–263

    Article  Google Scholar 

  • Dadi AP, Varanasi S, Schall CA (2006) Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng 95(5):904–910

    Article  CAS  PubMed  Google Scholar 

  • Dahunsi SO (2019a) Liquefaction of pineapple peel: pretreatment and process optimisation. Energy 185:1017–1031

    Article  CAS  Google Scholar 

  • Dahunsi SO (2019b) Mechanical pretreatment of lignocelluloses for enhanced biogas production: methane yield prediction from biomass structural components. Bioresour Technol 280:18–26

    Article  CAS  PubMed  Google Scholar 

  • Dale BE, Moreira MJ (1982) Freeze-explosion technique for increasing cellulose hydrolysis. Biotechnol Bioeng Symp 12:31–43

    CAS  Google Scholar 

  • De la Rubia MA, Fernández-Cegrí V, Raposo F, Borja R (2011) Influence of particle size and chemical composition on the performance and kinetics of anaerobic digestion process of sunflower oil cake in batch mode. Biochem Eng J 58–59:162–167

    Article  CAS  Google Scholar 

  • Dell'Omo P, La Froscia S (2018) Enhancing anaerobic digestion of wheat straw through multistage milling. Model Meas Control C 79:127–132

    Article  Google Scholar 

  • Dollhofer V, Dandikas V, Dorn-In S, Bauer C, Lebuhn M, Bauer J (2018) Accelerated biogas production from lignocellulosic biomass after pretreatment with Neocallimastix frontalis. Bioresour Technol 264:219–227

    Article  CAS  PubMed  Google Scholar 

  • Dumas C, Damasceno GSG, Abdellatif B, Carrère H, Steyer JP, Rouau X (2015) Effects of grinding processes on anaerobic digestion of wheat straw. Ind Crop Prod 74:450–456

    Article  CAS  Google Scholar 

  • Dutra ED, Santos FA, Alencar BRA, Reis ALS, de Souza RDFR, Aquino KADS, Morais MA, Menezes RSC (2018) Alkaline hydrogen peroxide pretreatment of lignocellulosic biomass: status and perspectives. Biomass Convers Biorefin 8:225–234

    Article  CAS  Google Scholar 

  • Elshafei AM, Vega JL, Klasson KT, Clausen EC, Gaddy JL (1991) The saccharification of corn stover by cellulase from Penicillium funiculosum. Bioresour Technol

    Google Scholar 

  • Esteghlalian A, Hashimoto AG, Fenske JJ, Penner MH (1997) Modeling and optimisation of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Bioresour Technol 59(2–3):129–136

    Article  CAS  Google Scholar 

  • Falls M, Madison M, Liang C, Karim MN, Sierra-Ramirez R, Holtzapple MT (2019) Mechanical pretreatment of biomass—Part II: Shock treatment. Biomass Bioenergy 126:47–56

    Article  CAS  Google Scholar 

  • Galbe M, Wallberg O (2019) Pretreatment for biorefineries: a review of common methods for efficient utilisation of lignocellulosic materials. Biotechnol Biofuels 12(1):1–26

    Article  PubMed  PubMed Central  Google Scholar 

  • Geddes CC, Peterson JJ, Roslander C, Zacchi G, Mullinnix MT, Shanmugam KT, Ingram LO (2010) Optimising the saccharification of sugar cane bagasse using dilute phosphoric acid followed by fungal cellulases. Bioresour Technol 101(6):1851–1857

    Article  CAS  PubMed  Google Scholar 

  • Goswami RK, Agrawal K, Mehariya S, Molino A, Musmarra D, Verma P (2020) Microalgae-based biorefinery for utilization of carbon dioxide for production of valuable bioproducts. In: Kumar A, Sharma S (eds) Chemo-biological systems for CO2 utilization. CRC Press, pp 203–228

    Chapter  Google Scholar 

  • Goswami RK, Agrawal K, Verma P (2021) Microalgae-based biofuel-integrated biorefinery approach as sustainable feedstock for resolving energy crisis. In: Srivastava M, Srivastava N, Singh R (eds) Bioenergy research: commercial opportunities & challenges. Clean energy production technologies. Springer, pp 267–293

    Chapter  Google Scholar 

  • Goswami RK, Mehariya S, Karthikeyan OP, Gupta VK, Verma P (2022a) Multifaceted application of microalgal biomass integrated with carbon dioxide reduction and wastewater remediation: a flexible concept for sustainable environment. J Clean Prod:130654

    Google Scholar 

  • Goswami RK, Mehariya S, Karthikeyan OP, Verma P (2022b) Influence of carbon sources on biomass and biomolecule accumulation in Picochlorum sp. cultured under the mixotrophic condition. Int J Environ Res Public Health 19(6):3674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goswami RK, Agrawal K, Verma P (2022c) An exploration of natural synergy using microalgae for the remediation of pharmaceuticals and xenobiotics in wastewater. Algal Res 64:102703

    Article  Google Scholar 

  • Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sust Energ Rev 41:550–567

    Article  CAS  Google Scholar 

  • Haghighi Mood S, Hossein Golfeshan A, Tabatabaei M, Salehi Jouzani G, Najafi GH, Gholami M et al (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 27:77–93

    Article  CAS  Google Scholar 

  • Harun S, Geok SK (2016) Effect of sodium hydroxide pretreatment on rice straw composition. Indian J Sci Tech 9(21):1–9

    Article  CAS  Google Scholar 

  • Heiske S, Schultz-jensen N, Leipold F, Schmidt JE (2013) Improving anaerobic digestion of wheat straw by plasma-assisted pretreatment. J At Mol Phys 2013:1–7

    Article  CAS  Google Scholar 

  • Hernández-Beltrán JU, Lira HD, Omar I, Cruz-Santos MM, Saucedo-Luevanos A, Hernández-Terán F, Balagurusamy N (2019) Insight into pretreatment methods of lignocellulosic biomass to increase biogas yield: current state, challenges, and opportunities. Appl Sci 9(18):3721

    Article  CAS  Google Scholar 

  • Herrmann C, Heiermann M, Idler C, Prochnow A (2012) Particle size reduction during harvesting of crop feedstock for biogas production I: Effects on ensiling process and methane yields. Bioenergy Res 5:926–936

    Article  CAS  Google Scholar 

  • Hu Z, Wen Z (2008) Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochem Eng J 38(3):369–378

    Article  CAS  Google Scholar 

  • Ibarra-Gonzalez, P.; Rong, B.G. A review of the current state of biofuels production from lignocellulosic biomass using thermochemical conversion routes. Chin J Chem Eng 2019; 27(7): 1523–1535

    Google Scholar 

  • Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1(2):119–134

    Article  CAS  Google Scholar 

  • Kádár Z, Schultz-Jensen N, Jensen JS, Hansen MAT, Leipold F, Bjerre AB (2015) Enhanced ethanol production by removal of cutin and epicuticular waxes of wheat straw by plasma assisted pretreatment. Biomass Bioenergy 81:26–30

    Article  CAS  Google Scholar 

  • Karimi K, Taherzadeh MJ (2016) A critical review on analysis in pretreatment of lignocelluloses: degree of polymerisation, adsorption/desorption, and accessibility. Bioresour Technol 203:348–356

    Article  CAS  PubMed  Google Scholar 

  • Katukuri NR, Fu S, He S, Xu X, Yuan X, Yang Z, Guo RB (2017) Enhanced methane production of Miscanthus floridulus by hydrogen peroxide pretreatment. Fuel 199:562–566

    Article  CAS  Google Scholar 

  • Kim S, Holtzapple MT (2006) Effect of structural features on enzyme digestibility of corn stover. Bioresour Technol 97(4):583–591

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Yu A, Han M, Choi GW, Chung B (2011) Enhanced enzymatic saccharification of barley straw pretreated by ethanosolv technology. Appl Biochem Biotechnol 163(1):143–152

    Article  CAS  PubMed  Google Scholar 

  • Komolwanich T, Tatijarern P, Prasertwasu S, Khumsupan D, Chaisuwan T, Luengnaruemitchai A et al (2014) Comparative potentiality of Kans grass (Saccharum spontaneum) and Giant reed (Arundo donax) as lignocellulosic feedstocks for the release of monomeric sugars by microwave/ chemical pretreatment. Cellulose 21(3):1327–1340

    Article  CAS  Google Scholar 

  • Kong X, Du J, Ye X, Xi Y, Jin H, Zhang M, Guo D (2018) Enhanced methane production from wheat straw with the assistance of lignocellulolytic microbial consortium TC-5. Bioresour Technol 263:33–39

    Article  CAS  PubMed  Google Scholar 

  • Krause MJ, Chickering GW, Townsend TG, Pullammanappallil P (2018) Effects of temperature and particle size on the biochemical methane potential of municipal solid waste components. Waste Manag 71:25–30

    Article  CAS  PubMed  Google Scholar 

  • Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess

    Book  Google Scholar 

  • Kumar B, Verma P (2020a) Enzyme mediated multi-product process: a concept of bio-based refinery. Ind Crop Prod 154:112607

    Article  CAS  Google Scholar 

  • Kumar B, Verma P (2020b) Application of hydrolytic enzymes in biorefinery and its future prospects. In: Srivastava N, Srivastava M, Mishra PK, Gupta VK (eds) Microbial strategies for techno-economic biofuel production. Clean energy production technologies. Springer, Singapore, pp 59–83

    Chapter  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    Article  CAS  Google Scholar 

  • Kumar B, Bhardwaj N, Verma P (2020) Microwave assisted transition metal salt and orthophosphoric acid pretreatment systems: generation of bioethanol and xylo-oligosaccharides. Renew Energy 158:574–584

    Article  CAS  Google Scholar 

  • Kumari D, Singh R (2018) Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew Sust Energ Rev 90:877–891

    Article  CAS  Google Scholar 

  • Kuo CH, Lee CK (2009) Enhanced enzymatic hydrolysis of sugarcane bagasse by N-methylmorpholine-N-oxide pretreatment. Bioresour Technol 100(2):866–871

    Article  CAS  PubMed  Google Scholar 

  • Lamb JJ, Islam MH, Hjelme DR, Pollet BG, Lien KM (2019) Effect of power ultrasound and Fenton reagents on the biomethane potential from steam-exploded birchwood. Ultrason Sonochem 58:104675

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Jefferies TW (2011) Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors. Bioresour Technol 102(10):5884–5890

    Article  CAS  PubMed  Google Scholar 

  • Lee D, Yu AHC, Wong KKY, Saddler JN (1994) Evaluation of the enzymatic susceptibility of cellulosic substrates using specific hydrolysis rates and enzyme adsorption. Appl Biochem Biotechnol 45-46(1):407–415

    Article  CAS  Google Scholar 

  • Li J, Henriksson G, Gellerstedt G (2007) Lignin depolymerisation/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour Technol 98(16):3061–3068

    Article  CAS  PubMed  Google Scholar 

  • Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101(13):4900–4906

    Article  CAS  PubMed  Google Scholar 

  • Li C, Wang L, Chen Z, Li Y, Wang R, Luo X et al (2015) Ozonolysispretreatment of maise stover: the interactive effect of sample particle size and moisture on ozonolysis process. Bioresour Technol 183:240–247

    Article  CAS  PubMed  Google Scholar 

  • Li P, Sakuragi K, Makino H (2019) Extraction techniques in sustainable biofuel production: a concise review. Fuel Process Technol 193:295–303

    Article  CAS  Google Scholar 

  • Licari A, Monlau F, Solhy A, Buche P, Barakat A (2016) Comparison of various milling modes combined to the enzymatic hydrolysis of lignocellulosic biomass for bioenergy production: glucose yield and energy efficiency. Energy 102:335–342

    Article  CAS  Google Scholar 

  • Liu L, Chen H (2006) Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM] Cl. Chin Sci Bull 51(20):2432–2436

    Article  CAS  Google Scholar 

  • Liu X, Hiligsmann S, Gourdon R, Bayard R (2017) Anaerobic digestion of lignocellulosic biomasses pretreated with Ceriporiopsis subvermispora. J Environ Manag 193:154–162

    Article  CAS  Google Scholar 

  • MacDonald DG, Bakhshi NN, Mathews JF, Roychowdhury A, Bajpai P, Moo-Young M (1983) Alkali treatment of corn stover to improve sugar production by enzymatic hydrolysis. Biotechnol Bioeng 25(8):2067–2076

    Article  CAS  PubMed  Google Scholar 

  • Mäki-Arvela P, Anugwom I, Virtanen P, Sjöholm R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Ind Crop Prod 32(3):175–201

    Article  CAS  Google Scholar 

  • Mamleeva NA, Autlov SA, Bazarnova NG, Lunin VV (2009) Delignification of softwood by ozonation. Pure Appl Chem 81(11):2081–2091

    Article  CAS  Google Scholar 

  • Menardo S, Airoldi G, Balsari P (2012) The effect of particle size and thermal pre-treatment on the methane yield of four agricultural by-products. Bioresour Technol 104:708–714

    Article  CAS  PubMed  Google Scholar 

  • Miura T, Lee SH, Inoue S, Endo T (2012) Combined pretreatment using ozonolysis and wet-disk milling to improve enzymatic saccharification of Japanese cedar. Bioresour Technol 126:182–186

    Article  CAS  PubMed  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

    Article  CAS  PubMed  Google Scholar 

  • Mupondwa E, Li X, Tabil L, Sokhansanj S, Adapa P (2017) Status of Canada's lignocellulosic ethanol: Part I: Pretreatment technologies. Renew Sust Energ Rev 72:178–190

    Article  CAS  Google Scholar 

  • OECD. Renewable Energy (Indicator). Available online: https://www.oecd-ilibrary.org/energy/renewableenergyindicator/english_aac7c3f1-en (accessed on 28 August 2019)

  • Pellera F-M, Gidarakos E (2018) Chemical pretreatment of lignocellulosic agroindustrial waste for methane production. Waste Manag 71:689–703

    Article  CAS  PubMed  Google Scholar 

  • Perin G, Jones PR (2019) Economic feasibility and long-term sustainability criteria on the path to enable transition from fossil fuels to biofuels. Curr Opin Biotechnol 57:175–182

    Article  CAS  PubMed  Google Scholar 

  • Quesada J, Rubio M, Gómez D (1999) Ozonation of lignin rich solid fractions from corn stalks. J Wood Chem Technol 19(1):115–137

    Article  CAS  Google Scholar 

  • Rabelo SC, Andrade RR, Maciel Filho R, Costa AC (2014) Alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis and fermentation of sugarcane Bagasse to ethanol. Fuel 136:349–357

    Article  CAS  Google Scholar 

  • Rahmati S, Doherty W, Dubal D, Atanda L, Moghaddam L, Sonar P, Ostrikov KK (2020) Pretreatment and fermentation of lignocellulosic biomass: reaction mechanisms and process engineering. React Chem Eng 5(11):2017–2047

    Article  CAS  Google Scholar 

  • Rajendran K, Drielak E, Varma VS, Muthusamy S, Kumar G (2018) Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production—a review. Biomass Convers Biorefin 8:471–483

    Article  CAS  Google Scholar 

  • Raveendran S, Parameswaran B, Ashok P (2016) Biological pretreatment of lignocellulosic biomass—an overview. Bioresour Technol 199:76–82

    Article  CAS  Google Scholar 

  • Rodriguez C, Alaswad A, El-Hassan Z, Olabi AG (2017) Mechanical pretreatment of waste paper for biogas production. Waste Manag 68:157–164

    Article  CAS  PubMed  Google Scholar 

  • Rouches E, Zhou S, Barua VB, Goud VV, Kalamdhad AS (2018) Microbial pretreatment of water hyacinth for enhanced hydrolysis followed by biogas production. Renew Energy 126:21–29

    Article  CAS  Google Scholar 

  • Rudakiya DM, Gupte A (2017) Degradation of hardwoods by treatment of white rot fungi and its pyrolysis kinetics studies. Int Biodeterior Biodegrad 120:21–35

    Article  CAS  Google Scholar 

  • Sassner P, MÃ¥rtensson CG, Galbe M, Zacchi G (2008) Steam pretreatment of H2SO4-impregnated salixfor the production of bioethanol. Bioresour Technol 99(1):137–145

    Article  CAS  PubMed  Google Scholar 

  • Scaramuzzino C, Garegnani G, Zambelli P (2019) Integrated approach for the identification of spatial patterns related to renewable energy potential in European territories. Renew Sust Energ Rev 101:1–13

    Article  Google Scholar 

  • Schroyen M, Vervaeren H, Van Hulle SWH, Raes K (2014) Impact of enzymatic pretreatment on corn stover degradation and biogas production. Bioresour Technol 173:59–66

    Article  CAS  PubMed  Google Scholar 

  • Sharma SK, Mishra IM, Sharma MP, Saini JS (1988) Effect of particle size on biogas generation from biomass residues. Biomass 17:251–263

    Article  CAS  Google Scholar 

  • Shi F, Xiang H, Li Y (2015) Combined pretreatment using ozonolysis and ball milling to improve enzymatic saccharification of corn straw. Bioresour Technol 179:444–451

    Article  CAS  PubMed  Google Scholar 

  • Siciliano A, Stillitano MA, De Rosa S (2016) Biogas production from wet olive mill wastes pretreated with hydrogen peroxide in alkaline conditions. Renew Energy 85:903–916

    Article  CAS  Google Scholar 

  • Song ZL, Yag GH, Feng YZ, Ren GX, Han XH (2013) Pretreatment of rice straw by hydrogen peroxide for enhanced methane yield. J Integr Agric 12:1258–1266

    Article  Google Scholar 

  • Souza-Corrêa JA, Oliveira C, Wolf LD, Nascimento VM, Rocha GJM, Amorim J (2013) Atmospheric pressure plasma pretreatment of sugarcane bagasse: the influence of moisture in the ozonation process. Appl Biochem Biotechnol 171(1):104–116

    Article  PubMed  CAS  Google Scholar 

  • Sparling R, Berlin A, Agbor VB, Cicek N, Sparling R, Berlin A et al (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675–685

    Article  PubMed  CAS  Google Scholar 

  • Su Y, Du R, Guo H, Cao M, Wu Q, Su R, Qi W, He Z (2015) Fractional pretreatment of lignocellulose by alkaline hydrogen peroxide: characterisation of its major components. Food Bioprod Process 94:322–330

    Article  CAS  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9(9):1621–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan HT, Lee KT, Mohamed AR (2011) Pretreatment of lignocellulosic palm biomass using a solvent-ionic liquid (BMIM)Cl for glucose recovery: an optimisation study using response surface methodology. Carbohydr Polym 83(4):1862–1868

    Article  CAS  Google Scholar 

  • Tang J, Chen K, Huang F, Xu J, Li J (2013) Characterization of the pretreatment liquor of biomass from the perennial grass, Eulaliopsis binata, for the production of dissolving pulp. Bioresour Technol 129:548–552

    Article  CAS  PubMed  Google Scholar 

  • Theuretzbacher F, Lizasoain J, Lefever C, Saylor MK, Enguidanos R, Weran N, Gronauer A, Bauer A (2015) Steam explosion pretreatment of wheat straw to improve methane yields: investigation of the degradation kinetics of structural compounds during anaerobic digestion. Bioresour Technol 179:299–305

    Article  CAS  PubMed  Google Scholar 

  • Travaini R, Otero MDM, Coca M, Da-Silva R, Bolado S (2013) Sugarcane bagasse ozonolysispretreatment: effect on enzymatic digestibility and inhibitory compound formation. Bioresour Technol 133:332–339

    Article  CAS  PubMed  Google Scholar 

  • Travaini R, Martín-Juárez J, Lorenzo-Hernando A, Bolado-Rodríguez S (2015) Ozonolysis: an advantageous pretreatment for lignocellulosic biomass revisited. Bioresour Technol 199:2–12

    Article  PubMed  CAS  Google Scholar 

  • Tsapekos P, Kougias PG, Angelidaki I (2015) Biogas production from ensiled meadow grass; effect of mechanical pretreatments and rapid determination of substrate biodegradability via physicochemical methods. Bioresour Technol 182:329–335

    Article  CAS  PubMed  Google Scholar 

  • Tsapekos P, Kougias PG, Egelund H, Larsen U, Pedersen J, Trénel P, Angelidaki I (2017) Mechanical pretreatment at harvesting increases the bioenergy output from marginal land grasses. Renew Energy 111:914–921

    Article  Google Scholar 

  • Van Kuijk SJA, Sonnenberg ASM, Baars JJP, Hendriks WH, Cone JW (2015) Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review. Biotechnol Adv 33:191–202

    Article  PubMed  CAS  Google Scholar 

  • Varga E, Schmidt AS, Réczey K, Thomsen AB (2003) Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility. Appl Biochem Biotechnol 104(1):37–50

    Article  CAS  PubMed  Google Scholar 

  • Veluchamy C, Kalamdhad AS (2017) Influence of pretreatment techniques on anaerobic digestion of pulp and paper mill sludge: a review. Bioresour Technol 245:1206–1219

    Article  CAS  PubMed  Google Scholar 

  • Verma P (2022) Industrial microbiology and biotechnology. Springer

    Book  Google Scholar 

  • Walpot JI (1986) Enzymatic hydrolysis of waste paper. Conserv Recycl 9(1):127–136

    Article  CAS  Google Scholar 

  • Williams, K. C. (2006). Subcritical water and chemical pretreatments of cotton stalk for the production of ethanol

    Google Scholar 

  • Wyman V, Henríquez J, Palma C, Carvajal A (2018) Lignocellulosic waste valorisation strategy through enzyme and biogas production. Bioresour Technol 247:402–411

    Article  CAS  PubMed  Google Scholar 

  • Yuan X, Wen B, Cui Z, Ma L, Zhou D, Kuang M, Yang W (2016) Enhancing anaerobic digestion of cotton stalk by pretreatment with a microbial consortium (MC1). Bioresour Technol 207:293–301

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z, Wen Y, Li G (2018) Production of bioethanol and value added compounds from wheat straw through combined alkaline/alkaline-peroxide pretreatment. Bioresour Technol 259:228–236

    Article  CAS  PubMed  Google Scholar 

  • Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Bioresour Technol 100(9):2580–2587

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Lin HM, Tsao GT (1998) Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnol Prog 14(6):890–896

    Article  CAS  PubMed  Google Scholar 

  • Zhuang X, Wang W, Yu Q, Qi W, Wang Q, Tan X et al (2016) Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresour Technol 199:68–75

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupam Kataki .

Editor information

Editors and Affiliations

Ethics declarations

All the authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S. et al. (2022). Understanding Biomass Recalcitrance: Conventional Physical, Chemical, and Biological Pretreatment Methods for Overcoming Biomass Recalcitrance. In: Verma, P. (eds) Thermochemical and Catalytic Conversion Technologies for Future Biorefineries. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-19-4312-6_3

Download citation

Publish with us

Policies and ethics