Skip to main content

Environment Sustainability and Role of Biotechnology

  • Chapter
  • First Online:
Innovations in Environmental Biotechnology

Abstract

Sustainability is the development which meets the needs of the present without compromising the ability of future generations to fulfill their needs. Environmental sustainability respects and cares for all kinds of life forms existence without affecting the sustenance of natural resources. The best method of sustaining the environment is paying back all the components of ecosystem services in a recyclable mode. Where in biotic and abiotic harmony of environment restores aesthetic values and ecosystem services of the nature. This in turn maintains intricate equilibrium required for resurrecting the natural ecosystems. Environmental biotechnology is the branch of biotechnology that addresses environmental issues removal of pollutants, renewable energy generation or biomass production, by involving biological entities and their process. Environmental biotechnology has its greatest contribution to agriculture, especially by improving crop yields for environment sustenance. It offers opportunities to create designer crops of specific environments and to make crops more efficient producers of food and energy. Thus, biotechnology can manipulate primary energy flows; it can also reduce fossil-fuel energy inputs into agricultural systems. Moreover, it contributes to the mitigation of environmental problems such as deforestation and soil erosion. Green energy methods/biofuels are urgently needed to replace fossil fuels in order to battle pollution and the threat of global warming. Biotechnology constitutes a vehicle for the improved manipulation of biogeochemical cycles, wherein bioremediation and biodegradation alleviate conditions of polluted soil and degraded water ecosystems. Industrial biotechnology aims to alter the manufacturing process by reducing wastes generation-conserving natural resources, trimming costs, and speeding new “greener” market products. Emerging biotechnologies having low-input techniques involving microbes, plants and animals offering novel approaches (genetic manipulation or ‘engineering’) for striking a balance between developmental needs and environmental conservation. This chapter reviews the issues relating to the use of biotechnological methods vis-à-vis biotools in solving the problems of environmental degradation and sustainable development .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acevedo-Rocha Carlos G, Gronenberg LS, Mack M, Commichau FM, Genee HJ (2018) Microbial cell factories for the sustainable manufacturing of B vitamins. Curr Opin Biotechnol 56:18–29

    Article  PubMed  CAS  Google Scholar 

  • Adem M, Beyene D, Feyissa T (2017) Recent achievements obtained by chloroplast transformation. Plant Methods 13(30):2–11

    Google Scholar 

  • Adriano DC (1986) Trace elements in the terrestrial environment. Seiten, 99 Abb., zahlr. Tab. Springer, New York. Preis: 228, DM

    Google Scholar 

  • Adrio JL, Demain AL (2010) Recombinant organisms for production of industrial products. Bioengin Bugs 1(2):116–311

    Article  Google Scholar 

  • Ahmad S, Wei X, Sheng Z, Hu P, Tang S (2020) CRISPR/Cas9 for development of disease resistance in plants: recent progress, limitations and future prospects. Brief Funct Genomics 19(1):26–39

    Article  CAS  PubMed  Google Scholar 

  • Ahuja I, de Vos RC, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15(12):664–674

    Article  CAS  PubMed  Google Scholar 

  • Aileni M, Kokkirala VR, Yarra R, Umate P, Anil Kumar V, Kasula K, Abbagani S (2011) In vitro regeneration, flowering and seed formation from leaf explants of Scoparia dulcis L. a medicinal plant. Med Aromat Plants 5(2):143–146

    Google Scholar 

  • Akyol TY, Sato S, Turkan I (2020) Deploying root microbiome of halophytes to improve salinity tolerance of crops. Plant Biotechnol Rep 14:143–150

    Article  Google Scholar 

  • Ali A, Yun DJ (2020) Arabidopsis HOS15 is a multifunctional protein that negatively regulate ABA-signaling and drought stress. Plant Biotechnol Rep 14:163–167

    Article  Google Scholar 

  • Alloway BJ (1990) In: Alloway BJ (ed) Heavy metals in soils. Wiley, New York

    Google Scholar 

  • Anh BTK, Ha NTH, Danh LT, Van Minh V, Kim DD (2017) Phytoremediation applications for metal-contaminated soils using terrestrial plants in Vietnam. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation: management of environmental contaminants, vol 5, pp 157–181

    Chapter  Google Scholar 

  • Arora NK (2018) Bioremediation: a green approach for restoration of polluted ecosystems. Env Sustain 1:305–307

    Article  Google Scholar 

  • Arora NK, Panosyan H (2019) Extremophiles: applications and roles in environmental sustainability. Env Sustain 2:217–218

    Article  Google Scholar 

  • Arthur EL et al (2005) Phytoremediation—an overview. CRC Crit Rev Plant Sci 24(2):109–122

    Article  CAS  Google Scholar 

  • Ashraf M, Harris P (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN (2019) Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotox Environ Safe 174:714–727

    Article  CAS  Google Scholar 

  • Atia FAM, Al-Ghouti MA, Al-Naimi F, Abu-Dieyeh M, Ahmed T, Al-Meer SH (2019) Removal of toxic pollutants from produced water by phytoremediation: applications and mechanistic study. J Water Process Eng 32:1–15

    Article  Google Scholar 

  • Azad MAK, Amin L, Sidik NM (2014) Genetically engineered organisms for bioremediation of pollutants in contaminated sites. Chin Sci Bull 59(8):703–714

    Article  CAS  Google Scholar 

  • Azizoglu U, Jouzani GS, Yilmaz N, Baz E, Ozkok D (2020) Genetically modified entomopathogenic bacteria, recent developments, benefits and impacts: a review. Sci Total Environ 734:139169. https://doi.org/10.1016/j.scitotenv.2020.139169

    Article  CAS  PubMed  Google Scholar 

  • Bakhsh A, Hussain T (2015) Engineering crop plants against abiotic stress: current achievements and prospects. Emir J Food Agric 27(1):24–39

    Article  Google Scholar 

  • Ban S, Lin W, Wu F, Luo J (2018) Algal-bacterial cooperation improves algal photolysis-mediated hydrogen production. Bioresour Technol 251:350–357

    Article  CAS  PubMed  Google Scholar 

  • Barbosa B, Boléo S, Sidella S (2015) Phytoremediation of heavy metal-contaminated soils using the perennial energy crops Miscanthus spp. and Arundo donax L. Bioenergy Res 8:1500–1511

    Article  CAS  Google Scholar 

  • Bargiela R, Herbst FA, Martínez-Martínez M, Seifert J, Rojo D, Cappello S (2015) Metaproteomics and metabolomics analyses of chronically petroleum-polluted sites reveal the importance of general anaerobic processes uncoupled with degradation. Proteomics 15:3508–3520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basharat Z, Novo LAB, Yasmin A (2018) Genome editing weds CRISPR: what is in it for phytoremediation? Plan Theory 7(51):1–8

    Google Scholar 

  • Bennet R, Buthelezi TJ, Ismael Y, Morse S (2003) Bt cotton, pesticides labour and health: a case study of smallholder farmers in the Makhathini Flats Republic of South Africa. Outlook Ag 32(2):123–128

    Article  Google Scholar 

  • Bhuyar P, Yusoff MM, Ab Rahim MH, Sundararaju S, Maniam GP, Govindan N (2020) Effect of plant hormones on the production of biomass and lipid extraction for biodiesel production from microalgae Chlorella Sp. J Microbiol Biotechnol Food Sci 9(4):671–674

    Article  CAS  Google Scholar 

  • Bless AE, Colin F, Crabit A, Devaux N, Philippon O, Follain S (2018) Landscape evolution and agricultural land salinization in coastal area: a conceptual model. Sci Total Environ 625:647–656

    Article  CAS  PubMed  Google Scholar 

  • Bloch SE, Ryu M-H, Ozaydin B, Broglie R (2020) Harnessing atmospheric nitrogen for cereal crop production. Curr Opin Biotechnol 62:181–188

    Article  CAS  PubMed  Google Scholar 

  • Bolatkhan K, Kossalbayev BD, Zayadan BK, Tomo T, Veziroglu TN, Allakhverdiev SI (2019) Hydrogen production from phototrophic microorganisms: reality and perspectives. Int J Hydrog Energy 44(2):5799–5811

    Article  CAS  Google Scholar 

  • Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33(1):41–52

    Article  CAS  PubMed  Google Scholar 

  • Bouabidi ZB, EI-Naas M, Zhang Z (2019) Immobilization of microbial cells for the biotreatment of wastewater: a review. Environ Chem Lett 17:241–257

    Article  CAS  Google Scholar 

  • Bringezu S, Ramesohl S, Arnold K, Fischedick M, Von Geibler J (2007) Towards a sustainable biomass strategy: what we know and what we should know. Wuppertal papers. https://www.researchgate.net/publication/237522564_Towards_a_sustainable_biomass_strategy

  • Brochado AR, Matos C, Møller BL, Hansen J, Mortensen UH, Patil KR (2010) Improved vanillin production in baker’s yeast through in silico design. Microb Cell Factories 9(84):1–15

    Google Scholar 

  • Brookes G, Barfoot P (2020) Environmental impacts of genetically modified (GM) crop use 1996–2018: impacts on pesticide use and carbon emissions. GM Crops Food 11(4):215–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Budnik LT, Scheer E, Burge PS, Baur X (2017) Sensitising effects of genetically modified enzymes used in flavour, fragrance, detergence and pharmaceutical production: cross-sectional study. Occup Environ Med 74(1):39–45

    Article  PubMed  Google Scholar 

  • Bulle M, Yarra R, Abbagani S (2016) Enhanced salinity stress tolerance in transgenic chilli pepper (Capsicum annuum L.) plants overexpressing the wheat antiporter (TaNHX2) gene. Mol Breed 36(36):1–12

    CAS  Google Scholar 

  • Burges A, Alkorta I, Epelde L, Garbisu C (2018) From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. Int J Phytoremediation 20(4):384–397

    Article  CAS  PubMed  Google Scholar 

  • Cameselle C, Gouveia S, Urréjola S (2019) Benefits of phytoremediation amended with DC electric field. Application to soils contaminated with heavy metals. Chemosphere 229:481–488

    Article  CAS  PubMed  Google Scholar 

  • Chand S, Yaseen M, Rajkumari Patra DD (2015) Application of heavy metal rich tannery sludge on sustainable growth, yield and metal accumulation by clarysage (Salvia sclarea L.). Int J Phytoremediation 17(12):1171–1176

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17(7):1140–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang KS, Kim J, Park H, Hong S-J, Lee C-G, Jin E (2020) Enhanced lipid productivity in AGP knockout marine microalga Tetraselmis sp. using a DNA-free CRISPR-Cas9 RNP method. Bioresour Technol 303:122932

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Piao Y, Liu Y, Li X, Piao Z (2018) Genome-wide identification and expression analysis of chitinase gene family in Brassica rapa reveals its role in clubroot resistance. Plant Sci 270:257–267

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Wang Y, Zhang R, Zhang H, Gao C (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:28.1–28.31

    Article  Google Scholar 

  • Chen J-H, Wei D, Lim P-E (2020) Enhanced coproduction of astaxanthin and lipids by the green microalga Chromochloris zofingiensis: selected phytohormones as positive stimulators. Bioresour Technol 295:1–41

    Article  Google Scholar 

  • Choi HI, Lee JS, Choi JW, Shin YS, Sung YJ, Hong ME, Kwak HS, Kim CY, Sim SJ (2019) Performance and potential appraisal of various microalgae as direct combustion fuel. Bioresour Technol 273:341–349

    Article  CAS  PubMed  Google Scholar 

  • Coelho N, Gonçalves S, Romano A (2020) Endemic plant species conservation: biotechnological approaches. Plants 9(3):1–22

    Article  CAS  Google Scholar 

  • Coolen S, Proietti S, Hickman R, Davila Olivas NH, Huang PP, Van Verk MC, Van Pelt JA, Wittenberg AH, De Vos M, Prins M, Van Loon JJ (2016) Transcriptome dynamics of Arabidopsis during sequential biotic and abiotic stresses. Plant J 86(3):249–267

    Article  CAS  PubMed  Google Scholar 

  • Corlett RT (2017) A bigger toolbox: biotechnology in biodiversity conservation. Trends Biotechnol 35:55–65

    Article  CAS  PubMed  Google Scholar 

  • DalCorso G, Fasani DE, Manara A, Visioli G, Furini A (2019) Heavy metal pollutions: state of the art and innovation in phytoremediation. Int J Mol Sci 20(14):1–17

    Article  CAS  Google Scholar 

  • De Santis B, Stockhofe N, Wal J-M, Weesendorp E, Lalles J-P, van Dijk J, Kok E, De Giacomo M, Einspanier R, Onori R (2018) Case studies on genetically modified organisms (GMOs): potential risk scenarios and associated health indicators. Food Chem Toxicol 117:36–65

    Article  PubMed  CAS  Google Scholar 

  • Deepa AV, Dennis Thomas T (2020) In vitro strategies for the conservation of Indian medicinal climbers. In Vitro Cell Dev Biol Plant 56:784–802. https://doi.org/10.1007/s11627-020-10084-x

    Article  Google Scholar 

  • Demirbas MF (2011) Biofuels from algae for sustainable development. Appl Energy 88(10):3473–3480

    Article  CAS  Google Scholar 

  • Deng L et al (2016) Long-term field phytoextraction of zinc/cadmium contaminated soil by Sedum plumbizincicola under different agronomic strategies. Int J Phytoremediation 18(2):134–140

    Article  CAS  PubMed  Google Scholar 

  • Dexter J, Fu P (2009) Metabolic engineering of cyanobacteria for ethanol production. Energy Environ Sci 2(8):857–864

    Article  CAS  Google Scholar 

  • Dhankher OP, Foyer CH (2018) Climate resilient crops for improving global food security and safety. Plant Cell Environ 41:877–884

    Article  PubMed  Google Scholar 

  • Dhanwal P, Kumar A, Dudeja S, Chhokar V, Beniwal V (2017) Recent advances in phytoremediation technology. In: Kumar R, Sharma AK, Ahluwalia SS (eds) Advances in environmental biotechnology. Springer, Singapore, pp 227–241

    Chapter  Google Scholar 

  • Dharupaneedi SP, Nataraj SK, Nadagouda M, Reddy KR, Shukla SS, Aminabhavi TM (2019) Membrane-based separation of potential emerging pollutants. Sep Purif Technol 210:850–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinamarca J, Levitan O, Kumaraswamy GK, Lun DS, Falkowski PG (2017) Overexpression of a diacylglycerol acyltransferase gene in Phaeodactylum tricornutum directs carbon towards lipid biosynthesis. J Phycol 53(2):405–414

    Article  CAS  PubMed  Google Scholar 

  • Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    Article  Google Scholar 

  • Dobrogojski J, Spychalski M, Luciński R, Borek S (2018) Transgenic plants as a source of polyhydroxyalkanoates. Acta Physiol Plant 40(162):1–17

    CAS  Google Scholar 

  • Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1–14

    Article  CAS  Google Scholar 

  • Duarte M, Nielsen A, Camarinha-Silva A, Vilchez-Vargas R, Bruls T, Wos-Oxley ML (2017) Functional soil metagenomics: elucidation of polycyclic aromatic hydrocarbon degradation potential following 12 years of in situ bioremediation. Environ Microbiol 19(8):2992–3011

    Article  CAS  PubMed  Google Scholar 

  • Dudley B (2018) BP statistical review of world energy. BP Stat Rev 6:2018

    Google Scholar 

  • Eisentraut A (2010) Sustainable production of second-generation biofuels, potential and perspectives in major economies and developing countries. International Energy Agency

    Google Scholar 

  • Engelmann F (2011) Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell Dev Biol Plant 47:5–16

    Article  Google Scholar 

  • Ermis E (2017) Halal status of enzymes used in food industry. Trends Food Sci Technol 64:69–73

    Article  CAS  Google Scholar 

  • Ezezika OC, Singer PA (2010) Genetically engineered oil-eating microbes for bioremediation: prospects and regulatory challenges. Technol Soc 32(4):331–335

    Article  Google Scholar 

  • Fang X, Qi Y (2016) RNAi in plants: an Argonaute-centered view. Plant Cell 28(2):272–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAO (2018) The future of food and agriculture: alternative pathways to 2050. Food and Agriculture Organization of the United Nations, Rome. https://www.fao.org/global-perspectivestudies/resources/detail/en/c/1157074/

    Google Scholar 

  • Fragoso G, Hernández M, Cervantes-Torres J, Ramírez-Aquino R, Chapula H, Villalobos N, Segura-Velázquez R, Figueroa A, Flores I, Jiménez H, Adalid L (2017) Transgenic papaya: a useful platform for oral vaccines. Planta 245(5):1037–1048

    Article  CAS  PubMed  Google Scholar 

  • Gangola S, Joshi S, Kumar S, Pandey SC (2019) Comparative analysis of fungal and bacterial enzymes in biodegradation of xenobiotic compounds. In: Smart bioremediation technologies: microbial enzymes. Academic Press, Cambridge, MA, pp 169–189

    Chapter  Google Scholar 

  • Gee CW, Niyogi KK (2017) The carbonic anhydrase CAH1 is an essential component of the carbon-concentrating mechanism in Nannochloropsis oceanica. Proc Natl Acad Sci U S A 114(17):4537–4542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerhardt KE, Gerwing PD, Greenberg BM (2017) Opinion: taking phytoremediation from proven technology to accepted practice. Plant Sci 256:170–185

    Article  CAS  PubMed  Google Scholar 

  • Gesine S, Eckerstorfer M, Rastelli V, Reichenbecher W, Restrepo-Vassalli S, Ruohonen-Lehto M, Saucy A-GW, Mertens M (2017) Herbicide resistance and biodiversity: agronomic and environmental aspects of genetically modified herbicide-resistant plants. Environ Sci Eur 29:5

    Article  CAS  Google Scholar 

  • Ghag SB, Shekhawat UK, Hadapad AB, Ganapathi TR (2015) Stacking of host-induced gene silencing mediated resistance to banana bunchy top virus and fusarium wilt disease in transgenic banana plants. Curr Trends Biotechnol Pharm 9(3):212–221

    CAS  Google Scholar 

  • Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHS): a review. Front Microbiol 7:1–21

    Google Scholar 

  • Girma G (2015) Microbial bioremediation of some heavy metals in soils: an updated review. EAJBS 7(1):29–45

    Google Scholar 

  • Guarnieri MT, Pienkos PT (2015) Algal omics: unlocking bioproduct diversity in algae cell factories. Photosynth Res 123(3):255–263

    Article  CAS  PubMed  Google Scholar 

  • Gunarathne V, Mayakaduwa S, Ashiq A, Weerakoon SR, Biswas JK, Vithanage M (2019) Transgenic plants: benefits, applications, and potential risks in phytoremediation. Transgenic plant technology for remediation of toxic metals and metalloids. Elsevier, Amsterdam, pp 89–10

    Book  Google Scholar 

  • Halewood M, Chiurugwi T, Sackville Hamilton R, Kurtz B, Marden E, Welch E, Michiels F, Mozafari J, Sabran M et al (2018) Plant genetic resources for food and agriculture: opportunities and challenges emerging from the science and information technology revolution. New Phytol 217:1407–1419

    Article  PubMed  Google Scholar 

  • Hamilton ML, Haslam RP, Napier JA, Sayanova O (2014) Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metab Eng 22:3–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanlon P, Sewalt V (2020) GEMs: genetically engineered microorganisms and the regulatory oversight of their uses in modern food production. Crit Rev Food Sci Nutr 61(6):959–970. https://doi.org/10.1080/10408398.2020.1749026

    Article  CAS  PubMed  Google Scholar 

  • Haq S, Bhatti AA, Dar ZA, Bhat SA (2020) Phytoremediation of heavy metals: an eco-friendly and sustainable approach. In: Bioremediation and biotechnology, pp 215–231

    Chapter  Google Scholar 

  • Haque SM, Ghosh B (2016) High-frequency somatic embryogenesis and artificial seeds for mass production of true-to-type plants in Ledebouria revoluta: an important cardioprotective plant. Plant Cell Tiss Organ Cult 127(1):71–83

    Article  CAS  Google Scholar 

  • He J et al (2015) Overexpression of bacterial γ-glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar. New Phytol 205(1):240–254

    Article  CAS  PubMed  Google Scholar 

  • Hefferon KL (2015) Nutritionally enhanced food crops; progress and perspectives. Int J Mol Sci 16:3895–3914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry HF, Burken JG, Maier RM, Newman LA, Rock S, Schnoor JL, Suk WA (2013) Phytotechnologies: preventing exposures, improving public health. Int J Phytoremediation 15(9):889–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain F, Pray C, Lu Y, Huang J, Fan C, Hu R (2004) Genetically modified cotton and farmers’ health in China. Int J Occ Env Health 10(3):296–303

    Article  CAS  Google Scholar 

  • Hua W, El Sheikha AF, Xu J (2018) Molecular techniques for making recombinant enzymes used in food processing. In: Molecular techniques in food biology: safety, biotechnology, authenticity and traceability, pp 95–112

    Chapter  Google Scholar 

  • Ilker OI, Can H, Dogan I (2020) Phytoremediation using genetically engineered plants to remove metals: a review. Environ Chem Lett 19:669–698

    Google Scholar 

  • Jaiswal S, Singh DK, Shukla P (2019) Gene editing and systems biology tools for pesticide bioremediation: a review. Front Microbiol 10:1–13

    Article  Google Scholar 

  • Jan AT, Azam M, Ali A, Haq QMR (2014) Prospects for exploiting bacteria for bioremediation of metal pollution. Crit Rev Environ Sci Technol 44(5):519–560

    Article  CAS  Google Scholar 

  • Jankowska E, Sahu AK, Oleskowicz-Popiel P (2017) Biogas from microalgae: review on microalgae’s cultivation, harvesting and pretreatment for anaerobic digestion. Renew Sust Energ Rev 75:692–709

    Article  CAS  Google Scholar 

  • Janssen Dick B, Gerhard S (2020) Perspectives of genetically engineered microbes for groundwater bioremediation. Environ Sci Process Impacts 22:487–499

    Article  PubMed  Google Scholar 

  • Jay JM, Loessner MJ, Golden DA (2005) Modern food microbiology, 7th edn. Springer, New York

    Google Scholar 

  • Khan S, Fu P (2020) Biotechnological perspectives on algae: a viable option for next generation biofuels. Curr Opin Biotechnol 62:146–152

    Article  CAS  PubMed  Google Scholar 

  • Khanday I, Skinner D, Yang B, Mercier R, Sundaresan V (2018) A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565:91–95

    Article  PubMed  CAS  Google Scholar 

  • Khetkorn W, Rastogi RP, Incharoensakdi A, Lindblad P, Madamwar D, Pandey A, Larroche C (2017) Microalgal hydrogen production—a review. Bioresour Technol 243:1194–1206

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Kwak SS (2020) Crop biotechnology for sustainable agriculture in the face of climate crisis. Plant Biotechnol Rep 14:139–141

    Article  Google Scholar 

  • Klumper W, Qaimm M (2014) A meta-analysis of the impacts of genetically modified crops. PLoS One 9(11):1–15

    Article  CAS  Google Scholar 

  • Kokkirala VR, Kota S, Yarra R, Bulle M, Aileni M, Gadidasu KK, Teixeira da Silva JA, Abbagani S (2012) Micropropagation via nodal explants of Woodfordia fruticosa (L.) Kurz. Med Aromat Plants 6(1):50–53

    Google Scholar 

  • Kouser S, Qaim M (2011) Impact of Bt cotton on pesticide poisoning in smallholder agriculture: a panel data analysis. Ecol Econ 70:3–10

    Article  Google Scholar 

  • Kumar S, Dagar VK, Khasa YP, Kuhad RC (2013) Genetically modified microorganisms (GMOS) for bioremediation. In: Biotechnology for environmental management and resource recovery. Springer, New Delhi, pp 191–218

    Chapter  Google Scholar 

  • Kwak SS (2019) Biotechnology of the sweetpotato: ensuring global food and nutrition security in the face of climate change. Plant Cell Rep 38:1361–1363

    Article  CAS  PubMed  Google Scholar 

  • Laurence D, Christophe L, Roger F (2011) Using the bio-insecticide Bacillus thuringenesis isralensis in mosquito control pests control and pesticides exposure and toxicity assessment pesticides in the modern world, pp 93–126

    Google Scholar 

  • Leus L (2018) Breeding for disease resistance in ornamentals. In: Ornamental crops. Springer, Cham, pp 97–125

    Chapter  Google Scholar 

  • Levy A, Conway JM, Dangl JL, Woyke T (2018) Elucidating bacterial gene functions in the plant microbiome. Cell Host Microbe 24(4):475–485

    Article  CAS  PubMed  Google Scholar 

  • Li D-W, Balamurugan S, Yang Y-F, Zheng J-W, Huang D, Zou L-G, Yang W-D, Liu J-S, Guan Y, Li H-Y (2019) Transcriptional regulation of microalgae for concurrent lipid overproduction and secretion. Sci Adv 5:1–11

    Google Scholar 

  • Li GX, Xu BC, Yin LN, Wang SW, Zhang SQ, Shan L, Kwak SS, Ke Q, Deng XP (2020) Dryland agricultural environment and sustainable productivity. Plant Biotechnol Rep 14:169–176

    Article  CAS  Google Scholar 

  • Liu S, Zhang F, Chen J, Sun G (2011) Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions. J Environ Sci 23(9):1544–1550

    Article  CAS  Google Scholar 

  • Liu Y, Zhang T, Zhang Z, Sun T, Wang J, Lu F (2014) Improvement of cold adaptation of Bacillus alcalophilus alkaline protease by directed evolution. J Mol Catal B Enzym 106:117–123

    Article  CAS  Google Scholar 

  • Liu D, An Z, Mao Z, Ma L, Lu Z (2015) Enhanced heavy metal tolerance and accumulation by transgenic sugar beets expressing Streptococcus thermophilus StGCS-GS in the presence of Cd, Zn and Cu alone or in combination. PLoS One 10(6):1–15

    Google Scholar 

  • Liu Y, Huang L, Jia L, Gui S, Fu Y, Zheng D, Guo W, Lu F (2017) Improvement of the acid stability of Bacillus licheniformis alpha amylase by site-directed mutagenesis. Process Biochem 58:174–180

    Article  CAS  Google Scholar 

  • Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q et al (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121

    Article  CAS  PubMed  Google Scholar 

  • Majidian P, Tabatabaei M, Zeinolabedini M, Naghshbandi MP, Chisti Y (2018) Metabolic engineering of microorganisms for biofuel production. Renew Sustain Energy 82(3):3863–3885

    Article  CAS  Google Scholar 

  • Malla MA, Dubey A, Yadav S, Kumar A, Hashem A, Abd Allah EF (2018) Understanding and designing the strategies for the microbe-mediated remediation of environmental contaminants using omics approaches. Front Microbiol 9:1–18

    Article  Google Scholar 

  • Malnoy M, Viola R, Jung MH, Koo OJ, Kim S, Kim JS, Velasco R, Nagamangala Kanchiswamy C (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1–8

    Article  Google Scholar 

  • Mamta B, Rajam MV (2018) RNA interference: a promising approach for crop improvement. In: Biotechnologies of crop improvement, vol 2. Springer, Cham, pp 41–65

    Chapter  Google Scholar 

  • Marconi AM, Kieboom J, de Bont JA (1997) Improving the catabolic functions in the toluene-resistant strain pseudomonas putida S12. Biotechnol Lett 19:603–606

    Article  CAS  Google Scholar 

  • Marin-Navarro J, Talens-Perales D, Polaina J (2015) One-pot production of fructooligosaccharides by a Saccharomyces cerevisiae strain expressing an engineered invertase. Appl Microbiol Biotechnol 99(6):2549–2555

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Zavala SA, Barboza-Pérez UE, Hernández-Guzmán G, Bideshi DK, Barboza-Corona JE (2020) Chitinases of Bacillus thuringiensis phylogeny, modular structure, and applied potentials. Front Microbiol 10:3032. https://doi.org/10.3389/fmicb.2019.03032

    Article  PubMed  PubMed Central  Google Scholar 

  • Missmer SA, Suarez L, Felkner M, Wang E, Merrill AH Jr, Rothman KJ, Hendricks KA (2006) Exposure to fumonisins and the occurrence of neural tube defects along the Texas-Mexico border. Environ Health Perspect 114(2):237–241

    Article  PubMed  Google Scholar 

  • Mosa KA, Kumar K, Chhikara S, Mcdermott J, Liu Z, Musante C (2012) Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Res 21(6):1265–1277

    Article  CAS  PubMed  Google Scholar 

  • Mosoarca G, Vancea C, Popa S, Boran S (2018) Adsorption, bioaccumulation and kinetics parameters of the phytoremediation of cobalt from wastewater using Elodea canadensis. Bull Environ Contam Toxicol 100:733–739

    Article  CAS  PubMed  Google Scholar 

  • Mu N, Rahman MA, Kabir Y (2020) Plant-produced monoclonal antibody as immunotherapy for cancer. Hindawi BioMed Res Int 2020:3038564., 10 pages. https://doi.org/10.1155/2020/3038564

    Article  CAS  Google Scholar 

  • Nagy V, Podmaniczki A, Vidal-Meireles A, Tengolics R, Kovacs L, Rakhely G, Scoma A, Toth SZ (2018) Water-splitting-based, sustainable and efficient H2 production in green algae as achieved by substrate limitation of the Calvin–Benson–Bassham cycle. Biotechnol Biofuels 11(69):1–18

    Google Scholar 

  • Nahar N, Rahman A, Nawani NN, Ghosh S, Mandal A (2017) Phytoremediation of arsenic from the contaminated soil using transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana. J Plant Physiol 218:121–126

    Article  CAS  PubMed  Google Scholar 

  • Naik M, Duraphe M (2012) Review paper on–parameters affecting bioremediation. Int J Life Sci Pharm Res 2(3):1–4

    Google Scholar 

  • Niu H, Wang J, Zhuang W, Liu D, Chen Y, Zhu C (2018) Comparative transcriptomic and proteomic analysis of Arthrobacter sp. CGMCC 3584 responding to dissolved oxygen for cAMP production. Sci Rep 8:1–13

    Article  Google Scholar 

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14:1–26

    Article  CAS  Google Scholar 

  • Ozgun GP, Ordu EB, Tutuncu HE, Yelboga E, Sessions RB, Gul Karaguler N (2016) Site saturation mutagenesis applications on Candida methylica formate dehydrogenase. Scientifica 3:1–7

    Article  CAS  Google Scholar 

  • Paeng SK, Chi YH, Kang CH, Chae HB, Lee ES, Park JH, Wi SD, Bae SB, Phan KAT, Lee SY (2020) Chaperone function of Arabidopsis NPR1. Plant Biotechnol Rep 14:227–233

    Article  Google Scholar 

  • Pajević S, Borišev M, Nikolić N, Arsenov DD, Orlović S, Župunski M (2016) Phytoextraction of heavy metals by fast-growing trees: a review. Phytoremediation. Springer, Cham, pp 29–64

    Google Scholar 

  • Pande V, Pandey SC, Joshi T, Sati D, Gangola S, Kumar S, Samant M (2019) Biodegradation of toxic dyes: a comparative study of enzyme action in a microbial system. In: Smart bioremediation technologies, pp 255–287

    Chapter  Google Scholar 

  • Pande V, Pandey SC, Sati D, Pande V, Samant M (2020) Bioremediation: an emerging effective approach towards environment restoration. Environ Sustain 3:91–103

    Article  CAS  Google Scholar 

  • Parsaeimehr A, Mancera-Andrade EI, Robledo-Padilla F, Iqbal HM, Parra-Saldivar R (2017) A chemical approach to manipulate the algal growth, lipid content and high-value alpha-linolenic acid for biodiesel production. Algal Res 26:312–322

    Article  Google Scholar 

  • Patra S, Andrew AA (2015) Human, social, and environmental impacts of human genetic engineering. J Biomed Sci 2(14):1–3

    Google Scholar 

  • Pazmiño-Ibarra V, Mengual-Martí A, Targovnik AM, Herrero S (2019) Improvement of baculovirus as protein expression vector and as biopesticide by CRISPR/Cas9 editing. Biotechnol Bioeng 116:2823–2833

    Article  PubMed  CAS  Google Scholar 

  • Pellegrino E, Bedini S, Nuti M, Ercoli L (2018) Impact of genetically engineered maize on agronomic, environmental and toxicological traits: a meta-analysis of 21 years of field data. Sci Rep 8:1–12

    Google Scholar 

  • Peng L, Zhang Z, Cheng P, Wang Z, Lan CQ (2016) Cultivation of Neochloris oleoabundans in bubble column photobioreactor with or without localized deoxygenation. Bioresour Technol 206:255–263

    Article  CAS  PubMed  Google Scholar 

  • Peng L, Dongdong F, Chu H, Wang Z, Qi H (2020) Biofuel production from microalgae: a review. Environ Chem Lett 18:285–297

    Article  CAS  Google Scholar 

  • Philippe RN, De Mey M, Anderson J, Ajikumar PK (2014) Biotechnological production of natural zero-calorie sweeteners. Curr Opin Biotechnol 26:155–161

    Article  CAS  PubMed  Google Scholar 

  • Poliner E, Pulman JA, Zienkiewicz K, Childs K, Benning C, Farré EM (2018) A toolkit for Nannochloropsis oceanica CCMP 1779 enables gene stacking and genetic engineering of the eicosapentaenoic acid pathway for enhanced long-chain polyunsaturated fatty acid production. Plant Biotechnol J 16(1):298–309

    Article  CAS  PubMed  Google Scholar 

  • Raldugina GN et al (2018) Expression of rice OsMyb4 transcription factor improves tolerance to copper or zinc in canola plants. Biol Plant 62:511–520

    Article  CAS  Google Scholar 

  • Ran W, Wang H, Liu Y, Qi M, Xiang Q, Yao C, Zhang Y, Lan X (2019) Storage of starch and lipids in microalgae: biosynthesis and manipulation by nutrients. Bioresour Technol 291:1–12

    Article  CAS  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8(2):221–226

    Article  CAS  PubMed  Google Scholar 

  • Rastogi RP, Pandey A, Larroche C, Madamwar D (2018) Algal green energy–R&D and technological perspectives for biodiesel production. Renew Sust Energy Rev 82(3):2946–2969

    Article  CAS  Google Scholar 

  • Razzaq A, Sadia B, Raza A, Khalid Hameed M, Saleem F (2019) Metabolomics: a way forward for crop improvement. Meta 9(303):1–37

    CAS  Google Scholar 

  • Rengel R, Smith RT, Haslam RP, Sayanova O, Vila M, Leon R (2018) Overexpression of acetyl-CoA synthetase (ACS) enhances the biosynthesis of neutral lipids and starch in the green microalga Chlamydomonas reinhardtii. Algal Res 31:183–193

    Article  Google Scholar 

  • Rihan HZ, Kareem F, El-Mahrouk ME, Fuller MP (2017) Artificial seeds (principle, aspects and applications). Agronomy 7(71):1–15

    Google Scholar 

  • Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:1–17

    Article  Google Scholar 

  • Ryu AJ, Kang NK, Jeon S, Hur DH, Lee EM, Lee DY, Jeong B-R, Chang YK, Jeong KJ (2020) Development and characterization of a Nannochloropsis mutant with simultaneously enhanced growth and lipid production. Biotechnol Biofuels 13(46):1–14

    Google Scholar 

  • Samada LH, Tambunan USF (2020) Biopesticides as promising alternatives to chemical pesticides: a review of their current and future status. J Biol Sci 20(2):66–76

    CAS  Google Scholar 

  • Samant M, Pandey SC, Pandey A (2018) Impact of hazardous waste material on environment and their management strategies. In: Microbial biotechnology in environmental monitoring and cleanup, pp 175–192

    Chapter  Google Scholar 

  • Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A et al (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    Article  CAS  PubMed  Google Scholar 

  • Schwechheimer SK, Park EY, Revuelta JL, Becker J, Wittmann C (2016) Biotechnology of riboflavin. Appl Microbiol Biotechnol 100(5):2107–2119

    Article  CAS  PubMed  Google Scholar 

  • Seow-Neng C, Bakar NA, Mahmood M, Chai-Ling H, Shaharuddin NA (2017) Alternative strategy in crop protection: protease inhibitors from turmeric. In: Crop improvement. Springer, Cham, pp 253–270

    Chapter  Google Scholar 

  • Shah K (2011) Cadmium metal detoxification and hyperaccumulators. Detoxification of heavy metals. Springer, Berlin, pp 181–203

    Book  Google Scholar 

  • Shah K, Pathak L (2019) Transgenic energy plants for phytoremediation of toxic metals and metalloids. In: Prasad MNV (ed) Transgenic plant technology for remediation of toxic metals and metalloids. Academic Press, New York, pp 319–340. https://doi.org/10.1016/B978-0-12-814389-6.00015-8

    Chapter  Google Scholar 

  • Shanmugaraj B, Bulaon CJI, Phoolcharoen W (2020) Plant molecular farming: a viable platform for recombinant biopharmaceutical production. Plants 9(7):1–19

    Article  CAS  Google Scholar 

  • Shin YS, Jeong J, Nguyen THT, Kim JYH, Jin E, Sim SJ (2019) Targeted knockout of phospholipase A2 to increase lipid productivity in Chlamydomonas reinhardtii for biodiesel production. Bioresour Technol 271:368–374

    Article  CAS  PubMed  Google Scholar 

  • Shinwari ZK, Jan SA, Nakashima K, Yamaguchi-Shinozaki K (2020) Genetic engineering approaches to understanding drought tolerance in plants. Plant Biotechnol Rep 14:151–162

    Article  Google Scholar 

  • Smyth SJ (2019) The human health benefits from GM crops. Plant Biotechnol J Lett 18(4):887–888

    Article  Google Scholar 

  • Song X, Zhao Y, Han B, Li T, Zhao P, Xu J-W, Yu X (2020) Strigolactone mediates jasmonic acid-induced lipid production in microalga Monoraphidium sp. QLY-1 under nitrogen deficiency conditions. Bioresour Technol 306:1–10

    Article  CAS  Google Scholar 

  • Soumare A, Diedhiou AG, Thuita M, Hafidi M, Ouhdouch Y, Gopalakrishnan S, Kouisni L (2020) Exploiting biological nitrogen fixation: a route towards a sustainable agriculture. Plants (Basel) 9(8):1–22

    Google Scholar 

  • Srinivas K, Muralikrishna N, Kumar KB, Ragu E, Aileni M, Kiranmayee K, Yashodhara V, Sadanandam A (2016) Biolistic transformation of Scoparia dulcis L. Physiol Mol Biol Plants 22(1):61–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suman J, Uhlik O, Viktorova J, Macek T (2018) Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment? Front Plant Sci 9:1476

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun H, Xue Y, Lin Y (2014) Enhanced catalytic efficiency in quercetin-4′-glucoside hydrolysis of Thermotoga maritima β-glucosidase A by site-directed mutagenesis. J Agric Food Chem 62(28):6763–6770

    Article  CAS  PubMed  Google Scholar 

  • Sun et al (2018) Overexpression of PtABCC1 contributes to mercury tolerance and accumulation in Arabidopsis and poplar. Biochem Biophys Res Commun 497(4):997–1002

    Article  CAS  PubMed  Google Scholar 

  • Takemura T, Imamura S, Tanaka K (2019) Identification of a chloroplast fatty acid exporter protein, CmFAX1, and triacylglycerol accumulation by its overexpression in the unicellular red alga Cyanidioschyzon merolae. Algal Res 38:1–8

    Article  Google Scholar 

  • Tang DYY, Yew GY, Koyande AK, Chew KW, Vo DVN, Show PL (2020) Green technology for the industrial production of biofuels and bioproducts from microalgae: a review. Environ Chem Lett 18:1967–1985

    Article  CAS  Google Scholar 

  • Tanpure RS, Barbole RS, Dawkar VV, Waichal YA, Joshi RS, Giri AP, Gupta VS (2017) Improved tolerance against Helicoverpa armigera in transgenic tomato over-expressing multi-domain proteinase inhibitor gene from Capsicum annuum. Physiol Mol Biol Plants 23(3):597–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trębicki P, Nancarrow N, Cole E, Bosque-Pérez NA, Constable FE, Freeman AJ, Rodoni B, Yen AL, Luck JE, Fitzgerald GJ (2015) Virus disease in wheat predicted to increase with a changing climate. Glob Chang Biol 21(9):3511–3519

    Article  PubMed  Google Scholar 

  • Tripathi M, Singh D, Vikram S, Singh V, Kumar S (2018) Metagenomic approach towards bioprospection of novel biomolecule(s) and environmental bioremediation. Annu Res Rev Biol 22:1–12

    Article  Google Scholar 

  • Urgun-Demirtas M, Stark B, Pagilla K (2006) Use of genetically engineered microorganisms (GEMs) for the bioremediation of contaminants. Crit Rev Biotechnol 26(3):145–164

    Article  CAS  PubMed  Google Scholar 

  • Urtubia HO, Betanzo LB, Vasquez M (2016) Microalgae and cyanobacteria as green molecular factories: tools and perspectives. IntechOpen, Algae-organisms for imminent biotechnology. https://doi.org/10.5772/100261

    Book  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17

    Article  CAS  Google Scholar 

  • Van Montagu M (2020) The future of plant biotechnology in a globalized and environmentally endangered world. Genet Mol Biol 43:1–11

    Article  Google Scholar 

  • Varoquaux N, Cole B, Gao C, Pierroz G, Baker CR, Patel D, Madera M, Jeffers T, Hollingsworth J, Sievert J, Yoshinaga Y (2019) Transcriptomic analysis of field-droughted sorghum from seedling to maturity reveals biotic and metabolic responses. Proc Natl Acad Sci 116:27124–27132

    Article  CAS  PubMed Central  Google Scholar 

  • Viktorova J et al (2017) Native phytoremediation potential of Urtica dioica for removal of PCBs and heavy metals can be improved by genetic manipulations using constitutive CaMV 35S promoter. PLoS One 12(10):1–12

    Article  Google Scholar 

  • Wan X, Lei M, Chen T (2015) Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. Sci Total Environ 563:796–802

    Google Scholar 

  • Wang XT, Zhi JK, Liu XR, Zhang H, Liu HB, Xu JC (2018) Transgenic tobacco plants expressing a P1B-ATPase gene from Populus tomentosa Carr. (PtoHMA5) demonstrate improved cadmium transport. Int J Biol Macromol 113:655–661

    Article  CAS  PubMed  Google Scholar 

  • Wani SH, Haider N, Kumar H, Singh NB (2010) Plant plastid engineering. Curr Genomics 11(7):500–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei X, Lyu S, Yu Y, Wang Z, Liu H, Pan D, Chen J (2017) Phylloremediation of air pollutants: exploiting the potential of plant leaves and leaf-associated microbes. Front Plant Sci 8:1–23

    Article  Google Scholar 

  • Wolejko E, Wydro U, Loboda T (2016) The ways to increase efficiency of soil bioremediation. Ecol Chem Eng 23(1):155–174

    CAS  Google Scholar 

  • Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174(1–3):1–8

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Liu J, Wang Y, Zhang XX, Shen ZG, Hu ZB (2018) Ectopic expression of Vicia sativa Caffeoyl-CoA O methyltransferase (VsCCoAOMT) increases the uptake and tolerance of cadmium in Arabidopsis. Environ Exp Bot 145:47–53

    Article  CAS  Google Scholar 

  • Xue J, Balamurugan S, Li D-W, Liu Y-H, Zeng H, Wang L, Yang W-D, Liu J-S, Li H-Y (2017) Glucose-6-phosphate dehydrogenase as a target for highly efficient fatty acid biosynthesis in microalgae by enhancing NADPH supply. Metab Eng 41:212–221

    Article  CAS  PubMed  Google Scholar 

  • Yan A, Wang Y, Tan SN, Yusof MLM, Ghosh S, Chen Z (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land front. Plant Sci 11:1–15

    Google Scholar 

  • Yang D-W, Syn J-W, Hsieh C-H, Huang C-C, Chien L-F (2019) Genetically engineered hydrogenases promote biophotocatalysis-mediated H2 production in the green alga Chlorella sp. DT. Int J Hydrogen Energy 44(5):2533–2545

    Article  CAS  Google Scholar 

  • Yarra R, Aileni M, Kokkirala VR, Umate P, Abbagani S (2010) Micropropagation of Cochlospermum religiosum (L.) Alston—a threatened and economically important medicinal tree. Tree For Sci Biotechnol 5(1):49–52

    Google Scholar 

  • You J, Zhang Y, Liu A, Li D, Wang X, Dossa K, Zhou R, Yu J, Zhang Y, Wang L, Zhang X (2019) Transcriptomic and metabolomic profiling of drought-tolerant and susceptible sesame genotypes in response to drought stress. BMC Plant Biol 19:267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yunus IS, Jones PR (2018) Photosynthesis-dependent biosynthesis of medium chain-length fatty acids and alcohols. Metab Eng 49:59–68

    Article  CAS  PubMed  Google Scholar 

  • Yunus IS, Wichmann J, Woerdenweber R, Lauersen KJ, Kruse O, Jones PR (2018) Synthetic metabolic pathways for photobiological conversion of CO2 into hydrocarbon fuel. Metab Eng 49:201–211

    Article  CAS  PubMed  Google Scholar 

  • Zandalinas SI, Mittler R, Balfagón D, Arbona V, Gómez-Cadenas A (2018) Plant adaptations to the combination of drought and high temperatures. Physiol Plant 62(1):2–12

    Article  CAS  Google Scholar 

  • Zhang G, Zhang Y, Xu J, Niu X, Qi J, Tao A, Zhang L, Fang P, Lin LH, Jianguang S (2014) The CCoAOMT1 gene from jute (Corchorus capsularis L.) is involved in lignin biosynthesis in Arabidopsis thaliana. Gene 546(2):398–402

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Davies LJ, Elling AA (2015a) A Meloidogyne incognita effector is imported into the nucleus and exhibits transcriptional activation activity in planta. Mol Plant Pathol 16(1):48–60

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, Shen Y (2015b) Managing nitrogen for sustainable development. Nature 528:51–59

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Hu R, Huang J, Huang X, Shi G, Li Y, Yin Y et al (2016) Health effects of agricultural pesticide use in China: implications for the development of GM crops. Sci Rep 6:1–8

    CAS  Google Scholar 

  • Zhang YP, Sun J, Ma Y (2017) Biomanufacturing: history and perspective. J Ind Microbiol Biotechnol 44(4–5):773–784

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li D, Zhou R, Wang X, Dossa K, Wang L, Zhang Y, Yu J, Gong H, Zhang X, You J (2019) Transcriptome and metabolome analyses of two contrasting sesame genotypes reveal the crucial biological pathways involved in rapid adaptive response to salt stress. BMC Plant Biol 19:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao HY, Feng H (2018) Engineering Bacillus pumilus alkaline serine protease to increase its low-temperature proteolytic activity by directed evolution. BMC Biotechnol 18(34):1–12

    CAS  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167(2):313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zsogon A, Cermak T, Naves ER, Notini MM, Edel KH, Weinl S, Freschi L, Voytas DF, Kudla J, Prees LE (2018) Denovo domestication of wild tomato using genome editing. Nat Biotechnol 36:1211–1216

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahender Aileni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aileni, M. (2022). Environment Sustainability and Role of Biotechnology. In: Arora, S., Kumar, A., Ogita, S., Yau, Y.Y. (eds) Innovations in Environmental Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-16-4445-0_2

Download citation

Publish with us

Policies and ethics