Skip to main content

Role of WRKY Transcription Factor Superfamily in Plant Disease Management

  • Chapter
  • First Online:
Plant Stress Biology

Abstract

In their natural habitat, the plants face numerous challenges from various plant pathogens simultaneously. In response, they activate the stress-response related machinery through regulation of a complex system of genes, miRNAs, siRNAs, and most importantly, transcriptional factors (TFs). Among the various activated TFs, WRKY TFs superfamily encodes maximum number of regulatory proteins. The WRKY TFs regulate downstream genes by both direct (auto- and cross-regulation) and indirect mechanisms (physical interactions within themselves or other TFs, proteins, and small RNAs). All the WRKY TF members possess a conserved WRKY domain consisting of nearly 60 amino acids with a specific heptapeptide sequence (WRKYGQK), with a Zn2+-finger motif that binds to specific cis-regulatory elements of defense gene called as W-box (TTGAC[C/T]). This W-box has been reported to be contemporary in the genes promoter region related to plants’ innate immunity including PAMP triggered immunity (PTI), effectors triggered immunity (ETI), basal defense, and systemic acquired resistance (SAR). Because of this specific molecular orchestration primarily in plant immunity, this WRKY TFs superfamily has been established as a good target in plant disease management. However, in certain cases, along with beneficial effects, overexpression or repression of various WRKY TFs leads to genetic drag which needs to be identified and eliminated for most advantageous plant growth and development. This chapter will be fully focused on the regulation of the WRKY TFs and its role in plant disease management specifically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aamir M, Singh VK, Dubey MK, Kashyap SP, Zehra A, Upadhyay RS, Singh S (2018) Structural and functional dissection of differentially expressed tomato WRKY transcripts in host defense response against the vascular wilt pathogen (Fusarium oxysporum f. sp. lycopersici). PLoS One 13(4). https://doi.org/10.1371/journal.pone.0193922

  • Abbruscato P, Nepusz T, Mizzi L, Del Corvo M, Morandini P, Fumasoni I, Michel C, Paccanaro A, Guiderdoni E, Schaffrath U, Morel JB (2012) OsWRKY22, a monocot WRKY gene, plays a role in the resistance response to blast. Mol Plant Pathol 13(8):828–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alfenas-Zerbini P, Maia IG, Fávaro RD, Cascardo JC, Brommonschenkel SH, Zerbini FM (2009) Genome-wide analysis of differentially expressed genes during the early stages of tomato infection by a potyvirus. Mol Plant Microbe Inter 22(3):352–361

    Article  CAS  Google Scholar 

  • Alvarez ME, Nota F, Cambiagno DA (2010) Epigenetic control of plant immunity. Mol Plant Pathol 11(4):563–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Venegas R, Abdallat AA, Guo M, Alfano JR, Avramova Z (2007) Epigenetic control of a transcription factor at the cross section of two antagonistic pathways. Epigenetics 2(2):106–113

    Article  PubMed  Google Scholar 

  • Alves MS, Dadalto SP, Gonçalves AB, De Souza GB, Barros VA, Fietto LG (2014) Transcription factor functional protein-protein interactions in plant defense responses. Proteomes 2(1):85–106

    Article  PubMed  PubMed Central  Google Scholar 

  • Amuge T, Berger DK, Katari MS, Myburg AA, Goldman SL, Ferguson ME (2017) A time series transcriptome analysis of cassava (Manihot esculenta Crantz) varieties challenged with Ugandan cassava brown streak virus. Sci Rep 7(1):1–21

    Article  Google Scholar 

  • Ando S, Obinata A, Takahashi H (2014) WRKY70 interacting with RCY1 disease resistance protein is required for resistance to cucumber mosaic virus in Arabidopsis thaliana. Physiol Mol Plant Pathol 85:8–14

    Article  CAS  Google Scholar 

  • Babu M, Griffiths JS, Huang TS, Wang A (2008) Altered gene expression changes in Arabidopsis leaf tissues and protoplasts in response to plum pox virus infection. BMC Genomics 9(1):325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bahrini I, Ogawa T, Kobayashi F, Kawahigashi H, Handa H (2011) Overexpression of the pathogen-inducible wheat TaWRKY45 gene confers disease resistance to multiple fungi in transgenic wheat plants. Breed Sci 61(4):319–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai Y, Kissoudis C, Yan Z, Visser RG, van der Linden G (2018) Plant behaviour under combined stress: tomato responses to combined salinity and pathogen stress. Plant J 93(4):781–793

    Article  CAS  PubMed  Google Scholar 

  • Bakshi M, Oelmüller R (2014) WRKY transcription factors: Jack of many trades in plants. Plant Signal Behav 9(2):e27700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beyer K, Binder A, Boller T, Collinge M (2001) Identification of potato genes induced during colonization by Phytophthora infestans. Mol Plant Pathol 2(3):125–134

    Article  CAS  PubMed  Google Scholar 

  • Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123(7):1279–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catoni M, Miozzi L, Fiorilli V, Lanfranco L, Accotto GP (2009) Comparative analysis of expression profiles in shoots and roots of tomato systemically infected by tomato spotted wilt virus reveals organ-specific transcriptional responses. Mol Plant-Microbe Inter 22(12):1504–1513

    Article  CAS  Google Scholar 

  • Chen C, Chen Z (2002) Potentiation of developmentally regulated plant defense response by AtWRKY18 a pathogen-induced Arabidopsis transcription factor. Plant Physiol 129(2):706–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CE, Yeh HH (2010) Plant defense-related transcription factor WRKY 6 plays both supportive and inhibitory roles in tobacco mosaic virus infection. Plant Pathol Bull 19(1):31–40

    CAS  Google Scholar 

  • Chen L, Zhang L, Yu D (2010) Wounding-induced WRKY8 is involved in basal defense in Arabidopsis. Mol Plant-Microbe Inter 23(5):558–565

    Article  CAS  Google Scholar 

  • Chen L, Zhang L, Li D, Wang F, Yu D (2013a) WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proceed Nat Acad Sci 110(21):1963–1971

    Article  Google Scholar 

  • Chen T, Lv Y, Zhao T, Li N, Yang Y, Yu W, He X, Liu T, Zhang B (2013b) Comparative transcriptome profiling of a resistant vs. susceptible tomato (Solanum lycopersicum) cultivar in response to infection by tomato yellow leaf curl virus. PLoS One 8(11). https://doi.org/10.1371/journal.pone.0080816

  • Chen X, Liu J, Lin G, Wang A, Wang Z, Lu G (2013c) Overexpression of AtWRKY28 and AtWRKY75 in Arabidopsis enhances resistance to oxalic acid and Sclerotinia sclerotiorum. Plant Cell Rep 32(10):1589–1599

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Li C, Wang H, Guo Z (2019) WRKY transcription factors: evolution, binding, and action. Phytopathol Res 1(1):13

    Article  Google Scholar 

  • Cheng H, Liu H, Deng Y, Xiao J, Li X, Wang S (2015) The WRKY45-2 WRKY13 WRKY42 transcriptional regulatory cascade is required for rice resistance to fungal pathogen. Plant Physiol 167(3):1087–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho SM, Kang EY, Min KH, Lee YK, Kim YC, Yang KY, Kim KS, Choi Y, Cho BH (2012) A positive regulatory role of the watermelon ClWRKY70 gene for disease resistance in transgenic Arabidopsis thaliana. Biol Plant 56(3):560–565

    Article  CAS  Google Scholar 

  • Choi H, Jo Y, Lian S, Jo KM, Chu H, Yoon JY, Choi SK, Kim KH, Cho WK (2015) Comparative analysis of chrysanthemum transcriptome in response to three RNA viruses: cucumber mosaic virus, tomato spotted wilt virus and potato virus X. Plant Mol Biol 88(3):233–248

    Article  CAS  PubMed  Google Scholar 

  • Chujo T, Miyamoto K, Shimogawa T, Shimizu T, Otake Y, Yokotani N, Nishizawa Y, Shibuya N, Nojiri H, Yamane H, Minami E (2013) OsWRKY28, a PAMP-responsive transrepressor, negatively regulates innate immune responses in rice against rice blast fungus. Plant Mol Biol 82(1–2):23–37

    Article  CAS  PubMed  Google Scholar 

  • Cormack RS, Eulgem T, Rushton PJ, Kochner P, Hahlbrock K, Somssich IE (2002) Leucine zipper-containing WRKY proteins widen the spectrum of immediate early elicitor-induced WRKY transcription factors in parsley. Biochim Biophys Acta Gene Struct Exp 1576(1–2):92–100

    Article  CAS  Google Scholar 

  • Dang FF, Wang YN, Yu LU, Eulgem T, Lai YAN, Liu ZQ, Wang XU, Qiu AL, Zhang TX, Lin J, Chen YS (2013) CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection. Plant Cell Environ 36(4):757–774

    Article  CAS  PubMed  Google Scholar 

  • Dang F, Wang Y, She J, Lei Y, Liu Z, Eulgem T, Lai Y, Lin J, Yu L, Lei D, Guan D (2014) Overexpression of CaWRKY27, a subgroup IIe WRKY transcription factor of Capsicum annuum, positively regulates tobacco resistance to Ralstonia solanacearum infection. Physiol Plant 150(3):397–411

    Article  CAS  PubMed  Google Scholar 

  • Dardick C (2007) Comparative expression profiling of Nicotiana benthamiana leaves systemically infected with three fruit tree viruses. Mol Plant Microbe Inter 20(8):1004–1017

    Article  CAS  Google Scholar 

  • de Almeida DSM, Do Amaral DOJ, Del-Bem LE, dos Santos EB, Silva RJS, Gramacho KP, Vincentz M, Micheli F (2017) Genome-wide identification and characterization of cacao WRKY transcription factors and analysis of their expression in response to witches’ broom disease. PLoS One 12(10). https://doi.org/10.1371/journal.pone.0187346

  • Dellagi A, Heilbronn J, Avrova AO, Montesano M, Palva ET, Stewart HE, Toth IK, Cooke DE, Lyon GD, Birch PR (2000) A potato gene encoding a WRKY-like transcription factor is induced in interactions with Erwinia carotovora subsp. atroseptica and Phytophthora infestans and is coregulated with class I endochitinase expression. Mol Plant Microbe Inter 13(10):1092–1101

    Article  CAS  Google Scholar 

  • Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51(1):21–37

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Tan J, Li M, Yu Y, Jia S, Zhang C, Wu Y, Liu Y (2019) Transcriptome analysis of soybean WRKY TFs in response to Peronospora manshurica infection. Genomics 111(6):1412–1422

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Jiang Y, Ye S, Karim A, Ling Z, He Y, Yang S, Luo K (2015) PtrWRKY73, a salicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana. Plant Cell Rep 34(5):831–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10(4):366–371

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5(5):199–206

    Article  CAS  PubMed  Google Scholar 

  • Fan H, Wang F, Gao H, Wang L, Xu J, Zhao Z (2011) Pathogen-induced MdWRKY1 in ‘Qinguan’ apple enhances disease resistance. J Plant Biol 54(3):150–158

    Article  CAS  Google Scholar 

  • Fernandez D, Santos P, Agostini C, Bon MC, Petitot AS, Silva C, Guimaraes MG, Leonor R, Ana AX, Nicole M (2004) Coffee (Coffea arabica L) genes early expressed during infection by the rust fungus (Hemileia vastatrix). Mol Plant Pathol 5(6):527–536

    Article  CAS  PubMed  Google Scholar 

  • Finatto T, Viana VE, Woyann LG, Busanello C, Maia LCD, Oliveira AC (2018) Can WRKY transcription factors help plants to overcome environmental challenges? Gen Mol Biol 41(3):533–544

    Article  CAS  Google Scholar 

  • Ganesh D, Petitot AS, Silva MC, Alary R, Lecouls AC, Fernandez D (2006) Monitoring of the early molecular resistance responses of coffee (Coffea arabica L.) to the rust fungus (Hemileia vastatrix) using real-time quantitative RT-PCR. Plant Sci 170(6):1045–1051

    Article  CAS  Google Scholar 

  • Gao X, He P (2013) Nuclear dynamics of Arabidopsis calcium-dependent protein kinases in effector-triggered immunity. Plant Signal Behav 8(4):e23868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao R, Liu P, Yong Y, Wong SM (2016) Genome-wide transcriptomic analysis reveals correlation between higher WRKY61 expression and reduced symptom severity in turnip crinkle virus infected Arabidopsis thaliana. Sci Rep 6:24604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao YF, Liu JK, Yang FM, Zhang GY, Wang D, Zhang L, Ou YB, Yao YA (2019) The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum. Physiol Plant 168(1):98–117

    Article  PubMed  CAS  Google Scholar 

  • Guimil S, Chang HS, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P, Briggs SP (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Nat Acad Sci 102(22):8066–8070

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gullner G, Juhasz C, Nemeth A, Barna B (2017) Reactions of tobacco genotypes with different antioxidant capacities to powdery mildew and tobacco mosaic virus infections. Plant Physiol Biochem 119:232–239

    Article  CAS  PubMed  Google Scholar 

  • Guo R, Yu F, Gao Z, An H, Cao X, Guo X (2011) GhWRKY3, a novel cotton (Gossypium hirsutum L.) WRKY gene, is involved in diverse stress responses. Mol Biol Rep 38(1):49–58

    Article  CAS  PubMed  Google Scholar 

  • Honjo MN, Emura N, Kawagoe T, Sugisaka J, Kamitani M, Nagano AJ, Kudoh H (2020) Seasonality of interactions between a plant virus and its host during persistent infection in a natural environment. ISME J 14(2):506–518

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Li MY, Wu P, Xu ZS, Que F, Wang F, Xiong AS (2016) Members of WRKY group III transcription factors are important in TYLCV defense signaling pathway in tomato (Solanum lycopersicum). BMC Genomics 17(1):788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huh SU, Lee GJ, Kim YJ, Paek KH (2012) Capsicum annuum WRKY transcription factor d (CaWRKYd) regulates hypersensitive response and defense response upon tobacco mosaic virus infection. Plant Sci 197:50–58

    Article  CAS  PubMed  Google Scholar 

  • Huh SU, Lee GJ, Jung JH, Kim Y, Kim YJ, Paek KH (2015) Capsicum annuum transcription factor WRKYa positively regulates defense response upon TMV infection and is a substrate of CaMK1 and CaMK2. Sci Rep 5:7981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hwang SH, Yie SW, Hwang DJ (2011) Heterologous expression of OsWRKY6 gene in Arabidopsis activates the expression of defense related genes and enhances resistance to pathogens. Plant Sci 181(3):316–323

    Article  CAS  PubMed  Google Scholar 

  • Hwang SH, Kwon SI, Jang JY, Fang IL, Lee H, Choi C, Park S, Ah I, Bae SC, Hwang DJ (2016) OsWRKY51 a rice transcription factor functions as a positive regulator in defense response against Xanthomonas oryzae pv. oryzae. Plant Cell Rep 35(9):1975–1985

    Article  CAS  PubMed  Google Scholar 

  • Ishiguro S, Nakamura K (1994) Characterization of a cDNA encoding a novel DNA-binding protein SPF1 that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato. Mol Gen Genet 244(6):563–571

    Article  CAS  PubMed  Google Scholar 

  • Jeevalatha A, Siddappa S, Kumar A, Kaundal P, Guleri A, Sharma S, Nagesh M, Singh BP (2017) An insight into differentially regulated genes in resistant and susceptible genotypes of potato in response to tomato leaf curl New Delhi virus-potato infection. Virus Res 232:22–33

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Guo L, Liu R, Jiao B, Zhao X, Ling Z, Luo K (2016) Overexpression of poplar PtrWRKY89 in transgenic Arabidopsis leads to a reduction of disease resistance by regulating defense-related genes in salicylate-and jasmonate-dependent signaling. PLoS One 11(3). https://doi.org/10.1371/journal.pone.0149137

  • Jiao Z, Sun J, Wang C, Dong Y, Xiao S, Gao X, Cao Q, Li L, Li W, Gao C (2018) Genome-wide characterization, evolutionary analysis of WRKY genes in Cucurbitaceae species and assessment of its roles in resisting to powdery mildew disease. PLoS One 13(12). https://doi.org/10.1371/journal.pone.0199851

  • Jingyuan Z, Xuexiao Z, Zhenchuan M, Bingyan X (2011) A novel pepper (Capsicum annuum L.) WRKY gene CaWRKY30 is involved in pathogen stress responses. J Plant Biol 54(5):329

    Article  CAS  Google Scholar 

  • Kalde M, Barth M, Somssich IE, Lippok B (2003) Members of the Arabidopsis WRKY group III transcription factors are part of different plant defense signaling pathways. Mol Plant Microbe Inter 16(4):295–305

    Article  CAS  Google Scholar 

  • Kim KC, Fan B, Chen Z (2006) Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae. Plant Physiol 142(3):1180–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KC, Lai Z, Fan B, Chen Z (2008) Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell 20(9):2357–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kissoudis C, Sunarti S, Van De Wiel C, Visser RG, van der Linden CG, Bai Y (2016) Responses to combined abiotic and biotic stress in tomato are governed by stress intensity and resistance mechanism. J Exp Bot 67(17):5119–5132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoth C, Ringler J, Dangl JL, Eulgem T (2007) Arabidopsis WRKY70 is required for full RPP4-mediated disease resistance and basal defense against Hyaloperonospora parasitica. Mol Plant Microbe Inter 20(2):120–128

    Article  CAS  Google Scholar 

  • Ko YJ, Lee S, Song K, Park SY, Ahn I, Bae SC, Lee YH, Hwang DJ (2015) Heterologous expression of the Brassica rapa transcription factor BrWRKY7 enhances resistance against bacterial soft rot caused by Pectobacterium carotovorum in Arabidopsis. Plant Biotechnol Rep 9(4):179–186

    Article  Google Scholar 

  • Kuki Y, Ohno R, Yoshida K, Takumi S (2020) Heterologous expression of wheat WRKY transcription factor genes transcriptionally activated in hybrid necrosis strains alters abiotic and biotic stress tolerance in transgenic Arabidopsis. Plant Physiol Biochem 150:71–79

    Article  CAS  PubMed  Google Scholar 

  • Kumar G, Dasgupta I (2020) Comprehensive molecular insights into the stress response dynamics of rice (Oryza sativa L.) during rice tungro disease by RNA-seq-based comparative whole transcriptome analysis. J Biosci 45(1):27

    Article  CAS  PubMed  Google Scholar 

  • Kundu A, Patel A, Paul S, Pal A (2015) Transcript dynamics at early stages of molecular interactions of MYMIV with resistant and susceptible genotypes of the leguminous host Vigna mungo. PLoS One 10(4). https://doi.org/10.1371/journal.pone.0124687

  • Lai Z, Vinod KM, Zheng Z, Fan B, Chen Z (2008) Roles of ArabidopsisWRKY3 and WRKY4 transcription factors in plant responses to pathogens. BMC Plant Biol 8(1):68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lai Z, Li Y, Wang F, Cheng Y, Fan B, Yu JQ, Chen Z (2011) Arabidopsis sigma factor binding proteins are activators of the WRKY33 transcription factor in plant defense. Plant Cell 23(10):3824–3841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le TN, Schumann U, Smith NA, Tiwari S, Au PCK, Zhu QH, Taylor JM, Kazan K, Llewellyn DJ, Zhang R, Dennis ES (2014) DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis. Genome Biol 15(9):458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levee V, Major I, Levasseur C, Tremblay L, MacKay J, Seguin A (2009) Expression profiling and functional analysis of populus WRKY23 reveals a regulatory role in defense. New Phytol 184(1):48–70

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wang J, Wang N, Guo X, Gao Z (2015) GhWRKY44 a WRKY transcription factor of cotton, mediates defense responses to pathogen infection in transgenic Nicotiana benthamiana. Plant Cell Tiss Org 121(1):127–140

    Article  CAS  Google Scholar 

  • Li X, An M, Xia Z, Bai X, Wu Y (2017) Transcriptome analysis of watermelon (Citrullus lanatus) fruits in response to cucumber green mottle mosaic virus (CGMMV) infection. Sci Rep 7(1):1–12

    Article  CAS  Google Scholar 

  • Li H, Wu J, Shang X, Geng M, Gao J, Zhao S, Yu X, Li D, Kang Z, Wang X, Wang X (2020) WRKY transcription factors shared by BTH-induced resistance and NPR1-mediated acquired resistance improve broad-spectrum disease resistance in wheat. Mol Plant Microbe Int 33(3):433–443

    Article  CAS  Google Scholar 

  • Liang C, Liu H, Hao J, Li J, Luo L (2019) Expression profiling and regulatory network of cucumber microRNAs and their putative target genes in response to cucumber green mottle mosaic virus infection. Archiv Virol 164(4):1121–1134

    Article  CAS  Google Scholar 

  • Liu Y, Schiff M, DineshKumar SP (2004) Involvement of MEK1 MAPKK NTF6 MAPK WRKY/MYB transcription factors, COI1 and CTR1 in N-mediated resistance to tobacco mosaic virus. Plant J 38(5):800–809

    Article  CAS  PubMed  Google Scholar 

  • Liu XQ, Bai XQ, Qian Q, Wang XJ, Chen MS, Chu CC (2005) OsWRKY03 a rice transcriptional activator that functions in defense signaling pathway upstream of OsNPR1. Cell Res 15(8):593–603

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Zhang YC, Wang CY, Luo YC, Huang QJ, Chen SY, Zhou H, Qu LH, Chen YQ (2009) Expression analysis of phytohormone-regulated microRNAs in rice, implying their regulation roles in plant hormone signaling. FEBS Lett 583(4):723–728

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang G, Wang Z, Yang F, Wu G, Hong N (2012) Identification of differentially expressed genes in response to infection of a mild Citrus tristeza virus isolate in Citrus aurantifolia by suppression subtractive hybridization. Sci Hortic 134:144–149

    Article  CAS  Google Scholar 

  • Liu J, Chen X, Liang X, Zhou X, Yang F, Liu J, He SY, Guo Z (2016a) Alternative splicing of rice WRKY62 and WRKY76 transcription factor genes in pathogen defense. Plant Physiol 171(2):1427–1442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Song Y, Xing F, Wang N, Wen F, Zhu C (2016b) GhWRKY25, a group I WRKY gene from cotton, confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana. Protoplasma 253(5):1265–1281

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Liu Y, Tang Y, Chen J, Ding W (2017) Overexpression of NtWRKY50 increases resistance to Ralstonia solanacearum and alters salicylic acid and jasmonic acid production in tobacco. Front Plant Sci 8:1710

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Li X, Yan S, Yu T, Yang J, Dong J, Zhang S, Zhao J, Yang T, Mao X, Zhu X (2018) OsWRKY67 positively regulates blast and bacteria blight resistance by direct activation of PR genes in rice. BMC Plant Biol 18(1):1–13

    Article  CAS  Google Scholar 

  • Lui S, Luo C, Zhu L, Sha R, Qu S, Cai B, Wang S (2017) Identification and expression analysis of WRKY transcription factor genes in response to fungal pathogen and hormone treatments in apple (Malus domestica). J Plant Biol 60(2):215–230

    Article  CAS  Google Scholar 

  • Madhusudhan P, Sinha P, Rajput LS, Bhattacharya M, Sharma T, Bhuvaneshwari V, Gaikwad K, Krishnan SG, Singh AK (2019) Effect of temperature on Pi54-mediated leaf blast resistance in rice. World J Microbiol Biotechnol 35(10):148

    Article  CAS  PubMed  Google Scholar 

  • Madronero J, Rodrigues SP, Antunes TFS, Abreu PMV, Ventura JA, Fernandes AAR, Fernandes PMB (2018) Transcriptome analysis provides insights into the delayed sticky disease symptoms in Carica papaya. Plant Cell Rep 3:967–980

    Article  CAS  Google Scholar 

  • Mandal A, Sarkar D, Kundu S, Kundu P (2015) Mechanism of regulation of tomato TRN1 gene expression in late infection with tomato leaf curl New Delhi virus (ToLCNDV). Plant Sci 241:221–237

    Article  CAS  PubMed  Google Scholar 

  • Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S (2011) Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23(4):1639–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushita A, Inoue H, Goto S, Nakayama A, Sugano S, Hayashi N, Takatsuji H (2013) Nuclear ubiquitin proteasome degradation affects WRKY 45 function in the rice defense program. Plant J 73(2):302–313

    Article  CAS  PubMed  Google Scholar 

  • McGregor CE, Miano DW, LaBonte DR, Hoy M, Clark CA, Rosa GJ (2009) Differential gene expression of resistant and susceptible sweet potato plants after infection with the causal agents of sweet potato virus disease. J Am Soc Hortic Sci 134(6):658–666

    Article  Google Scholar 

  • Mehta S, Singh B, Dhakate P, Rahman M, Islam MA (2019) Rice marker-assisted breeding, and disease resistance. In: Disease resistance in crop plants. Springer, Cham, pp 83–111

    Chapter  Google Scholar 

  • Miao Y, Zentgraf U (2010) A HECT E3 ubiquitin ligase negatively regulates Arabidopsis leaf senescence through degradation of the transcription factor WRKY53. Plant J 63(2):179–188

    Article  CAS  PubMed  Google Scholar 

  • Mittal S, Banduni P, Mallikarjuna MG, Rao AR, Jain PA, Dash PK, Thirunavukkarasu N (2018) Structural, functional, and evolutionary characterization of major drought transcription factors families in maize. Front Chem 6:177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mohanta TK, Park YH, Bae H (2016) Novel genomic and evolutionary insight of WRKY transcription factors in plant lineage. Sci Rep 6(1):1–22

    Article  CAS  Google Scholar 

  • Nakayama A, Fukushima S, Goto S, Matsushita A, Shimono M, Sugano S, Jiang CJ, Akagi A, Yamazaki M, Inoue H, Takatsuji H (2013) Genome-wide identification of WRKY45-regulated genes that mediate benzothiadiazole-induced defense responses in rice. BMC Plant Biol 13(1):150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naoumkina MA, He X, Dixon RA (2008) Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula. BMC Plant Biol 8(1):132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naqvi AR, Sarwat M, Pradhan B, Choudhury NR, Haq QMR, Mukherjee SK (2011) Differential expression analyses of host genes involved in systemic infection of tomato leaf curl New Delhi virus (ToLCNDV). Virus Res 160(1–2):395–399

    Article  CAS  PubMed  Google Scholar 

  • Navarro L, Jay F, Nomura K, He SY, Voinnet O (2008) Suppression of the microRNA pathway by bacterial effector proteins. Science 321(5891):964–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemchinov LG, Shao J, Lee MN, Postnikova OA, Samac DA (2017) Resistant and susceptible responses in alfalfa (Medicago sativa) to bacterial stem blight caused by Pseudomonas syringae pv. syringae. PLoS One 12(12). https://doi.org/10.1371/journal.pone.0189781

  • Oh SK, Yi SY, Yu SH, Moon JS, Park JM, Choi D (2006) CaWRKY2, a chili pepper transcription factor, is rapidly induced by incompatible plant pathogens. Mol Cells 22(1):58–64

    CAS  PubMed  Google Scholar 

  • Oh SK, Baek KH, Park JM, Yi SY, Yu SH, Kamoun S, Choi D (2008) Capsicum annuum WRKY protein CaWRKY1 is a negative regulator of pathogen defense. New Phytol 177(4):977–989

    Article  CAS  PubMed  Google Scholar 

  • Pan LJ, Jiang L (2014) Identification and expression of the WRKY transcription factors of Carica papaya in response to abiotic and biotic stresses. Mol Biol Rep 41(3):1215–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park CJ, Shin YC, Lee BJ, Kim KJ, Kim JK, Paek KH (2006) A hot pepper gene encoding WRKY transcription factor is induced during hypersensitive response to tobacco mosaic virus and Xanthomonas campestris. Planta 223(2):168–179

    Article  CAS  PubMed  Google Scholar 

  • Peng X, Hu Y, Tang X, Zhou P, Deng X, Wang H, Gu Z (2012) Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice. Planta 236(5):1485–1498

    Article  CAS  PubMed  Google Scholar 

  • Qiu Y, Yu D (2009) Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ Exp Bot 65(1):35–47

    Article  CAS  Google Scholar 

  • Qiu JL, Fiil BK, Petersen K, Nielsen HB, Botanga CJ, Thorgrimsen S, Palma K, Suarez-Rodriguez MC, Sandbech-Clausen S, Lichota J, Brodersen P (2008) Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO J 27(16):2214–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman M, Sultana S, Nath D, Kalita S, Chakravarty D, Mehta S, Wani SH, Islam MA (2019) Molecular breeding approaches for disease resistance in sugarcane. In: Disease resistance in crop plants. Springer, Cham, pp 131–155

    Chapter  Google Scholar 

  • Rajput LS, Sharma T, Madhusudhan P, Sinha P (2017a) Effect of temperature on growth and sporulation of rice leaf blast pathogen Magnaporthe oryzae. Int J Curr Microbiol App Sci 6(3):394–401

    Article  Google Scholar 

  • Rajput LS, Sharma T, Madhusudhan P, Sinha P (2017b) Effect of temperature on rice blast infection process with emphasis on appressoria formation by Magnaporthe oryzae. Int J Curr Microbiol App Sci 6(4):1931–1939

    Article  CAS  Google Scholar 

  • Ramiro D, Jalloul A, Petitot AS, De Sá MFG, Maluf MP, Fernandez D (2010) Identification of coffee WRKY transcription factor genes and expression profiling in resistance responses to pathogens. Tree Genet Genom 6(5):767–781

    Article  Google Scholar 

  • Ren XJ, Huang WD, Li WZ, Yu DQ (2010) Tobacco transcription factor WRKY4 is a modulator of leaf development and disease resistance. Biol Plant 54(4):684–690

    Article  CAS  Google Scholar 

  • Robatzek S, Somssich IE (2001) A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6 is associated with both senescence and defence related processes. Plant J 28(2):123–133

    Article  CAS  PubMed  Google Scholar 

  • Robatzek S, Somssics IE (2002) Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Gen Dev 16(9):1139–1149

    Article  CAS  Google Scholar 

  • Rogers EE, Glazebrook J, Ausubel FM (1996) Mode of action of the Arabidopsis thaliana phytoalexin camalexin and its role in Arabidopsis-pathogen interactions. Mol Plant Microbe Inter 9:748–757

    Article  CAS  Google Scholar 

  • Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich IE (1996) Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J 15(20):5690–5700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu HS, Han M, Lee SK, Cho JI, Ryoo N, Heu S, Lee YH, Bhoo SH, Wang GL, Hahn TR, Jeon JS (2006) A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response. Plant Cell Rep 25(8):836–847

    Article  CAS  PubMed  Google Scholar 

  • Samad AFA, Rahnamaie-Tajadod R, Sajad M, Jani J, Murad AMA, Noor NM, Ismail I (2019) Regulation of terpenoid biosynthesis by miRNA in Persicaria minor induced by Fusarium oxysporum. BMC Genomics 20(1):586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarkar S, Das A, Khandagale P, Maiti IB, Chattopadhyay S, Dey N (2018) Interaction of Arabidopsis TGA3 and WRKY53 transcription factors on Cestrum yellow leaf curling virus (CmYLCV) promoter mediates salicylic acid-dependent gene expression in planta. Planta 247(1):181–199

    Article  CAS  PubMed  Google Scholar 

  • Satoh K, Kondoh H, Sasaya T, Shimizu T, Choi IR, Omura T, Kikuchi S (2010) Selective modification of rice (Oryza sativa) gene expression by rice stripe virus infection. J Gen Virol 91(1):294–305

    Article  CAS  PubMed  Google Scholar 

  • Satoh K, Shimizu T, Kondoh H, Hiraguri A, Sasaya T, Choi IR, Omura T, Kikuchi S (2011) Relationship between symptoms and gene expression induced by the infection of three strains of Rice dwarf virus. PLoS One 6(3). https://doi.org/10.1371/journal.pone.0018094

  • Satoh K, Kondoh H, De Leon TB, Macalalad RJA, Cabunagan RC, Cabauatan PQ, Mauleon R, Kikuchi S, Choi IR (2013) Gene expression responses to Rice tungro spherical virus in susceptible and resistant near-isogenic rice plants. Virus Res 171(1):111–120

    Article  CAS  PubMed  Google Scholar 

  • Seo JK, Kim MK, Kwak HR, Choi HS, Nam M, Choe J, Choi B, Han SJ, Kang JH, Jung C (2018) Molecular dissection of distinct symptoms induced by tomato chlorosis virus and tomato yellow leaf curl virus based on comparative transcriptome analysis. Virol 516:1–20

    Article  CAS  Google Scholar 

  • Shi W, Hao L, Li J, Liu D, Guo X, Li H (2014a) The Gossypium hirsutum WRKY gene GhWRKY39-1 promotes pathogen infection defense responses and mediates salt stress tolerance in transgenic Nicotiana benthamiana. Plant Cell Rep 33(3):483–498

    Article  CAS  PubMed  Google Scholar 

  • Shi W, Liu D, Hao L, Wu CA, Guo X, Li H (2014b) GhWRKY39 a member of the WRKY transcription factor family in cotton has a positive role in disease resistance and salt stress tolerance. Plant Cell Tiss Org 118(1):17–32

    Article  CAS  Google Scholar 

  • Shimono M, Sugano S, Nakayama A, Jiang CJ, Ono K, Toki S, Takatsuji H (2007) Rice WRKY45 plays a crucial role in benzothidiazole-inducible blast resistance. Plant Cell 19(6):2064–2076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimono M, Koga H, Akagi AYA, Hayashi N, Goto S, Sawada M, Kurihara T, Matsushita A, Sugano S, Jiang CJ, Kaku H (2012) Rice WRKY45 plays important roles in fungal and bacterial disease resistance. Mol Plant Pathol 13(1):83–94

    Article  CAS  PubMed  Google Scholar 

  • Shu-Ling Z, XingFen W, Yan Z, Jian-Feng L, Li-Zhu W, Dong-Mei Z, Zhi-Ying M (2012) GbWRKY1 a novel cotton (Gossypium barbadense) WRKY gene isolated from a bacteriophage full-length cDNA library, is induced by infection with Verticillium dahliae. IJBB 49(6):405–413

    Google Scholar 

  • Singh V, Roy S, Singh D, Nandi AK (2014) Arabidopsis flowering locus D influences systemic-acquired-resistance-induced expression and histone modifications of WRKY genes. J Biosci 39(1):19–126

    Article  CAS  Google Scholar 

  • Singh B, Mehta S, Tiwari M, Bhatia S (2018a) Legume breeding for fungal resistance: a lesson to learn. In: Molecular approaches for plant improvement. Kalpaz Publication, New Delhi, pp 159–180

    Google Scholar 

  • Singh P, Shekhar S, Rustagi A, Sharma V, Kumar D (2018b) Insights into the role of WRKY superfamily of protein transcription factor in defense response. In: Molecular aspects of plant-pathogen interaction. Springer, Singapore, pp 185–202

    Chapter  Google Scholar 

  • Singh B, Mehta S, Aggarwal SK, Tiwari M, Bhuyan SI, Bhatia S, Islam MA (2019) Barley disease resistance, and molecular breeding approaches. In: Disease resistance in crop plant. Springer, Cham, pp 261–299

    Chapter  Google Scholar 

  • Sun J, An H, Shi W, Guo X, Li H (2012) Molecular cloning and characterization of GhWRKY11, a gene implicated in pathogen responses from cotton. S Afr J Bot 81:113–123

    Article  CAS  Google Scholar 

  • Sureshkumar V, Dutta B, Kumar V, Prakash G, Mishra DC, Chaturvedi KK, Rai A, Sevanthi AM, Solanke AU (2019) RiceMetaSysB a database of blast and bacterial blight responsive genes in rice and its utilization in identifying key blast-resistant WRKY genes. Database 2019:baz015. https://doi.org/10.1093/database/baz015

    Article  CAS  PubMed Central  Google Scholar 

  • Suzuki K (1999) Elicitor signal transduction that leads to hypersensitive reaction in cultured tobacco cells. Plant Biotechnol 16(5):343–351

    Article  CAS  Google Scholar 

  • Tao Z, Liu H, Qiu D, Zhou Y, Li X, Xu C, Wang S (2009) A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions. Plant Physiol 151(2):936–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turck F, Zhou A, Somssich IE (2004) Stimulus-dependent promoter-specific binding of transcription factor WRKY1 to its native promoter and the defense-related gene PcPR1-1 in parsley. Plant Cell 16(10):2573–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vo KT, Kim CY, Hoang TV, Lee SK, Shirsekar G, Seo YS, Lee SW, Wang GL, Jeon JS (2018) OsWRKY67 plays a positive role in basal and Xa21-mediated resistance in rice. Front Plant Sci 8:2220

    Article  PubMed  PubMed Central  Google Scholar 

  • Voinnet O (2009) Origin biogenesis and activity of plant microRNAs. Cell 136(4):669–687

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Dang F, Liu Z, Wang X, Eulgem T, Lai Y, Yu L, She J, Shi Y, Lin J, Chen C (2013) CaWRKY58 encoding a group I WRKY transcription factor of Capsicum annuum, negatively regulates resistance to Ralstonia solanacearum infection. Mol Plant Pathol 14(2):131–144

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Yan Y, Li Y, Chu X, Wu C, Guo X (2014) GhWRKY40 a multiple stress-responsive cotton WRKY gene plays an important role in the wounding response and enhances susceptibility to Ralstonia solanacearum infection in transgenic Nicotiana benthamiana. PLoS One 9(4). https://doi.org/10.1371/journal.pone.0093577

  • Wang J, Tao F, Tian W, Guo Z, Chen X, Xu X, Shang H, Hu X (2017) The wheat WRKY transcription factors TaWRKY49 and TaWRKY62 confer differential high-temperature seedling-plant resistance to Puccinia striiformis f. sp. tritici. PLoS One 12(7). https://doi.org/10.1371/journal.pone.0181963

  • Wu XJ, Li X, Zhao PF, Li N, Wu L, He Y, Wang SC (2015) Comparative transcriptome profiling of two maize near-isogenic lines differing in the allelic state for bacterial brown spot disease resistance. J Integr Agric 14(4):610–621

    Article  CAS  Google Scholar 

  • Xie C, Zhou X, Deng X, Guo Y (2010) PKS5 a SNF1-related kinase, interacts with and phosphorylates NPR1, and modulates expression of WRKY38 and WRKY62. J Genet Genom 37(6):359–369

    Article  CAS  Google Scholar 

  • Xiong X, Sun S, Li Y, Zhang X, Sun J, Xue F (2019) The cotton WRKY transcription factor GhWRKY70 negatively regulates the defense response against Verticillium dahliae. Crop J 7(3):393–402

    Article  CAS  Google Scholar 

  • Xu X, Chen C, Fan B, Chen Z (2006) Physical, functional interactions between pathogen-induced Arabidopsis WRKY18 WRKY40, WRKY60 transcription factors. Plant Cell 18(5):1310–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasaki K, Kigawa T, Watanabe S, Inoue M, Yamasaki T, Seki M, Shinozaki K, Yokoyama S (2012) Structural basis for sequence-specific DNA recognition by an Arabidopsis WRKY transcription factor. J Biol Chem 287(10):7683–7691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasaki K, KigawaT SM, Shinozaki K, Yokoyama S (2013) DNA-binding domains of plant-specific transcription factors: structure, function, and evolution. Trends Plant Sci 18(5):267–276

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Liu ZQ, Xu YH, Lu K, Wang XF, Zhang DP (2013) Auto-and cross-repression of three Arabidopsis WRKY transcription factors WRKY18 WRKY40, WRKY60 negatively involved in ABA signaling. J Plant Growth Regul 32(2):399–416

    Article  CAS  Google Scholar 

  • Yang B, Rahman MH, Deyholos MK, Kav NN, Jiang Y (2009) Identification and expression analysis of WRKY transcription factor genes in Brassica napus (canola) in response to fungal pathogens and hormone treatments. BMC Plant Biol 9(1):68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoda H, Ogawa M, Yamaguchi Y, Koizumi N, Kusano T, Sano H (2002) Identification of early-responsive genes associated with the hypersensitive response to tobacco mosaic virus and characterization of a WRKY-type transcription factor in tobacco plants. Mol Genet Genomics 267(2):154–161

    Article  CAS  PubMed  Google Scholar 

  • Yokotani N, Sato Y, Tanabe S, Chujo T, Shimizu T, Okada K, Yamane H, Shimono M, Sugano S, Takatsuji H, Kaku H (2013) WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. J Exp Bot 64(16):5085–5097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu A, Lepere G, Jay F, Wang J, Bapaume L, Wang Y, Abraham AL, Penterman J, Fischer RL, Voinnet O, Navarro L (2013a) Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc Natl Acad Sci 110(6):2389–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Xu W, Wang J, Wang L, Yao W, Yang Y, Xu Y, Ma F, Du Y, Wang Y (2013b) The Chinese wild grapevine (Vitis pseudoreticulata) E3 ubiquitin ligase Erysiphe necator induced RING finger protein 1 (EIRP1) activates plant defense responses by inducing proteolysis of the VpWRKY11 transcription factor. New Phytol 200(3):834–846

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang L (2005) The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol 5(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Peng Y, Guo Z (2008) Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants. Cell Res 18(4):508–521

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Grosic S, Whitham SA, Hill JH (2012) The requirement of multiple defense genes in soybean Rsv1–mediated extreme resistance to soybean mosaic virus. Mol Plant-Microbe Inter 25(10):1307–1313

    Article  CAS  Google Scholar 

  • Zhang Q, Li Y, Zhang Y, Wu C, Wang S, Hao L, Wang S, Li T (2017) Md-miR156ab and Md-miR395 target WRKY transcription factors to influence apple resistance to leaf spot disease. Front Plant Sci 8:526

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Yao JL, Feng H, Jiang J, Fan X, Jia YF, Wang R, Liu C (2019) Identification of the defense-related gene VdWRKY53 from the wild grapevine Vitis davidii using RNA sequencing and ectopic expression analysis in Arabidopsis. Hereditas 156(1):14

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Shang J, Wang W, Du J, Li K, Wu X, Yu L, Liu C, Khaskheli MI, Yang W (2019a) Comparison of transcriptome differences in soybean response to soybean mosaic virus under normal light and in the shade. Viruses 11(9):793

    Article  CAS  PubMed Central  Google Scholar 

  • Zhao J, Zhang X, Guo R, Wang Y, Guo C, Li Z, Chen Z, Gao H, Wang X (2018) Over-expression of a grape WRKY transcription factor gene VlWRKY48 in Arabidopsis thaliana increases disease resistance and drought stress tolerance. Plant Cell Tiss Org 132(2):359–370

    Article  CAS  Google Scholar 

  • Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48(4):592–605

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Mosher SL, Fan B, Klessig DF, Chen Z (2007) Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biol 7(1):2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou H, Xi Y, Wei S (2014) Expression of a novel WRKY gene in response to three RNA viruses in tobacco. J Anhui Agric Univ 41(6):1020–1026

    CAS  Google Scholar 

  • Zou LJ, Deng XG, Han XY, Tan WR, Zhu LJ, Xi DJ, Zhang DW, Lin HH (2016) Role of transcription factor HAT1 in modulating Arabidopsis thaliana response to cucumber mosaic virus. Plant Cell Physiol 57:1879–1889. https://doi.org/10.1093/pcp/pcw109

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajput, L.S. et al. (2020). Role of WRKY Transcription Factor Superfamily in Plant Disease Management. In: Giri, B., Sharma, M.P. (eds) Plant Stress Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9380-2_11

Download citation

Publish with us

Policies and ethics