Skip to main content

Methods for Single-Cell Isolation and Preparation

  • Chapter
  • First Online:
Single-cell Sequencing and Methylation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1255))

Abstract

Within the last decade, single-cell analysis has revolutionized our understanding of cellular processes and heterogeneity across all disciplines of life science. As the transcriptome, genome, or epigenome of individual cells can nowadays be analyzed at low cost and in high-throughput within a few days by modern techniques, tremendous improvements in disease diagnosis on the one hand and the investigation of disease-relevant mechanisms on the other were achieved so far. This relies on the parallel development of reliable cell capturing and single-cell sequencing approaches that have paved the way for comprehensive single-cell studies. Apart from single-cell isolation methods in high-throughput, a variety of methods with distinct specializations were developed, allowing for correlation of transcriptomics with cellular parameters like electrophysiology or morphology.

For all single-cell-based approaches, accurate and reliable isolation with proper quality controls is prerequisite, whereby different options exist dependent on sample type and tissue properties. Careful consideration of an appropriate method is required to avoid incorrect or biased data that may lead to misinterpretations.

In this chapter, we will provide a broad overview of the current state of the art in matters of single-cell isolation methods mostly applied for sequencing-based downstream analysis, and their respective advantages and drawbacks. Distinct technologies will be discussed in detail addressing key parameters like sample compatibility, viability, purity, throughput, and isolation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tung PY et al (2017) Batch effects and the effective design of single-cell gene expression studies. Sci Rep 7:39921. https://doi.org/10.1038/srep39921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gross A et al (2015) Technologies for single-cell isolation. Int J Mol Sci 16:16897–16919. https://doi.org/10.3390/ijms160816897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA (2015) The technology and biology of single-cell RNA sequencing. Mol Cell 58:610–620. https://doi.org/10.1016/j.molcel.2015.04.005

    Article  CAS  PubMed  Google Scholar 

  4. Hwang B, Lee JH, Bang D (2018) Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med 50:96. https://doi.org/10.1038/s12276-018-0071-8

    Article  CAS  PubMed Central  Google Scholar 

  5. van den Brink SC et al (2017) Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat Methods 14:935–936. https://doi.org/10.1038/nmeth.4437

    Article  CAS  PubMed  Google Scholar 

  6. Xiong L, Lee H, Ishitani M, Zhu J-K (2002) Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis. J Biol Chem 277:8588–8596

    Article  CAS  PubMed  Google Scholar 

  7. Romero-Santacreu L, Moreno J, Perez-Ortin JE, Alepuz P (2009) Specific and global regulation of mRNA stability during osmotic stress in Saccharomyces cerevisiae. RNA 15:1110–1120. https://doi.org/10.1261/rna.1435709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ilie M et al (2014) Current challenges for detection of circulating tumor cells and cell-free circulating nucleic acids, and their characterization in non-small cell lung carcinoma patients. What is the best blood substrate for personalized medicine? Ann Transl Med 2:107

    PubMed  PubMed Central  Google Scholar 

  9. Hu P, Zhang W, Xin H, Deng G (2016) Single cell isolation and analysis. Front Cell Dev Biol 4:116. https://doi.org/10.3389/fcell.2016.00116

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen G, Ning B, Shi T (2019) Single-cell RNA-seq technologies and related computational data analysis. Front Genet 10:317. https://doi.org/10.3389/fgene.2019.00317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141. https://doi.org/10.1016/j.tig.2007.12.007

    Article  CAS  PubMed  Google Scholar 

  12. Adam M, Potter AS, Potter SS (2017) Psychrophilic proteases dramatically reduce single-cell RNA-seq artifacts: a molecular atlas of kidney development. Development 144:3625–3632. https://doi.org/10.1242/dev.151142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lafzi A, Moutinho C, Picelli S, Heyn H (2018) Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies. Nat Protoc 13:2742–2757. https://doi.org/10.1038/s41596-018-0073-y

    Article  CAS  PubMed  Google Scholar 

  14. Autengruber A, Gereke M, Hansen G, Hennig C, Bruder D (2012) Impact of enzymatic tissue disintegration on the level of surface molecule expression and immune cell function. Eur J Microbiol Immunol 2:112

    Article  CAS  Google Scholar 

  15. Sanchez-Adams J, Athanasiou KA (2012) Regional effects of enzymatic digestion on knee meniscus cell yield and phenotype for tissue engineering. Tissue Eng Part C Methods 18:235–243. https://doi.org/10.1089/ten.TEC.2011.0383

    Article  CAS  PubMed  Google Scholar 

  16. Jahan-Tigh RR, Ryan C, Obermoser G, Schwarzenberger K (2012) Flow cytometry. J Invest Dermatol 132:1–6. https://doi.org/10.1038/jid.2012.282

    Article  CAS  PubMed  Google Scholar 

  17. Qiu X, De Jesus J, Pennell M, Troiani M, Haun JB (2015) Microfluidic device for mechanical dissociation of cancer cell aggregates into single cells. Lab Chip 15:339–350. https://doi.org/10.1039/c4lc01126k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Meeson A, Fuller A, Breault DT, Owens WA, Richardson GD (2013) Optimised protocols for the identification of the murine cardiac side population. Stem Cell Rev Rep 9:731–739. https://doi.org/10.1007/s12015-013-9440-9

    Article  CAS  PubMed  Google Scholar 

  19. Baldan V, Griffiths R, Hawkins RE, Gilham DE (2015) Efficient and reproducible generation of tumour-infiltrating lymphocytes for renal cell carcinoma. Br J Cancer 112:1510–1518. https://doi.org/10.1038/bjc.2015.96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guillaumet-Adkins A et al (2017) Single-cell transcriptome conservation in cryopreserved cells and tissues. Genome Biol 18:45. https://doi.org/10.1186/s13059-017-1171-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alles J et al (2017) Cell fixation and preservation for droplet-based single-cell transcriptomics. BMC Biol 15:44. https://doi.org/10.1186/s12915-017-0383-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang W, Penland L, Gokce O, Croote D, Quake SR (2018) High fidelity hypothermic preservation of primary tissues in organ transplant preservative for single cell transcriptome analysis. BMC Genomics 19:140

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lacar B et al (2016) Nuclear RNA-seq of single neurons reveals molecular signatures of activation. Nat Commun 7:11022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Krishnaswami SR et al (2016) Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons. Nat Protoc 11:499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Habib N (2016) Div-Seq: single-nucleus RNA-seq reveals dynamics of rare adult newborn neurons. Science 353:925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bakken TE et al (2018) Single-nucleus and single-cell transcriptomes compared in matched cortical cell types. PLoS One 13:e0209648. https://doi.org/10.1371/journal.pone.0209648

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lake BB et al (2018) Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat Biotechnol 36:70–80. https://doi.org/10.1038/nbt.4038

    Article  CAS  PubMed  Google Scholar 

  28. Habib N et al (2017) Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat Methods 14:955–958. https://doi.org/10.1038/nmeth.4407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zheng GX et al (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:14049. https://doi.org/10.1038/ncomms14049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grindberg RV et al (2013) RNA-sequencing from single nuclei. Proc Natl Acad Sci U S A 110:19802–19807. https://doi.org/10.1073/pnas.1319700110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lake BB et al (2016) Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 352:1586–1590. https://doi.org/10.1126/science.aaf1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thomsen ER et al (2016) Fixed single-cell transcriptomic characterization of human radial glial diversity. Nat Methods 13:87–93. https://doi.org/10.1038/nmeth.3629

    Article  CAS  PubMed  Google Scholar 

  33. Cho H et al (2018) Microfluidic technologies for circulating tumor cell isolation. Analyst 143:2936–2970. https://doi.org/10.1039/c7an01979c

    Article  CAS  PubMed  Google Scholar 

  34. Huang Q, Mao S, Khan M, Lin JM (2019) Single-cell assay on microfluidic devices. Analyst 144:808–823. https://doi.org/10.1039/c8an01079j

    Article  CAS  PubMed  Google Scholar 

  35. Radbruch A, Recktenwald D (1995) Detection and isolation of rare cells. Curr Opin Immunol 7:270–273

    Article  CAS  PubMed  Google Scholar 

  36. Will B, Steidl U (2010) Multi-parameter fluorescence-activated cell sorting and analysis of stem and progenitor cells in myeloid malignancies. Best Pract Res Clin Haematol 23:391–401. https://doi.org/10.1016/j.beha.2010.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kornbluth J, Hoover RG (1989) Immunobiology of HLA. Springer, New York, NY, pp 150–152

    Book  Google Scholar 

  38. Christaki E et al (2011) A monoclonal antibody against rage alters gene expression and is protective in experimental models of sepsis and pneumococcal pneumonia. Shock 35:492–498. https://doi.org/10.1097/SHK.0b013e31820b2e1c

    Article  CAS  PubMed  Google Scholar 

  39. Victora GD et al (2010) Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143:592–605. https://doi.org/10.1016/j.cell.2010.10.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Medaglia C et al (2017) Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq. Science 358:1622–1626. https://doi.org/10.1126/science.aao4277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877. https://doi.org/10.1126/science.1074952

    Article  CAS  PubMed  Google Scholar 

  42. Tsutsui H et al (2009) The E1 mechanism in photo-induced beta-elimination reactions for green-to-red conversion of fluorescent proteins. Chem Biol 16:1140–1147. https://doi.org/10.1016/j.chembiol.2009.10.010

    Article  CAS  PubMed  Google Scholar 

  43. Chtanova T et al (2014) Real-time interactive two-photon photoconversion of recirculating lymphocytes for discontinuous cell tracking in live adult mice. J Biophotonics 7:425–433. https://doi.org/10.1002/jbio.201200175

    Article  CAS  PubMed  Google Scholar 

  44. Suan D et al (2015) T follicular helper cells have distinct modes of migration and molecular signatures in naive and memory immune responses. Immunity 42:704–718. https://doi.org/10.1016/j.immuni.2015.03.002

    Article  CAS  PubMed  Google Scholar 

  45. Jiang L et al (2011) Synthetic spike-in standards for RNA-seq experiments. Genome Res 21:1543–1551. https://doi.org/10.1101/gr.121095.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hardwick SA et al (2016) Spliced synthetic genes as internal controls in RNA sequencing experiments. Nat Methods 13:792–798. https://doi.org/10.1038/Nmeth.3958

    Article  CAS  PubMed  Google Scholar 

  47. Yilmaz S, Singh AK (2012) Single cell genome sequencing. Curr Opin Biotechnol 23:437–443. https://doi.org/10.1016/j.copbio.2011.11.018

    Article  CAS  PubMed  Google Scholar 

  48. Tang F et al (2009) mRNA-seq whole-transcriptome analysis of a single cell. Nat Methods 6:377–382. https://doi.org/10.1038/nmeth.1315

    Article  CAS  PubMed  Google Scholar 

  49. Pensold D et al (2017) The DNA methyltransferase 1 (DNMT1) controls the shape and dynamics of migrating POA-derived interneurons fated for the murine cerebral cortex. Cereb Cortex 27:5696–5714. https://doi.org/10.1093/cercor/bhw341

    Article  PubMed  Google Scholar 

  50. Gerstmann K et al (2015) Thalamic afferents influence cortical progenitors via ephrin A5-EphA4 interactions. Development 142:140–150. https://doi.org/10.1242/dev.104927

    Article  CAS  PubMed  Google Scholar 

  51. Hempel CM, Sugino K, Nelson SB (2007) A manual method for the purification of fluorescently labeled neurons from the mammalian brain. Nat Protoc 2:2924–2929. https://doi.org/10.1038/nprot.2007.416

    Article  CAS  PubMed  Google Scholar 

  52. Grindberg RV et al (2011) Single cell genome amplification accelerates identification of the apratoxin biosynthetic pathway from a complex microbial assemblage. PLoS One 6:e18565. https://doi.org/10.1371/journal.pone.0018565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xue Z et al (2013) Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500:593–597. https://doi.org/10.1038/nature12364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bengtsson M, Stahlberg A, Rorsman P, Kubista M (2005) Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels. Genome Res 15:1388–1392. https://doi.org/10.1101/gr.3820805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Guo G et al (2010) Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell 18:675–685. https://doi.org/10.1016/j.devcel.2010.02.012

    Article  CAS  PubMed  Google Scholar 

  56. Hodne K, Haug TM, Weltzien FA (2010) Single-cell qPCR on dispersed primary pituitary cells - an optimized protocol. BMC Mol Biol 11:82. https://doi.org/10.1186/1471-2199-11-82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Citri A, Pang ZPP, Sudhof TC, Wernig M, Malenka RC (2012) Comprehensive qPCR profiling of gene expression in single neuronal cells. Nat Protoc 7:118–127. https://doi.org/10.1038/nprot.2011.430

    Article  CAS  Google Scholar 

  58. Li HH et al (1988) Amplification and analysis of DNA sequences in single human sperm and diploid cells. Nature 335:414–417. https://doi.org/10.1038/335414a0

    Article  CAS  PubMed  Google Scholar 

  59. Eberwine J et al (1992) Analysis of gene expression in single live neurons. Proc Natl Acad Sci U S A 89:3010–3014. https://doi.org/10.1073/pnas.89.7.3010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nguyen QH, Pervolarakis N, Nee K, Kessenbrock K (2018) Experimental considerations for single-cell RNA sequencing approaches. Front Cell Dev Biol 6:108. https://doi.org/10.3389/fcell.2018.00108

    Article  PubMed  PubMed Central  Google Scholar 

  61. Schoendube J, Wright D, Zengerle R, Koltay P (2015) Single-cell printing based on impedance detection. Biomicrofluidics 9:014117. https://doi.org/10.1063/1.4907896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cho SH, Chen CH, Tsai FS, Godin J, Lo YH (2010) Mammalian cell sorting using muFACS. Lab Chip 10:1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yusof A et al (2011) Inkjet-like printing of single-cells. Lab Chip 11:2447–2454. https://doi.org/10.1039/c1lc20176j

    Article  CAS  PubMed  Google Scholar 

  64. Liss BJ (2002) Improved quantitative real-time RT–PCR for expression profiling of individual cells. Nucleic Acids Res 30:e89

    Article  PubMed  PubMed Central  Google Scholar 

  65. Monyer H, Lambolez B (1995) Molecular biology and physiology at the single-cell level. Curr Opin Neurobiol 5:382–387

    Article  CAS  PubMed  Google Scholar 

  66. Tsuzuki K, Lambolez B, Rossier J, Ozawa S (2001) Absolute quantification of AMPA receptor subunit mRNAs in single hippocampal neurons. J Neurochem 77:1650–1659. https://doi.org/10.1046/j.1471-4159.2001.00388.x

    Article  CAS  PubMed  Google Scholar 

  67. Lu Z et al (2010) 2010 IEEE International Conference on Robotics and Automation. IEEE, Washington, DC, pp 494–499

    Google Scholar 

  68. Frohlich J, Konig H (2000) New techniques for isolation of single prokaryotic cells. FEMS Microbiol Rev 24:567–572

    Article  CAS  PubMed  Google Scholar 

  69. Brehm-Stecher BF, Johnson EA (2004) Single-cell microbiology: tools, technologies, and applications. Microbiol Mol Biol Rev 68:538–559. https://doi.org/10.1128/MMBR.68.3.538-559.2004. Table of contents

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wright G, Tucker MJ, Morton PC, Sweitzer-Yoder CL, Smith SE (1998) Micromanipulation in assisted reproduction: a review of current technology. Curr Opin Obstet Gynecol 10:221–226

    Article  CAS  PubMed  Google Scholar 

  71. Li CX et al (2011) New cell separation technique for the isolation and analysis of cells from biological mixtures in forensic caseworks. Croat Med J 52:293–298. https://doi.org/10.3325/cmj.2011.52.293

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hongoh Y et al (2008) Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell. Proc Natl Acad Sci U S A 105:5555–5560. https://doi.org/10.1073/pnas.0801389105

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kvist T, Ahring BK, Lasken RS, Westermann P (2007) Specific single-cell isolation and genomic amplification of uncultured microorganisms. Appl Microbiol Biotechnol 74:926–935. https://doi.org/10.1007/s00253-006-0725-7

    Article  CAS  PubMed  Google Scholar 

  74. Ramskold D et al (2012) Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol 30:777–782. https://doi.org/10.1038/nbt.2282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Emmert-Buck MR et al (1996) Laser capture microdissection. Science 274:998–1001. https://doi.org/10.1126/science.274.5289.998

    Article  CAS  PubMed  Google Scholar 

  76. Espina V, Heiby M, Pierobon M, Liotta LA (2007) Laser capture microdissection technology. Expert Rev Mol Diagn 7:647–657. https://doi.org/10.1586/14737159.7.5.647

    Article  CAS  PubMed  Google Scholar 

  77. Fend F, Raffeld M (2000) Laser capture microdissection in pathology. J Clin Pathol 53:666–672. https://doi.org/10.1136/jcp.53.9.666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Foley JW et al (2019) Gene-expression profiling of single cells from archival tissue with laser-capture microdissection and Smart-3SEQ. Genome Res 29:1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Esposito G (2007) Microarray technology and cancer gene profiling. Springer, New York, NY, pp 54–65

    Book  Google Scholar 

  80. Nakamura N et al (2007) Single cell diagnostics. Springer, New York, NY, pp 11–18

    Book  Google Scholar 

  81. Walch A et al (2001) Tissue microdissection techniques in quantitative genome and gene expression analyses. Histochem Cell Biol 115:269–276

    Article  CAS  PubMed  Google Scholar 

  82. Bonner RF et al (1997) Laser capture microdissection: molecular analysis of tissue. Science 278:1481–1483. https://doi.org/10.1126/science.278.5342.1481

    Article  CAS  PubMed  Google Scholar 

  83. Schüitze K, Lahr GJ (1998) Identification of expressed genes by laser-mediated manipulation of single cells. Nat Biotechnol 16:737

    Article  Google Scholar 

  84. Podgorny OV (2013) Live cell isolation by laser microdissection with gravity transfer. J Biomed Opt 18:55002. https://doi.org/10.1117/1.JBO.18.5.055002

    Article  PubMed  Google Scholar 

  85. Hodne K, Weltzien FA (2015) Single-cell isolation and gene analysis: pitfalls and possibilities. Int J Mol Sci 16:26832–26849. https://doi.org/10.3390/ijms161125996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bohm M, Wieland I, Schutze K, Rubben H (1997) Microbeam MOMeNT: non-contact laser microdissection of membrane-mounted native tissue. Am J Pathol 151:63–67

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Bevilacqua C, Makhzami S, Helbling JC, Defrenaix P, Martin P (2010) Maintaining RNA integrity in a homogeneous population of mammary epithelial cells isolated by laser capture microdissection. BMC Cell Biol 11:95. https://doi.org/10.1186/1471-2121-11-95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. DeCarlo K, Emley A, Dadzie OE, Mahalingam M (2011) Laser capture microdissection. Springer, New York, NY, pp 1–15

    Book  Google Scholar 

  89. Liu A (2010) Laser capture microdissection in the tissue biorepository. J Biomol Tech 21:120–125

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Keays KM, Owens GP, Ritchie AM, Gilden DH, Burgoon MP (2005) Laser capture microdissection and single-cell RT-PCR without RNA purification. J Immunol Methods 302:90–98. https://doi.org/10.1016/j.jim.2005.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Vandewoestyne M, Deforce D (2010) Laser capture microdissection in forensic research: a review. Int J Legal Med 124:513–521. https://doi.org/10.1007/s00414-010-0499-4

    Article  PubMed  PubMed Central  Google Scholar 

  92. Fink L, Kwapiszewska G, Wilhelm J, Bohle RM (2006) Laser-microdissection for cell type- and compartment-specific analyses on genomic and proteomic level. Exp Toxicol Pathol 57(Suppl 2):25–29. https://doi.org/10.1016/j.etp.2006.02.010

    Article  CAS  PubMed  Google Scholar 

  93. Fink L, Bohle RM (2005) Laser capture microdissection. Springer, New York, NY, pp 167–185

    Book  Google Scholar 

  94. Moldavan A (1934) Photo-electric technique for the counting of microscopical cells. Science 80:188–189. https://doi.org/10.1126/science.80.2069.188

    Article  CAS  PubMed  Google Scholar 

  95. Gucker FT Jr, O’Konski CT, Pickard HB, Pitts JN Jr (1947) A photoelectronic counter for colloidal particles1. J Am Chem Soc 69:2422–2431

    Article  CAS  PubMed  Google Scholar 

  96. Fulwyler MJ (1965) Electronic separation of biological cells by volume. Science 150:910–911. https://doi.org/10.1126/science.150.3698.910

    Article  CAS  PubMed  Google Scholar 

  97. Shapiro HM (2005) Practical flow cytometry. John Wiley & Sons, New York, NY

    Google Scholar 

  98. Herzenberg LA et al (2002) The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford. Clin Chem 48:1819–1827

    Article  CAS  PubMed  Google Scholar 

  99. Nguyen A, Khoo WH, Moran I, Croucher PI, Phan TG (2018) Single cell RNA sequencing of rare immune cell populations. Front Immunol 9:1553. https://doi.org/10.3389/fimmu.2018.01553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wilson NK et al (2015) Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell 16:712–724. https://doi.org/10.1016/j.stem.2015.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Paul F et al (2015) Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163:1663–1677. https://doi.org/10.1016/j.cell.2015.11.013

    Article  CAS  PubMed  Google Scholar 

  102. Jaitin DA et al (2014) Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343:776–779. https://doi.org/10.1126/science.1247651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mollet M, Godoy-Silva R, Berdugo C, Chalmers JJ (2008) Computer simulations of the energy dissipation rate in a fluorescence-activated cell sorter: implications to cells. Biotechnol Bioeng 100:260–272. https://doi.org/10.1002/bit.21762

    Article  CAS  PubMed  Google Scholar 

  104. Shapiro E, Biezuner T, Linnarsson S (2013) Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 14:618–630. https://doi.org/10.1038/nrg3542

    Article  CAS  PubMed  Google Scholar 

  105. Hashimshony T et al (2016) CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol 17:77. https://doi.org/10.1186/s13059-016-0938-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Valet G (2003) Past and present concepts in flow cytometry: a European perspective. J Biol Regul Homeost Agents 17:213–222

    CAS  PubMed  Google Scholar 

  107. Iriondo O, Rabano M, Vivanco MD (2015) FACS sorting mammary stem cells. Methods Mol Biol 1293:63–72. https://doi.org/10.1007/978-1-4939-2519-3_3

    Article  PubMed  Google Scholar 

  108. Brown M, Wittwer C (2000) Flow cytometry: principles and clinical applications in hematology. Clin Chem 46:1221–1229

    Article  CAS  PubMed  Google Scholar 

  109. Davey HM, Kell DB (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol Rev 60:641–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lacombe F, Belloc F (1996) Flow cytometry study of cell cycle, apoptosis and drug resistance in acute leukemia. Hematol Cell Ther 38:495–504

    Article  CAS  PubMed  Google Scholar 

  111. McCoy JP Jr, Carey JL (1990) Recent advances in flow cytometric techniques for cancer detection and prognosis. Immunol Ser 53:171–187

    PubMed  Google Scholar 

  112. Guo MT, Rotem A, Heyman JA, Weitz DA (2012) Droplet microfluidics for high-throughput biological assays. Lab Chip 12:2146–2155. https://doi.org/10.1039/c2lc21147e

    Article  CAS  PubMed  Google Scholar 

  113. Sims CE, Allbritton NL (2007) Analysis of single mammalian cells on-chip. Lab Chip 7:423–440. https://doi.org/10.1039/b615235j

    Article  CAS  PubMed  Google Scholar 

  114. Lecault V, White AK, Singhal A, Hansen CL (2012) Microfluidic single cell analysis: from promise to practice. Curr Opin Chem Biol 16:381–390. https://doi.org/10.1016/j.cbpa.2012.03.022

    Article  CAS  PubMed  Google Scholar 

  115. Gomez-Sjoberg R, Leyrat AA, Pirone DM, Chen CS, Quake SR (2007) Versatile, fully automated, microfluidic cell culture system. Anal Chem 79:8557–8563. https://doi.org/10.1021/ac071311w

    Article  CAS  PubMed  Google Scholar 

  116. Di Carlo D, Wu LY, Lee LP (2006) Dynamic single cell culture array. Lab Chip 6:1445–1449. https://doi.org/10.1039/b605937f

    Article  CAS  PubMed  Google Scholar 

  117. Brouzes E et al (2009) Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci U S A 106:14195–14200. https://doi.org/10.1073/pnas.0903542106

    Article  PubMed  PubMed Central  Google Scholar 

  118. Klein AM et al (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161:1187–1201. https://doi.org/10.1016/j.cell.2015.04.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Macosko EZ et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–1214. https://doi.org/10.1016/j.cell.2015.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Piggee C (2009) Optical tweezers: not just for physicists anymore. Anal Chem 81:16–19. https://doi.org/10.1021/ac8023203

    Article  CAS  Google Scholar 

  121. Ashkin A, Dziedzic JM, Yamane T (1987) Optical trapping and manipulation of single cells using infrared laser beams. Nature 330:769–771. https://doi.org/10.1038/330769a0

    Article  CAS  PubMed  Google Scholar 

  122. Di Trapani M, Manaresi N, Medoro G (2018) DEPArray system: an automatic image-based sorter for isolation of pure circulating tumor cells. Cytometry A 93:1260–1266. https://doi.org/10.1002/cyto.a.23687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang P et al (2015) Raman-activated cell sorting based on dielectrophoretic single-cell trap and release. Anal Chem 87:2282–2289. https://doi.org/10.1021/ac503974e

    Article  CAS  PubMed  Google Scholar 

  124. Torres AJ, Hill AS, Love JC (2014) Nanowell-based immunoassays for measuring single-cell secretion: characterization of transport and surface binding. Anal Chem 86:11562–11569. https://doi.org/10.1021/ac4030297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Han X et al (2018) Mapping the mouse cell atlas by microwell-seq. Cell 172:1091–1107.e17

    Article  CAS  PubMed  Google Scholar 

  126. Kim KT et al (2015) Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells. Genome Biol 16:127. https://doi.org/10.1186/s13059-015-0692-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Revzin A, Sekine K, Sin A, Tompkins RG, Toner M (2005) Development of a microfabricated cytometry platform for characterization and sorting of individual leukocytes. Lab Chip 5:30–37. https://doi.org/10.1039/b405557h

    Article  CAS  PubMed  Google Scholar 

  128. Chen Q, Wu J, Zhang Y, Lin Z, Lin JM (2012) Targeted isolation and analysis of single tumor cells with aptamer-encoded microwell array on microfluidic device. Lab Chip 12:5180–5185. https://doi.org/10.1039/c2lc40858a

    Article  CAS  PubMed  Google Scholar 

  129. Warkiani ME et al (2016) Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics. Nat Protoc 11:134–148. https://doi.org/10.1038/nprot.2016.003

    Article  CAS  PubMed  Google Scholar 

  130. Kemna EW et al (2012) High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel. Lab Chip 12:2881–2887. https://doi.org/10.1039/c2lc00013j

    Article  CAS  PubMed  Google Scholar 

  131. Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116. https://doi.org/10.1126/science.288.5463.113

    Article  CAS  PubMed  Google Scholar 

  132. Prakadan SM, Shalek AK, Weitz DA (2017) Scaling by shrinking: empowering single-cell ‘omics’ with microfluidic devices. Nat Rev Genet 18:345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lu Y, Yang L, Wei W, Shi Q (2017) Microchip-based single-cell functional proteomics for biomedical applications. Lab Chip 17:1250–1263. https://doi.org/10.1039/C7LC00037E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Murphy TW, Zhang Q, Naler LB, Ma S, Lu C (2018) Recent advances in the use of microfluidic technologies for single cell analysis. Analyst 143:60–80. https://doi.org/10.1039/C7AN01346A

    Article  CAS  Google Scholar 

  135. Streets AM et al (2014) Microfluidic single-cell whole-transcriptome sequencing. Proc Natl Acad Sci U S A 111:7048–7053. https://doi.org/10.1073/pnas.1402030111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Choi S, Song S, Choi C, Park JK (2007) Continuous blood cell separation by hydrophoretic filtration. Lab Chip 7:1532–1538. https://doi.org/10.1039/b705203k

    Article  CAS  PubMed  Google Scholar 

  137. Earhart CM et al (2014) Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips. Lab Chip 14:78–88. https://doi.org/10.1039/c3lc50580d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lu X, Xuan X (2015) Continuous microfluidic particle separation via elasto-inertial pinched flow fractionation. Anal Chem 87:6389–6396. https://doi.org/10.1021/acs.analchem.5b01432

    Article  CAS  PubMed  Google Scholar 

  139. Karimi A, Yazdi S, Ardekani AM (2013) Hydrodynamic mechanisms of cell and particle trapping in microfluidics. Biomicrofluidics 7:21501. https://doi.org/10.1063/1.4799787

    Article  CAS  PubMed  Google Scholar 

  140. Lutz BR, Chen J, Schwartz DT (2006) Hydrodynamic tweezers: 1. Noncontact trapping of single cells using steady streaming microeddies. Anal Chem 78:5429–5435. https://doi.org/10.1021/ac060555y

    Article  CAS  PubMed  Google Scholar 

  141. Joensson HN, Svahn HA (2012) Droplet microfluidics—a tool for single-cell analysis. Angew Chem Int Ed 51:12176–12192

    Article  CAS  Google Scholar 

  142. Seemann R, Brinkmann M, Pfohl T, Herminghaus S (2012) Droplet based microfluidics. Rep Prog Phys 75:016601. https://doi.org/10.1088/0034-4885/75/1/016601

    Article  CAS  PubMed  Google Scholar 

  143. Edd JF et al (2008) Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip 8:1262–1264. https://doi.org/10.1039/b805456h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zilionis R et al (2017) Single-cell barcoding and sequencing using droplet microfluidics. Nat Protoc 12:44. https://doi.org/10.1038/nprot.2016.154

    Article  CAS  PubMed  Google Scholar 

  145. Collins DJ, Neild A, deMello A, Liu AQ, Ai Y (2015) The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation. Lab Chip 15:3439–3459. https://doi.org/10.1039/c5lc00614g

    Article  CAS  PubMed  Google Scholar 

  146. Koster S et al (2008) Drop-based microfluidic devices for encapsulation of single cells. Lab Chip 8:1110–1115. https://doi.org/10.1039/b802941e

    Article  CAS  PubMed  Google Scholar 

  147. Stoeckius M et al (2017) Simultaneous epitope and transcriptome measurement in single cells. Nat Methods 14:865–868. https://doi.org/10.1038/nmeth.4380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Macaulay IC et al (2015) G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat Methods 12:519. https://doi.org/10.1038/nmeth.3370

    Article  CAS  PubMed  Google Scholar 

  149. Angermueller C et al (2016) Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat Methods 13:229–232. https://doi.org/10.1038/nmeth.3728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Clark SJ et al (2018) scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat Commun 9:781. https://doi.org/10.1038/s41467-018-03149-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wheeler AR et al (2003) Microfluidic device for single-cell analysis. Anal Chem 75:3581–3586. https://doi.org/10.1021/ac0340758

    Article  CAS  PubMed  Google Scholar 

  152. Pantoja R et al (2004) Silicon chip-based patch-clamp electrodes integrated with PDMS microfluidics. Biosens Bioelectron 20:509–517. https://doi.org/10.1016/j.bios.2004.02.020

    Article  CAS  PubMed  Google Scholar 

  153. Wu AR et al (2014) Quantitative assessment of single-cell RNA-sequencing methods. Nat Methods 11:41–46. https://doi.org/10.1038/nmeth.2694

    Article  CAS  PubMed  Google Scholar 

  154. Wu H, Wheeler A, Zare RN (2004) Chemical cytometry on a picoliter-scale integrated microfluidic chip. Proc Natl Acad Sci U S A 101:12809–12813. https://doi.org/10.1073/pnas.0405299101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hong JW, Studer V, Hang G, Anderson WF, Quake SR (2004) A nanoliter-scale nucleic acid processor with parallel architecture. Nat Biotechnol 22:435–439. https://doi.org/10.1038/nbt951

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Funding: This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—368482240/GRK2416.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pensold, D., Zimmer-Bensch, G. (2020). Methods for Single-Cell Isolation and Preparation. In: Yu, B., Zhang, J., Zeng, Y., Li, L., Wang, X. (eds) Single-cell Sequencing and Methylation. Advances in Experimental Medicine and Biology, vol 1255. Springer, Singapore. https://doi.org/10.1007/978-981-15-4494-1_2

Download citation

Publish with us

Policies and ethics