Skip to main content

Review on Modelling Approaches Based on Computational Fluid Dynamics for Biomass Pyrolysis Systems

  • Chapter
  • First Online:
Production of Biofuels and Chemicals with Pyrolysis

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 10))

Abstract

Modelling is a complex task combining elements of knowledge in the field of computer science, mathematics and natural sciences (fluid dynamics, mass and heat transfer, chemistry). In order to correctly model the process of biomass thermal degradation, in-depth knowledge of multi-scale unit processes is necessary. A biomass conversion model can be divided into three main submodels depending on the scale of the unit processes: the molecular model, single particle model and reactor model. Molecular models describe the chemical changes in the biomass constituents. Single-particle models correspond to the description of the biomass structure and its influence on the thermo-physical behaviour and the subsequent reactions of the compounds released during decomposition of a single biomass particle. The largest scale submodel and at the same time, the most difficult to describe is the reactor model, which describes the behaviour of a vast number of particles, the flow of the reactor gases as well as the interaction between them and the reactor. This chapter contains a basic explanation about which models are currently available and how they work from a practical point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antal MJ, Grønli M. The art, science, and technology of charcoal production. Ind Eng Chem Res. 2003;42(8):1619–40. https://doi.org/10.1021/ie0207919.

    Article  CAS  Google Scholar 

  2. Dubois G. Modeling and simulation: challenges and best practices for industry. Boca Raton: CRC Press; 2018. https://doi.org/10.1201/9781351241137.

    Book  Google Scholar 

  3. Balci O. Guidelines for successful simulation studies. In: Balci O, editor. 1990 winter simulation conference proceedings. San Diego: IEEE; 1990. p. 25–32. https://doi.org/10.1109/WSC.1990.129482.

    Chapter  Google Scholar 

  4. Kennedy MC, O'Hagan A. Bayesian calibration of computer models. J R Stat Soc. 2001;63(3):425–64. https://doi.org/10.1111/1467-9868.00294.

    Article  Google Scholar 

  5. Anca-Couce A. Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Prog Energy Combust Sci. 2016;53:41–79. https://doi.org/10.1016/j.pecs.2015.10.002.

    Article  Google Scholar 

  6. Debiagi PEA, Pecchi C, Gentile G, Frassoldati A, Cuoci A, Faravelli T, Ranzi E. Extractives extend the applicability of multistep kinetic scheme of biomass pyrolysis. Energy Fuel. 2015;29(10):6544–55. https://doi.org/10.1021/acs.energyfuels.5b01753.

    Article  CAS  Google Scholar 

  7. Vassilev SV, Baxter D, Andersen LK, Vassileva CG. An overview of the chemical composition of biomass. Fuel. 2010;89(5):913–33. https://doi.org/10.1016/j.fuel.2009.10.022.

    Article  CAS  Google Scholar 

  8. Vassilev SV, Baxter D, Andersen LK, Vassileva CG, Morgan TJ. An overview of the organic and inorganic phase composition of biomass. Fuel. 2012;94:1–33. https://doi.org/10.1016/j.fuel.2011.09.030.

    Article  CAS  Google Scholar 

  9. Vassilev SV, Baxter D, Andersen LK, Vassileva CG. An overview of the composition and application of biomass ash. Part 1. Phase–mineral and chemical composition and classification. Fuel. 2013;105:40–76. https://doi.org/10.1016/j.fuel.2012.09.041.

    Article  CAS  Google Scholar 

  10. Vassilev SV, Baxter D, Andersen LK, Vassileva CG. An overview of the composition and application of biomass ash.: part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel. 2013;105:19–39. https://doi.org/10.1016/j.fuel.2012.10.001.

    Article  CAS  Google Scholar 

  11. Mamleev V, Bourbigot S, Le Bras M, Yvon J. The facts and hypotheses relating to the phenomenological model of cellulose pyrolysis: interdependence of the steps. J Anal Appl Pyrolysis. 2009;84(1):1–17. https://doi.org/10.1016/j.jaap.2008.10.014.

    Article  CAS  Google Scholar 

  12. Thy P, Yu C, Jenkins BM, Lesher CE. Inorganic composition and environmental impact of biomass feedstock. Energy Fuel. 2013;27(7):3969–87. https://doi.org/10.1021/ef400660u.

    Article  CAS  Google Scholar 

  13. Ronsse F, van Hecke S, Dickinson D, Prins W. Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy. 2012;5(2):104–15. https://doi.org/10.1111/gcbb.12018.

    Article  CAS  Google Scholar 

  14. Ronsse F, Bai X, Prins W, Brown RC. Secondary reactions of levoglucosan and char in the fast pyrolysis of cellulose. Environ Prog Sustain Energy. 2012;31(2):256–60. https://doi.org/10.1002/ep.11633.

    Article  CAS  Google Scholar 

  15. Patwardhan PR, Brown RC, Shanks BH. Product distribution from the fast pyrolysis of hemicellulose. ChemSusChem. 2011;4(5):636–43. https://doi.org/10.1002/cssc.201000425.

    Article  CAS  PubMed  Google Scholar 

  16. Faravelli T, Frassoldati A, Migliavacca G, Ranzi E. Detailed kinetic modeling of the thermal degradation of lignins. Biomass Bioenergy. 2010;34(3):290–301. https://doi.org/10.1016/j.biombioe.2009.10.018.

    Article  CAS  Google Scholar 

  17. Nowakowska M, Herbinet O, Dufour A, Glaude P-A. Detailed kinetic study of anisole pyrolysis and oxidation to understand tar formation during biomass combustion and gasification. Combust Flame. 2014;161(6):1474–88. https://doi.org/10.1016/j.combustflame.2013.11.024.

    Article  CAS  Google Scholar 

  18. Zheng M, Wang Z, Li X, Qiao X, Song W, Guo L. Initial reaction mechanisms of cellulose pyrolysis revealed by ReaxFF molecular dynamics. Fuel. 2016;177:130–41. https://doi.org/10.1016/j.fuel.2016.03.008.

    Article  CAS  Google Scholar 

  19. Anca-Couce A, Mehrabian R, Scharler R, Obernberger I. Kinetic scheme of biomass pyrolysis considering secondary charring reactions. Energy Convers Manag. 2014;87:687–96. https://doi.org/10.1016/j.enconman.2014.07.061.

    Article  CAS  Google Scholar 

  20. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86(12–13):1781–8. https://doi.org/10.1016/j.fuel.2006.12.013.

    Article  CAS  Google Scholar 

  21. Wu S, Shen D, Hu J, Zhang H, Xiao R. Cellulose-lignin interactions during fast pyrolysis with different temperatures and mixing methods. Biomass Bioenergy. 2016;90:209–17. https://doi.org/10.1016/j.biombioe.2016.04.012.

    Article  CAS  Google Scholar 

  22. Nowakowski DJ, Bridgwater AV, Elliott DC, Meier D, de Wild P. Lignin fast pyrolysis: results from an international collaboration. J Anal Appl Pyrolysis. 2010;88(1):53–72. https://doi.org/10.1016/j.jaap.2010.02.009.

    Article  CAS  Google Scholar 

  23. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol JJ. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23. https://doi.org/10.1016/j.tca.2014.05.036.

    Article  CAS  Google Scholar 

  24. Di Blasi C. Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci. 2008;34(1):47–90. https://doi.org/10.1016/j.pecs.2006.12.001.

    Article  CAS  Google Scholar 

  25. Liden AG, Berruti F, Scott DS. A kinetic model for the production of liquids from flash pyrolysis of biomass. Chem Eng Commun. 1988;65(1):207–21. https://doi.org/10.1080/00986448808940254.

    Article  CAS  Google Scholar 

  26. Shafizadeh F, Chin PPS. Thermal deterioration of wood. In: Goldstein IS, editor. Wood technology: chemical aspects, ACS symposium series, vol. 43. Washington DC: American Chemical Society; 1977. p. 57–81. https://doi.org/10.1021/bk-1977-0043.ch005.

    Chapter  Google Scholar 

  27. Anca-Couce A, Berger A, Zobel N. How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme. Fuel. 2014;123:230–40. https://doi.org/10.1016/j.fuel.2014.01.014.

    Article  CAS  Google Scholar 

  28. Park WC, Atreya A, Baum HR. Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis. Combust Flame. 2010;157(3):481–94. https://doi.org/10.1016/j.combustflame.2009.10.006.

    Article  CAS  Google Scholar 

  29. Koufopanos CA, Lucchesi A, Maschio G. Kinetic modelling of the pyrolysis of biomass and biomass components. The. Can J Chem Eng. 1989;67(1):75–84. https://doi.org/10.1002/cjce.5450670111.

    Article  CAS  Google Scholar 

  30. Ranzi E, Cuoci A, Faravelli T, Frassoldati A, Migliavacca G, Pierucci S, Sommariva S. Chemical kinetics of biomass pyrolysis. Energy Fuel. 2008;22(6):4292–300. https://doi.org/10.1021/ef800551t.

    Article  CAS  Google Scholar 

  31. Cuoci A, Faravelli T, Frassoldati A, Granata S, Migliavacca G, Ranzi E. A general mathematical model of biomass devolatilization. Note 1. Lumped kinetic models of cellulose, hemicellulose and lignin. In: Scala F, editor. Proceedings of the 30th combustion meeting of the Italian Section of the Combustion Institute. Milan: ASICI; 2007. p. 2.1–6.

    Google Scholar 

  32. Cuoci A, Faravelli T, Frassoldati A, Granata S, Migliavacca G, Pierucci S. A general mathematical model of biomass devolatilization. Note 2. Detailed kinetics of volatile species. In: Scala F, editor. Proceedings of the 30th combustion meeting of the Italian Section of the Combustion Institute. Milan: ASICI; 2007. p. 3.1–6.

    Google Scholar 

  33. Corbetta M, Frassoldati A, Bennadji H, Smith K, Serapiglia MJ, Gauthier G, Melkior T, Ranzi E, Fisher EM. Pyrolysis of centimeter-scale woody biomass particles: kinetic modeling and experimental validation. Energy Fuel. 2014;28(6):3884–98. https://doi.org/10.1021/ef500525v.

    Article  CAS  Google Scholar 

  34. Ranzi E, Debiagi PEA, Frassoldati A. Mathematical modeling of fast biomass pyrolysis and bio-oil formation. Note I: kinetic mechanism of biomass pyrolysis. ACS Sustain Chem Eng. 2017;5(4):2867–81. https://doi.org/10.1021/acssuschemeng.6b03096.

    Article  CAS  Google Scholar 

  35. Ranzi E, Debiagi PEA, Frassoldati A. Mathematical modeling of fast biomass pyrolysis and bio-oil formation. Note II: secondary gas-phase reactions and bio-oil formation. ACS Sustain Chem Eng. 2017;5(4):2882–96. https://doi.org/10.1021/acssuschemeng.6b03098.

    Article  CAS  Google Scholar 

  36. Debiagi P, Gentile G, Cuoci A, Frassoldati A, Ranzi E, Faravelli T. A predictive model of biochar formation and characterization. J Anal Appl Pyrolysis. 2018;134:326–35. https://doi.org/10.1016/j.jaap.2018.06.022.

    Article  CAS  Google Scholar 

  37. Anca-Couce A, Scharler R. Modelling heat of reaction in biomass pyrolysis with detailed reaction schemes. Fuel. 2017;206:572–9. https://doi.org/10.1016/j.fuel.2017.06.011.

    Article  CAS  Google Scholar 

  38. Anca-Couce A, Obernberger I. Application of a detailed biomass pyrolysis kinetic scheme to hardwood and softwood torrefaction. Fuel. 2016;167:158–67. https://doi.org/10.1016/j.fuel.2015.11.062.

    Article  CAS  Google Scholar 

  39. Rath J, Wolfinger MG, Steiner G, Krammer G, Barontini F, Cozzani V. Heat of wood pyrolysis. Fuel. 2003;82(1):81–91. https://doi.org/10.1016/S0016-2361(02)00138-2.

    Article  Google Scholar 

  40. Blondeau J, Jeanmart H. Biomass pyrolysis at high temperatures: prediction of gaseous species yields from an anisotropic particle. Biomass Bioenergy. 2012;41:107–21. https://doi.org/10.1016/j.biombioe.2012.02.016.

    Article  CAS  Google Scholar 

  41. Mellin P, Kantarelis E, Yang W. Computational fluid dynamics modeling of biomass fast pyrolysis in a fluidized bed reactor, using a comprehensive chemistry scheme. Fuel. 2014;117:704–15. https://doi.org/10.1016/j.fuel.2013.09.009.

    Article  CAS  Google Scholar 

  42. Anca-Couce A, Sommersacher P, Scharler R. Online experiments and modelling with a detailed reaction scheme of single particle biomass pyrolysis. J Anal Appl Pyrolysis. 2017;127:411–25. https://doi.org/10.1016/j.jaap.2017.07.008.

    Article  CAS  Google Scholar 

  43. Norinaga K, Shoji T, Kudo S, Hayashi J-I. Detailed chemical kinetic modelling of vapour-phase cracking of multi-component molecular mixtures derived from the fast pyrolysis of cellulose. Fuel. 2013;103:141–50. https://doi.org/10.1016/j.fuel.2011.07.045.

    Article  CAS  Google Scholar 

  44. Trendewicz A, Evans R, Dutta A, Sykes R, Carpenter D, Braun R. Evaluating the effect of potassium on cellulose pyrolysis reaction kinetics. Biomass Bioenergy. 2015;74:15–25. https://doi.org/10.1016/j.biombioe.2015.01.001.

    Article  CAS  Google Scholar 

  45. Versteeg HK, Malalasekera W. An introduction to computational fluid dynamics: the finite volume method. 3rd ed. Harlow: Pearson Education Ltd.; 2011.

    Google Scholar 

  46. Tu J, Yeoh GH, Liu C. Computational fluid dynamics: a practical approach. 3rd ed. Oxford: Butterworth-Heinemann; 2018.

    Google Scholar 

  47. Childress S. An introduction to theoretical fluid mechanics. New York: AMS and the Courant Institute of Mathematical Sciences; 2009.

    Book  Google Scholar 

  48. Batchelor GK. An introduction to fluid dynamics. Cambridge: Cambridge University Press; 2000. https://doi.org/10.1017/CBO9780511800955.

    Book  Google Scholar 

  49. Whitaker S. Simultaneous heat, mass, and momentum transfer in porous media: a theory of drying. Adv Heat Tran. 1977;13:119–203. https://doi.org/10.1016/S0065-2717(08)70223-5.

    Article  CAS  Google Scholar 

  50. Perré P, Turner IW. A 3-D version of TransPore: a comprehensive heat and mass transfer computational model for simulating the drying of porous media. Int J Heat Mass Transf. 1999;42(24):4501–21. https://doi.org/10.1016/S0017-9310(99)00098-8.

    Article  Google Scholar 

  51. Nasrallah SB, Perre P. Detailed study of a model of heat and mass transfer during convective drying of porous media. Int J Heat Mass Transf. 1988;31(5):957–67. https://doi.org/10.1016/0017-9310(88)90084-1.

    Article  Google Scholar 

  52. Grønli MG (1996) A theoretical and experimental study of thermal degradation of biomass (Ph.D. thesis). NTNU, Trondheim, Norway

    Google Scholar 

  53. Gentile G, Debiagi PEA, Cuoci A, Frassoldati A, Ranzi E, Faravelli T. A computational framework for the pyrolysis of anisotropic biomass particles. Chem Eng J. 2017;321:458–73. https://doi.org/10.1016/j.cej.2017.03.113.

    Article  CAS  Google Scholar 

  54. Jalili M, Anca-Couce A, Zobel N. On the uncertainty of a mathematical model for drying of a wood particle. Energy Fuel. 2013;27(11):6705–17. https://doi.org/10.1021/ef401156s.

    Article  CAS  Google Scholar 

  55. Melaaen MC. Numerical analysis of heat and mass transfer in drying and pyrolysis of porous media. Numer Heat Transf Pt A Appl. 1996;29(4):331–55. https://doi.org/10.1080/10407789608913796.

    Article  CAS  Google Scholar 

  56. Anca-Couce A, Zobel N. Numerical analysis of a biomass pyrolysis particle model: solution method optimized for the coupling to reactor models. Fuel. 2012;97:80–8. https://doi.org/10.1016/j.fuel.2012.02.033.

    Article  CAS  Google Scholar 

  57. Fatehi H, Bai XS. A comprehensive mathematical model for biomass combustion. Combust Sci Technol. 2014;186(4-5):574–93. https://doi.org/10.1080/00102202.2014.883255.

    Article  CAS  Google Scholar 

  58. Shi X (2017) Computational fluid dynamics modelling of biomass slow pyrolysis in screw reactors for the production of biochar and charcoal (Ph.D. Thesis). Ghent University, Ghent

    Google Scholar 

  59. Chan W-CR, Kelbon M, Krieger BB. Modelling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle. Fuel. 1985;64(11):1505–13. https://doi.org/10.1016/0016-2361(85)90364-3.

    Article  CAS  Google Scholar 

  60. Shrestha D, Cramer S, White R. Time-temperature profile across a lumber section exposed to pyrolytic temperatures. Fire Mater. 1994;18(4):211–20. https://doi.org/10.1002/fam.810180404.

    Article  Google Scholar 

  61. Bryden KM, Hagge MJ. Modeling the combined impact of moisture and char shrinkage on the pyrolysis of a biomass particle. Fuel. 2003;82(13):1633–44. https://doi.org/10.1016/S0016-2361(03)00108-X.

    Article  CAS  Google Scholar 

  62. Di Blasi CD, Branca C, Sparano S, La Mantia B. Drying characteristics of wood cylinders for conditions pertinent to fixed-bed countercurrent gasification. Biomass Bioenergy. 2003;25(1):45–58. https://doi.org/10.1016/S0961-9534(02)00180-0.

    Article  Google Scholar 

  63. Peters B, Bruch C. Drying and pyrolysis of wood particles: experiments and simulation. J Anal Appl Pyrolysis. 2003;70(2):233–50. https://doi.org/10.1016/S0165-2370(02)00134-1.

    Article  CAS  Google Scholar 

  64. Haberle I, Haugen NEL, Skreiberg Ø. Drying of thermally thick wood particles: a study of the numerical efficiency, accuracy, and stability of common drying models. Energy Fuel. 2017;31(12):13743–60. https://doi.org/10.1021/acs.energyfuels.7b02771.

    Article  CAS  Google Scholar 

  65. Lu H, Robert W, Peirce G, Ripa B, Baxter LL. Comprehensive study of biomass particle combustion. Energy Fuel. 2008;22(4):2826–39. https://doi.org/10.1021/ef800006z.

    Article  CAS  Google Scholar 

  66. Thunman H, Leckner B, Niklasson F, Johnsson F. Combustion of wood particles—a particle model for eulerian calculations. Combust Flame. 2002;129(1):30–46. https://doi.org/10.1016/S0010-2180(01)00371-6.

    Article  CAS  Google Scholar 

  67. Raznjevic K. Handbook of thermodynamic tables and charts. Washington DC: Hemisphere Publishing; 1976.

    Google Scholar 

  68. Laboratory USFP. The encyclopedia of wood: wood as an engineering material. Agriculture handbook, vol. 72. London: Oak Tree Press; 1980.

    Google Scholar 

  69. Olek W, Perré P, Weres J. Inverse analysis of the transient bound water diffusion in wood. Holzforschung. 2005;59(1):38–45. https://doi.org/10.1515/HF.2005.007.

    Article  CAS  Google Scholar 

  70. Moghtaderi B, Dlugogorski BZ, Kennedy EM, Fletcher DF. Effects of the structural properties of solid fuels on their re-ignition characteristics. Fire Mater. 1999;22(4):155–65. https://doi.org/10.1002/(SICI)1099-1018(1998070)22:4<155::AID-FAM651>3.0.CO;2-F.

    Article  Google Scholar 

  71. Di Blasi C. Multi-phase moisture transfer in the high-temperature drying of wood particles. Chem Eng Sci. 1998;53(2):353–66. https://doi.org/10.1016/S0009-2509(97)00197-8.

    Article  Google Scholar 

  72. Stanish MA, Schajer GS, Kayihan F. A mathematical model of drying for hygroscopic porous media. AIChE J. 1986;32(8):1301–11. https://doi.org/10.1002/aic.690320808.

    Article  CAS  Google Scholar 

  73. Singh B. Biochar - a guide to analytical methods. 1st ed. Melbourne: CRC Press; 2017.

    Book  Google Scholar 

  74. Plötze M, Niemz P. Porosity and pore size distribution of different wood types as determined by mercury intrusion porosimetry. Eur J Wood Wood Prod. 2011;69(4):649–57. https://doi.org/10.1007/s00107-010-0504-0.

    Article  CAS  Google Scholar 

  75. Brewer CE, Chuang VJ, Masiello CA, Gonnermann H, Gao X, Dugan B, Driver LE, Panzacchi P, Zygourakis K, Davies CA. New approaches to measuring biochar density and porosity. Biomass Bioenergy. 2014;66:176–85. https://doi.org/10.1016/j.biombioe.2014.03.059.

    Article  CAS  Google Scholar 

  76. Zauer M, Pfriem A, Wagenführ A. Toward improved understanding of the cell-wall density and porosity of wood determined by gas pycnometry. Wood Sci Technol. 2013;47(6):1197–211. https://doi.org/10.1007/s00226-013-0568-1.

    Article  CAS  Google Scholar 

  77. Brown RA, Kercher AK, Nguyen TH, Nagle DC, Ball WP. Production and characterization of synthetic wood chars for use as surrogates for natural sorbents. Org Geochem. 2006;37(3):321–33. https://doi.org/10.1016/j.orggeochem.2005.10.008.

    Article  CAS  Google Scholar 

  78. Emmett PH. Adsorption and pore-size measurements on charcoals and whetlerites. Chem Rev. 1948;43(1):69–148. https://doi.org/10.1021/cr60134a003.

    Article  CAS  PubMed  Google Scholar 

  79. Zelinka SL, Glass SV, Jakes JE, Stone DS. A solution thermodynamics definition of the fiber saturation point and the derivation of a wood–water phase (state) diagram. Wood Sci Technol. 2016;50(3):443–62. https://doi.org/10.1007/s00226-015-0788-7.

    Article  CAS  Google Scholar 

  80. Gezici-Koç Ö, Erich SJF, Huinink HP, van der Ven LGJ, Adan OCG. Bound and free water distribution in wood during water uptake and drying as measured by 1D magnetic resonance imaging. Cellulose. 2017;24(2):535–53. https://doi.org/10.1007/s10570-016-1173-x.

    Article  CAS  Google Scholar 

  81. Stamm AJ. Review of nine methods for determining the fiber saturation points of wood and wood products. Wood Sci. 1971;4:114–28.

    Google Scholar 

  82. Skaar C. Wood-water relations, vol IV. Springer series in wood science. 1st ed. Berlin: Springer; 1988.

    Google Scholar 

  83. Stamm AJ, Seborg RM. Absorption compression on cellulose and wood: I density measurements in benzene. J Phys Chem. 1935;39(1):133–42. https://doi.org/10.1021/j150361a010.

    Article  CAS  Google Scholar 

  84. Siau JF. Transport processes in wood. Springer series in wood science. Berlin: Springer; 1984.

    Book  Google Scholar 

  85. Spolek GA, Plumb OA. Capillary pressure in softwoods. Wood Sci Technol. 1981;15(3):189–99. https://doi.org/10.1007/BF00353471.

    Article  Google Scholar 

  86. Perré P, Degiovanni A. Simulation par volumes finis des transferts couplés en milieux poreux anisotropes: séchage du bois à basse et à haute température. Int J Heat Mass Transf. 1990;33(11):2463–78. https://doi.org/10.1016/0017-9310(90)90004-E.

    Article  Google Scholar 

  87. Lee CK, Chaiken RF, Singer JM. Charring pyrolysis of wood in fires by laser simulation. Symp Combust. 1977;16(1):1459–70. https://doi.org/10.1016/S0082-0784(77)80428-1.

    Article  Google Scholar 

  88. Comstock GL. Directional permeability of softwoods. Wood Fiber Sci. 1970;4(1):283–9.

    Google Scholar 

  89. Perré P. Measurements of softwoods’ permeability to air: Importance upon the drying model. Int Commun Heat Mass Transf. 1987;14(5):519–29. https://doi.org/10.1016/0735-1933(87)90016-9.

    Article  Google Scholar 

  90. Turner IW, Perré P. Vacuum drying of wood with radiative heating: II. Comparison between theory and experiment. AIChE J. 2004;50(1):108–18. https://doi.org/10.1002/aic.10010.

    Article  CAS  Google Scholar 

  91. Di Blasi C. Heat, momentum and mass transport through a shrinking biomass particle exposed to thermal radiation. Chem Eng Sci. 1996;51(7):1121–32. https://doi.org/10.1016/S0009-2509(96)80011-X.

    Article  Google Scholar 

  92. Di Blasi C. Modelling the fast pyrolysis of cellulosic particles in fluid-bed reactors. Chem Eng Sci. 2000;55(24):5999–6013. https://doi.org/10.1016/S0009-2509(00)00406-1.

    Article  Google Scholar 

  93. Larfeldt J, Lecher B, Melaaen MC. Modelling and measurements of drying and pyrolysis of large wood particles. In: Bridgwater AV, editor. Progress in thermochemical biomass conversion. Oxford: Blackwell Science Ltd; 2000. https://doi.org/10.1002/9780470694954.ch85.

    Chapter  Google Scholar 

  94. Ronewicz K, Kluska J, Heda Ł, Kardaś D. Chemical and physical properties of pine wood during pyrolysis. Drvna Ind. 2017;68(1):29–36. https://doi.org/10.5552/drind.2017.1617.

    Article  Google Scholar 

  95. Perré P, Turner IW. A dual-scale model for describing drier and porous medium interactions. AIChE J. 2006;52(9):3109–17. https://doi.org/10.1002/aic.10918.

    Article  CAS  Google Scholar 

  96. Couture F, Jomaa W, Puiggali JR. Relative permeability relations: a key factor for a drying model. Transp Porous Media. 1996;23(3):303–35. https://doi.org/10.1007/BF00167101.

    Article  CAS  Google Scholar 

  97. Perré P, Moser M, Martin M. Advances in transport phenomena during convective drying with superheated steam and moist air. Int J Heat Mass Transf. 1993;36(11):2725–46. https://doi.org/10.1016/0017-9310(93)90093-L.

    Article  Google Scholar 

  98. Perré P, Turner I. Determination of the material property variations across the growth ring of softwood for use in a heterogeneous drying model. Part 2. Use of homogenisation to predict bound liquid diffusivity and thermal conductivity. Holzforschung. 2001;55:417–25. https://doi.org/10.1515/HF.2001.069.

    Article  Google Scholar 

  99. Stamm AJ. Wood and cellulose science. New York: Ronald Press Co.; 1964.

    Google Scholar 

  100. Perré P, Turner I. Determination of the material property variations across the growth ring of softwood for use in a heterogeneous drying model part 1. Capillary pressure, tracheid model and absolute permeability. Holzforschung. 2001;55:318–23. https://doi.org/10.1515/HF.2001.052.

    Article  Google Scholar 

  101. Bird RB, Stewart WE, Lightfoot EN. Transport phenomena. 2nd ed. New York: Wiley; 2006.

    Google Scholar 

  102. Poling BE, Prausnitz JM, O'Connell JP. The properties of gases and liquids. Boston: McGraw-Hill; 2007.

    Google Scholar 

  103. Atreya A, Olszewski P, Chen Y, Baum HR. The effect of size, shape and pyrolysis conditions on the thermal decomposition of wood particles and firebrands. Int J Heat Mass Transf. 2017;107:319–28. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.051.

    Article  CAS  Google Scholar 

  104. Janse AMC, Westerhout RWJ, Prins W. Modelling of flash pyrolysis of a single wood particle. Chem Eng Process. 2000;39(3):239–52. https://doi.org/10.1016/S0255-2701(99)00092-6.

    Article  CAS  Google Scholar 

  105. Bruggeman DAG. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Phys. 1935;416(7):636–64. https://doi.org/10.1002/andp.19354160705.

    Article  Google Scholar 

  106. Millington RJ, Quirk JP. Permeability of porous solids. Trans Faraday Soc. 1961;57:1200–7. https://doi.org/10.1039/TF9615701200.

    Article  CAS  Google Scholar 

  107. Stanish MA. The roles of bound water chemical potential and gas phase diffusion in moisture transport through wood. Wood Sci Technol. 1986;20(1):53–70. https://doi.org/10.1007/BF00350694.

    Article  CAS  Google Scholar 

  108. Bonneau P, Puiggali JR. Influence of heartwood-sapwood proportions on the drying kinetics of a board. Wood Sci Technol. 1993;28(1):67–85. https://doi.org/10.1007/BF00193878.

    Article  Google Scholar 

  109. Fernandez ML, Howell JR. Convective drying model of southern pine. Dry Technol. 1997;15(10):2343–75. https://doi.org/10.1080/07373939708917365.

    Article  Google Scholar 

  110. Dupont C, Chiriac R, Gauthier G, Toche F. Heat capacity measurements of various biomass types and pyrolysis residues. Fuel. 2014;115:644–51. https://doi.org/10.1016/j.fuel.2013.07.086.

    Article  CAS  Google Scholar 

  111. Gorensek MB, Shukre R, Chen C-C. Development of a thermophysical properties model for flowsheet simulation of biomass pyrolysis processes. ACS Sustain Chem Eng. 2019;7(9):9017–27. https://doi.org/10.1021/acssuschemeng.9b01278.

    Article  CAS  Google Scholar 

  112. Hunt JF, Gu H, Lebow P. Theoretical thermal conductivity equation for uniform density wood cells. Wood Fiber Sci. 2008;40(2):167–80.

    CAS  Google Scholar 

  113. WebBook NC (2018). https://webbook.nist.gov/chemistry/

  114. McBride BJ, Gordon S. Computer program for calculation of complex chemical equilibrium compositions and applications II. User’s manual and program description. Cleveland: NASA, Lewis Research Center; 1996.

    Google Scholar 

  115. Davidson TA (1993) A simple and accurate method for calculating viscosity of gaseous mixtures. Report of Investigations 9456 US Dept. of the Interior, Bureau of Mines, Pittsburgh

    Google Scholar 

  116. de Paiva Souza MEN, S. A. Heat and mass transfer model in wood chip drying. Wood Fiber Sci. 2000;32(2):153–63.

    Google Scholar 

  117. Williams CL, Westover TL, Petkovic LM, Matthews AC, Stevens DM, Nelson KR. Determining thermal transport properties for softwoods under pyrolysis conditions. ACS Sustain Chem Eng. 2017;5(1):1019–25. https://doi.org/10.1021/acssuschemeng.6b02326.

    Article  CAS  Google Scholar 

  118. Rumble JR, Lide DR, Bruno TJ. CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. 99th ed. Boca Raton: CRC Press; 2018.

    Google Scholar 

  119. Maku T. Studies on the heat conduction in wood, Wood research bulletin, vol. 13. Kyoto: Japan Wood Research Institute, Kyoto University; 1954.

    Google Scholar 

  120. Suleiman BM, Larfeldt J, Leckner B, Gustavsson M. Thermal conductivity and diffusivity of wood. Wood Sci Technol. 1999;33(6):465–73. https://doi.org/10.1007/s002260050130.

    Article  CAS  Google Scholar 

  121. Behazin E. Mechanical, chemical and physical properities of wood and perennial grass biochars for possible composite aplication. Bioresources. 2016;11(1):1334–48.

    CAS  Google Scholar 

  122. Yaws CL. Handbook of transport property data: viscosity, thermal conductivity, and diffusion coefficients of liquids and gases. Houston: Gulf Pub. Co.; 1995.

    Google Scholar 

  123. Vargaftik NB. Handbook of thermal conductivity of liquids and gases. Boca Raton: CRC Press; 1994.

    Google Scholar 

  124. Zaitseva LS, Yakush LV, Vanicheva NA. Thermal conductivities of benzene and toluene vapors. J Eng Phys. 1976;31(5):1292–5. https://doi.org/10.1007/BF00859307.

    Article  Google Scholar 

  125. Panton RL, Rittmann JG. Pyrolysis of a slab of porous material. Symp Combust. 1971;13(1):881–91. https://doi.org/10.1016/S0082-0784(71)80089-9.

    Article  Google Scholar 

  126. Olek W, Weres J, Guzenda R. Effects of thermal conductivity data on accuracy of modeling heat transfer in wood. Holzforschung. 2003;57:3. https://doi.org/10.1515/HF.2003.047.

    Article  Google Scholar 

  127. Thunman H, Leckner B. Thermal conductivity of wood—models for different stages of combustion. Biomass Bioenergy. 2002;23(1):47–54. https://doi.org/10.1016/S0961-9534(02)00031-4.

    Article  CAS  Google Scholar 

  128. Kollmann FFP, Côté WA. Principles of wood science and technology: I. Solid wood. Berlin: Springer; 1968. https://doi.org/10.1007/978-3-642-87928-9.

    Book  Google Scholar 

  129. Caposciutti G, Almuina-Villar H, Dieguez-Alonso A, Gruber T, Kelz J, Desideri U, Hochenauer C, Scharler R, Anca-Couce A. Experimental investigation on biomass shrinking and swelling behaviour: particles pyrolysis and wood logs combustion. Biomass Bioenergy. 2019;123:1–13. https://doi.org/10.1016/j.biombioe.2019.01.044.

    Article  CAS  Google Scholar 

  130. Bellais M (2007) Modelling of the pyrolysis of large wood particles (Ph.D. Thesis). KTH - Royal Institute of Technology, Stockholm, Sweden

    Google Scholar 

  131. Perré P (1999) How to get a relevant material model for wood drying simulation? In: First COST Action E15, 1st Workshop “State of the art for Kiln drying”. Advances in the drying of wood (1999-2003), Edinburgh, Scotland

    Google Scholar 

  132. Pattanotai T, Watanabe H, Okazaki K. Gasification characteristic of large wood chars with anisotropic structure. Fuel. 2014;117:331–9. https://doi.org/10.1016/j.fuel.2013.09.030.

    Article  CAS  Google Scholar 

  133. Davidsson KO, Pettersson JBC. Birch wood particle shrinkage during rapid pyrolysis. Fuel. 2002;81(3):263–70. https://doi.org/10.1016/S0016-2361(01)00169-7.

    Article  CAS  Google Scholar 

  134. Çengel YA, Ghajar AJ, Kanoglu M. Heat and mass transfer: fundamentals and Applications. 5th ed. New York: McGraw-Hill Education; 2014.

    Google Scholar 

  135. Botterill JSM. Heat transfer to gas-fluidized beds. Powder Technol. 1970;4(1):19–26. https://doi.org/10.1016/0032-5910(70)80003-1.

    Article  Google Scholar 

  136. Holman JP. Heat transfer (metric version). 10th ed. Boston: McGraw-Hill; 2009.

    Google Scholar 

  137. Di Natale F, Lancia A, Nigro R. Surface-to-bed heat transfer in fluidised beds: effect of surface shape. Powder Technol. 2007;174(3):75–81. https://doi.org/10.1016/j.powtec.2007.01.010.

    Article  CAS  Google Scholar 

  138. Di Natale F, Lancia A, Nigro R. A single particle model for surface-to-bed heat transfer in fluidized beds. Powder Technol. 2008;187(1):68–78. https://doi.org/10.1016/j.powtec.2008.01.014.

    Article  CAS  Google Scholar 

  139. Di Natale F, Nigro R. A critical comparison between local heat and mass transfer coefficients of horizontal cylinders immersed in bubbling fluidised beds. Int J Heat Mass Transf. 2012;55(25):8178–83. https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.002.

    Article  CAS  Google Scholar 

  140. Prins W (1987) Fluidized bed combustion of a single carbon particle (Ph.D. Thesis). University of Twente, Enschede

    Google Scholar 

  141. Babu BV, Chaurasia AS. Pyrolysis of biomass: improved models for simultaneous kinetics and transport of heat, mass and momentum. Energy Convers Manag. 2004;45(9):1297–327. https://doi.org/10.1016/j.enconman.2003.09.013.

    Article  CAS  Google Scholar 

  142. Schröder E, Class A, Krebs L. Measurements of heat transfer between particles and gas in packed beds at low to medium Reynolds numbers. Exp Thermal Fluid Sci. 2006;30(6):545–58. https://doi.org/10.1016/j.expthermflusci.2005.11.002.

    Article  Google Scholar 

  143. Kersten SRA, Wang X, Prins W, van Swaaij WPM. Biomass pyrolysis in a fluidized bed reactor. Part 1: literature review and model simulations. Ind Eng Chem Res. 2005;44(23):8773–85. https://doi.org/10.1021/ie0504856.

    Article  CAS  Google Scholar 

  144. Sakai M. How should the discrete element method be applied in industrial systems? A review. KONA Powder Part J. 2016;33:169–78. https://doi.org/10.14356/kona.2016023.

    Article  Google Scholar 

  145. Kloss C, Goniva C, Aichinger G, Pirker S (2009) Comprehensive DEM-DPM-CFD simulations-model synthesis, experimental validation and scalability. In: 7th International Conference on CFD in the Minerals and Process Industries, Melbourne, Australia. pp 1–7

    Google Scholar 

  146. Mettler MS, Mushrif SH, Paulsen AD, Javadekar AD, Vlachos DG, Dauenhauer PJ. Revealing pyrolysis chemistry for biofuels production: conversion of cellulose to furans and small oxygenates. Energy Environ Sci. 2012;5(1):5414–24. https://doi.org/10.1039/C1EE02743C.

    Article  CAS  Google Scholar 

  147. Paulsen AD, Mettler MS, Dauenhauer PJ. The role of sample dimension and temperature in cellulose pyrolysis. Energy Fuel. 2013;27(4):2126–34. https://doi.org/10.1021/ef302117j.

    Article  CAS  Google Scholar 

  148. Pyle DL, Zaror CA. Heat transfer and kinetics in the low temperature pyrolysis of solids. Chem Eng Sci. 1984;39(1):147–58. https://doi.org/10.1016/0009-2509(84)80140-2.

    Article  CAS  Google Scholar 

  149. Mehrabian R, Zahirovic S, Scharler R, Obernberger I, Kleditzsch S, Wirtz S, Scherer V, Lu H, Baxter LL. A CFD model for thermal conversion of thermally thick biomass particles. Fuel Process Technol. 2012;95:96–108. https://doi.org/10.1016/j.fuproc.2011.11.021.

    Article  CAS  Google Scholar 

  150. Villermaux J, Antoine B, Lede J, Soulignac F. A new model for thermal volatilization of solid particles undergoing fast pyrolysis. Chem Eng Sci. 1986;41(1):151–7. https://doi.org/10.1016/0009-2509(86)85208-3.

    Article  CAS  Google Scholar 

  151. Wurzenberger JC, Wallner S, Raupenstrauch H, Khinast JG. Thermal conversion of biomass: comprehensive reactor and particle modeling. AIChE J. 2004;48(10):2398–411. https://doi.org/10.1002/aic.690481029.

    Article  Google Scholar 

  152. Mahmoudi AH, Hoffmann F, Peters B. Detailed numerical modeling of pyrolysis in a heterogeneous packed bed using XDEM. J Anal Appl Pyrolysis. 2014;106:9–20. https://doi.org/10.1016/j.jaap.2013.12.001.

    Article  CAS  Google Scholar 

  153. Anca-Couce A, Zobel N, Jakobsen HA. Multi-scale modeling of fixed-bed thermo-chemical processes of biomass with the representative particle model: Application to pyrolysis. Fuel. 2013;103:773–82. https://doi.org/10.1016/j.fuel.2012.05.063.

    Article  CAS  Google Scholar 

  154. Xiong Q, Yang Y, Xu F, Pan Y, Zhang J, Hong K, Lorenzini G, Wang S. Overview of computational fluid dynamics simulation of reactor-scale biomass pyrolysis. ACS Sustain Chem Eng. 2017;5(4):2783–98. https://doi.org/10.1021/acssuschemeng.6b02634.

    Article  CAS  Google Scholar 

  155. Subramaniam S. Lagrangian–Eulerian methods for multiphase flows. Prog Energy Combust Sci. 2013;39(2):215–45. https://doi.org/10.1016/j.pecs.2012.10.003.

    Article  Google Scholar 

  156. Ku X, Li T, Løvås T. Influence of drag force correlations on periodic fluidization behavior in Eulerian–Lagrangian simulation of a bubbling fluidized bed. Chem Eng Sci. 2013;95:94–106. https://doi.org/10.1016/j.ces.2013.03.038.

    Article  CAS  Google Scholar 

  157. Ku X, Li T, Løvås T. CFD–DEM simulation of biomass gasification with steam in a fluidized bed reactor. Chem Eng Sci. 2015;122:270–83. https://doi.org/10.1016/j.ces.2014.08.045.

    Article  CAS  Google Scholar 

  158. Xie J, Zhong W, Jin B, Shao Y, Huang Y. Eulerian–Lagrangian method for three-dimensional simulation of fluidized bed coal gasification. Adv Powder Technol. 2013;24(1):382–92. https://doi.org/10.1016/j.apt.2012.09.001.

    Article  CAS  Google Scholar 

  159. Funke A, Grandl R, Ernst M, Dahmen N. Modelling and improvement of heat transfer coefficient in auger type reactors for fast pyrolysis application. Chem Eng Process. 2018;130:67–75. https://doi.org/10.1016/j.cep.2018.05.023.

    Article  CAS  Google Scholar 

  160. Jurtz N, Kraume M, Wehinger Gregor D. Advances in fixed-bed reactor modeling using particle-resolved computational fluid dynamics (CFD). Rev Chem Eng. 2018;35:139–90. https://doi.org/10.1515/revce-2017-0059.

    Article  Google Scholar 

Download references

Acknowledgements

Work made within the Greencarbon Project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 721991.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederik Ronsse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maziarka, P., Ronsse, F., Anca-Couce, A. (2020). Review on Modelling Approaches Based on Computational Fluid Dynamics for Biomass Pyrolysis Systems. In: Fang, Z., Smith Jr, R.L., Xu, L. (eds) Production of Biofuels and Chemicals with Pyrolysis. Biofuels and Biorefineries, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-15-2732-6_13

Download citation

Publish with us

Policies and ethics