Skip to main content
Log in

The roles of bound water chemical potential and gas phase diffusion in moisture transport through wood

  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Summary

A mechanistic description and quantitative mathematical expressions are developed for the net migration rate through wood of water in the bound and vapor phases. Diffusion of bound water is driven by the gradient in the chemical potential of the bound water molecules while water vapor diffusion is driven, by the gradient in the mole fraction of water in the gas phase. Vapor and bound water are assumed always to be in local thermodynamic equilibrium. An original mathematical derivation grounded on fundamental thermodynamic relationships is applied to the bound water chemical potential in order to express the rate of bound water diffusion in terms of only the local temperature and water vapor pressure. Published experiments on nonisothermal moisture migration rates in wood are compared to the solutions of this equation and also others which have been recently proposed in the literature. Results from the equation developed in this paper are in closest agreement with the reported experimental data. This success may be attributed both to the thermodynamically correct expression derived for bound water chemical potential and to recognition of the important contribution of gas phase diffusion to total moisture migration rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CP :

heat capacity, J/mole-K

c:

molar density, moles/m3

Db :

thermal diffusion coefficient, %db/K

Dv :

vapor diffusion coefficient, kg/m-s-Pa

D eff :

effective gas diffusivity, m2/s

D b (1) :

bound water diffusion coefficient, kg/s-m3

D b (2) :

bound water diffusion coefficient, kg/s-%db

D b (3) :

bound water diffusion coefficient, kg/s-%db

D b (4) :

bound water diffusion coefficient, kg/s-%db

D μ :

bound water diffusion coefficient, kg-s/m3

Eb :

activation energy for bound water diffusion, cal/mole

EL :

difference between molar heat of vaporization of bound water and that of free water, J/mole

F:

flux, kg/m2-s

fA :

mole fraction, dimensionless

H:

molar enthalpy, J/mole

h:

relative humidity, %

J:

flux, kg/m2-s

K′:

conductivity coefficient, kg/m-s-atm

KM :

bound water conductivity coefficient, kg/m-s-%db

K′M :

bound water conductivity coefficient, kg/m-s-%db

Kμ :

conductivity coefficient, mole-s/m3

M:

moisture content, %db

mv :

molecular weight, kg/mole

NA :

molar flux of component A, moles/m2-s

NB :

molar flux of component B, moles/m2-s

nb :

flux of bound water, kg/m2-s

nv:

flux of water vapor, kg/m2-s

P:

water vapor pressure, Pa

Pt :

total gas pressure, Pa

Q* :

thermal heat of transfer, atm

R:

gas constant, J/mole-K (or cal/mole-K)

S:

molar entropy, J/mole-K

T:

temperature, K

V:

molar volume, m3/mole

x:

spatial coordinate, m

α:

attenuation factor for vapor diffusivity in wood, dimensionless

ε:

void fraction of wood, dimensionless

μ:

chemical potential, J/mole

μ′:

chemical potential, atm

μb :

chemical potential, J/kg

μv :

chemical potential, J/kg

μ 01 :

chemical potential of water vapor at the saturated pressure at temperature T, J/mole

References

  • Babbitt, J. D. 1977a: Letter to the editor. Wood Sci. 9(4): 149–152

    Google Scholar 

  • Babbitt, J. D. 1977b: Letter to the editor. Wood Sci. 10 (2): 53–54

    Google Scholar 

  • Biggerstaff, T. 1965: Drying diffusion coefficients in wood as affected by temperature. Forest Prod. J. 15 (3): 127–133

    Google Scholar 

  • Bird, R. B.; Stewart, W. E.; Lightfoot, E. N. 1960: Transport phenomena; p. 502. New York: Wiley

    Google Scholar 

  • Bramhall, G. 1976a: Fick's laws and bound-water diffusion, Wood Sci. 8 (3): 153–161

    Google Scholar 

  • Bramhall, G. 1976b: Letter to the editor. Wood Sci. 9 (1): 3–6

    Google Scholar 

  • Bramhall, G. 1977: Letter to the editor. Wood Sci. 9 (4): 152–153

    Google Scholar 

  • Bramhall, G. 1979: Sorption diffusion in wood. Wood Sci. 12 (1): 3–13

    Google Scholar 

  • Choong, E. T. 1963: Movement of moisture through a softwood in the hygroscopic range. Forest Prod. J. 13 (11): 489–498

    Google Scholar 

  • Comstock, G. L. 1963: Moisture diffusion coefficients in wood as calculated from adsorption, desorption, and steady state data. Forest Prod. J. 13 (3): 97–103

    Google Scholar 

  • Kawai, S.; Nakato, K.; Sahoh, T. 1978: Moisture movement in wood below the fiber saturation point. Mokuzai Gakkaishi 24 (5): 273–280

    Google Scholar 

  • McNamara, W. S.; Hart, C. A. 1971: An analysis of interval and average diffusion coefficients for unsteady-state movement of moisture in wood. Wood Sci. 4 (1): 37–45

    Google Scholar 

  • Moore, W. J. 1972: Physical chemistry; p. 111, 191. Englewood Cliffs, NJ: Prentice Hall

    Google Scholar 

  • Rosen, H. N. 1976: Letter to the editor. Wood Sci. 9 (1): 1–3

    Google Scholar 

  • Siau, J. F. 1971: Flow in wood; p. 90. Syracuse: Syracuse University Press

    Google Scholar 

  • Siau, J. F. 1980: Nonisothermal moisture movement in wood. Wood Sci. 13 (1): 11–13

    Google Scholar 

  • Siau, J. F. 1983: Chemical potential as a driving force for nonisothermal moisture movement in wood. Wood Sci. Technol. 17: 101–105

    Google Scholar 

  • Siau, J. F.; Babiak, M. 1983: Experiments on nonisothermal moisture movement in wood. Wood Fib. Sci. 15 (1): 40–46

    Google Scholar 

  • Simpson, W. T. 1971: Equilibrium moisture content prediction for wood. Forest Prod. J. 21 (5): 48–49

    Google Scholar 

  • Skaar, C. 1954: Analysis of methods for determining the coefficient of moisture diffusion in wood. Forest Prod. J. 4 (6): 403–410

    Google Scholar 

  • Skaar, C.; Siau, J. F. 1981: Thermal diffusion of bound water in wood. Wood Sci. Technol. 15: 105–112

    Google Scholar 

  • Stamm, A. J. 1959: Bound-water diffusion into wood in the fiber direction. Forest Prod. J. 9 (1): 27–32

    Google Scholar 

  • Stamm, A. J. 1960: Bound-water diffusion into wood in across-the-fiber directions. Forest Prod. J. 10: (10), 524–528

    Google Scholar 

  • Voigt, H.; Krischer, O.; Schauss, H. 1940: Die Feuchtigkeitsbewegung bei der Verdunstungs-trocknung von Holz. Holz Roh-Werkstoff 3 (10): 305–321

    Google Scholar 

  • Wengert, E. M. 1977: Letter to the editor. Wood Sci. 10 (2): 53

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanish, M.A. The roles of bound water chemical potential and gas phase diffusion in moisture transport through wood. Wood Sci.Technol. 20, 53–70 (1986). https://doi.org/10.1007/BF00350694

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00350694

Keywords

Navigation