Skip to main content
Log in

Influence of heartwood-sapwood proportions on the drying kinetics of a board

  • Originals
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Summary

Several properties have been measured for pinewood samples, corresponding to the region within the heartwood or the sapwood, with the aim of treating wood as a heterogeneous medium when modelling the drying process. A two driving-force model is used to compare a homogeneous and a heterogeneous approach to the drying of a pinewood board. The main difference between the two theoretical descriptions is a specific boundary condition for the inter-region, which may generate jumps of the moisture content fields. Experimental and numerical results are presented and some comments are made concerning the use of the heterogeneous model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

surface area of the inter-region m2

C:

vapour mass-fraction kg/kg of humid air

Cp :

heat capacity J/kg/K

D w :

effective transport coefficient relative to a moisture gradient m2/s

D T :

effective transport coefficient relative to a temperature gradient m2/s

e:

thickness of the board m

f :

restraint factor for the gas phase diffusion

Fm :

mass-flux kg/m2/s

hC :

convective mass-transfer coefficient m/s

hT :

convective heat-transfer coefficient W/m2/K

H:

heat of vaporization J/kg

HB :

heat of desorption J/kg

\(\vec J_B\) :

flux density for the bound water flow kg/m2/s

\(\vec J\) :

flux density for the free water flow kg/m2/s

k:

intrinsic permeability m2

kr :

relative permeability

KB :

bound water evaporation rate per unit volume kg/m3/s

K:

liquid water evaporation rate per unit volume kg/m3/s

\(\vec n\) :

external vector

Pc :

Capillary pressure Pa

RH :

relative humidity of the drying air%

S:

liquid saturation

T:

temperature K

T :

dry bulb temperature of the drying air K

T∞h :

wet bulb temperature of the drying air K

t:

time s, h

V:

volume m3

W:

moisture content dry base

x:

space coordinate m

λ:

thermal conductivity W/m/K

ρ:

density kg/m3

Φ:

volume fraction%

μ:

viscosity N.s/m2

B:

relative to the bound water

eq:

related to an equilibrium stage (sorption isotherms)

exp:

related to an experiment (Figs. 7, 8, 11)

cri:

related to the relative permeability

FSP:

related to the fibre saturation point

G:

relative to the gas phase

hw:

relative to the heartwood

ini:

related to the initial state, fresh cut moisture content

irr:

relative to the end of the capillary flow

L:

relative to the liquid, free water

mat:

relative to the material (sum of all the active phases)

S:

relative to the dry bone state

sw:

relative to the sapwood

surf:

related to the product exposed surface

T:

relative to a temperature gradient

W:

relative to a moisture gradient

∞:

relative to the drying air

dash :

average value relative to the whole piece

{}:

homogeneous modelling

References

  • Bonneau, P.: Modélisation du séchage d'un matériau hétérogène: Application à un bois de résineux, Thèse de l'Université Bordeaux 1, n∘ 622, France, 1991

  • Bonneau, P.; Quintard, M.; Puiggali, J. R.: Drying of a hygroscopic heterogeneous material: experimental and numerical studies. C. R. Acad. Sci. Paris, t. 313, Série II, 873–879, 1991

    Google Scholar 

  • Bourgeat, A.; Quintard, M.; Whitaker, S.: Eléments de comparaison entre la méthode d'homogénéisation et la méthode de prise de moyenne avec fermeture. C. R. Acad. Sci. Paris, t. 306, Série II, 463–466, 1988

    Google Scholar 

  • Collignan, A.: Elaboration et utilisations d'une cinétique de séchage; application au pin maritime. pmThèse de l'Université Bordeaux 1, n∘ 192, France, 1988

  • Kaviany, M.: Principles of Heat Transfer in Porous Media, Mechanical Engineering Series, Springer-Verlag, Berlin, 1991

    Google Scholar 

  • Lartigue, C.: Mécanismes élémentaires mis en jeu lors du séchage du pin maritime, Thèse de l'Université Bordeaux 1, n∘ 115, France, 1987

  • Lartigue, C.I.; Puiggali, J. R.: Caractéristiques du pin des landes nécessaires à la compréhension des phénomènes de séchage. Actes du 2 Coll. Sciences et Industries du bois, T 2, 57–64, ARBOLOR Ed., Nancy, (F) 1987

    Google Scholar 

  • Michel, D.; Quintard, M.; Puiggali, J. R.: Experimental and numerical study of Pine wood drying at low temperature, Drying'87, 185–194, A.S MUJUMDAR Ed., HPC, 1987

  • Perre, P.; Degiovanni, A.: Simulations par volumes finis des transferts couplés en milieu poreux anisotropes: séchage du bois à basse et à haute température. Int. J. Heat and Mass Transfer 33(11) 2463–2478, 1990

    Google Scholar 

  • Plumb, O. A.; Brown, C. A.; Olmstead, B. A.: Heat and mass transfer in wood during drying. Int. J. Heat and Mass Transfer, 28, 9, 1669–1678, 1985

    Google Scholar 

  • Plumb, O. A.; Brown, C. A.; Olmstead, B. A.: Experimental measurements of heat and mass transfer during convective drying of southern pine. Wood Sci. Technol., 18, 187–204, 1984

    Google Scholar 

  • Puiggali, J. R.; Quintard, M.: A detailed characterization at the growth ring scale of a pinewood. C. R. Acad. Sci. Paris, t. 310, Série II, 1719–1724, 1990

    Google Scholar 

  • Puiggali, J. R.; Quintard, M.: Properties and simplifying assumptions for classical drying models. Advances in Drying, vol. 5, 109–143, Hemisphere Publishing Corporation, New York, 1992

    Google Scholar 

  • Puiggali, J. R.; Quintard, M.; Whitaker, S.: Drying granular porous media: Gravitational effects and the role of diffusion models. Drying Technology, 4(6), 601–629, 1988

    Google Scholar 

  • Quintard, M.; Whitaker, S.: Ecoulement monophasique en milieu poreux: effet des hétérogénéités locales, J. Méca. Théo, et Appliquée, 6(5), 691–726, 1987

    Google Scholar 

  • Quintard, M.; Whitaker, S.: Two-phase flow in heterogeneous porous media: the method of large-scale averaging, Transport in Porous Media, 3, 357–413, 1988

    Google Scholar 

  • Quintard, M.; Whitaker, S.: Two-phase flow in heterogeneous porous media: the influence of large spatial and temporel gradients, Transport in Porous Media 5, 429–472, 1989

    Google Scholar 

  • Quintard, M.; Whitaker, S.: One and Two-Equation Models for Transient Diffusion Processes, Advances in Heat Transfer 23, 369–464, 1993

    Google Scholar 

  • Salin, J. G.: Simulation of the timber drying process. Prediction of moisture and quality changes. Thesis for the degree of Doctor of Technology, Abo Akademi, Filand, 1990

    Google Scholar 

  • Sanchez-Palencia, E.: Non homogeneous media and vibration theory. Lectures Notes in Physics 127, Springer, Berlin, 1980

    Google Scholar 

  • Stanish, M. A.; Schajer, G. S.; Kayihan, F.: A mathematical modeling of drying for hygroscopic porous media. AIChE, 32(8), pp 1301–1311, 1986

    Google Scholar 

  • Tesoro, F. O.; Choong, E. T.; Kimbler, O. K.: Relative permeability and the gross pore structure of wood. Wood and Fiber 6(3), 226–236, 1974

    Google Scholar 

  • Whitaker, S.: Simultaneous Heat, Mass and Momentum Transfer in Porous Medium: A Theory of Drying, in Advances in Heat Transfer, 13, 119–203, 1977

    Google Scholar 

  • Whitaker, S.: Improved constraints for the principle of local thermal equilibrium, Industrial and Engineering Chemistry Res, 30, 983–997, 1991

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonneau, P., Puiggali, JR. Influence of heartwood-sapwood proportions on the drying kinetics of a board. Wood Sci.Technol. 28, 67–85 (1993). https://doi.org/10.1007/BF00193878

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00193878

Keywords

Navigation