Skip to main content

Endophytic Fungi for a Sustainable Production of Major Plant Bioactive Compounds

  • Chapter
  • First Online:
Plant-derived Bioactives

Abstract

Plants are the major resource for obtaining biologically active constituents. However, the heavy demand for these bioactives and its derivatives cannot be met by the natural sources, which is the major drawback. Alternatives, including the use of endophytes have to be utilized for the mass production of these bioactive agents. ‘Endophytes’ can be defined as organisms, which have the capability to form colonisation inside the plant tissue. Almost all plants harbour one or other bacteria or fungi in their tissues. Fungal endophytes belong to Ascomycetes and anamorphic fungi. They are generally associated with the plant tissues with or without generating harmful effects to the host. Endophytes are sometimes beneficial to the host plants by interfering with the pathogenic organisms. The interaction of fungal endophytes with host plants is one of the best environmentally friendly approaches in the augmented production of plant metabolites. The fungal endophytes have a broad level of applications in medicine, agriculture, pharmacy and industries by enhancing the host plant’s anticancer, antimicrobial and cytotoxic potentials by stimulation of the biosynthesis of major phytoconstituents. The major biotechnological application of fungal endophytes is their capability to augment the production of anticancer principles in medicinal plants. The major compounds in chemotherapeutic field include vinblastine, vincristine, podophyllotoxin, paclitaxel, docetaxel, camptothecin, topotecan, curcumin and silymarin that can be enhanced by fungal endophytes. The major antimicrobial compounds include terpenoids, essential oils, phenolics, polyphenols and alkaloids. The enhancement of active principles responsible for the antiproliferative potential by the fungal endophytes has been reported from different plant sources. Due to overexploitation, most of the plants with medicinal and industrial importance have been declared as endangered or vulnerable. In the future, endophytic fungi could be a suitable alternative for the enhanced biosynthesis of bioactives from plants, which in turn mitigate the overexploitation of economically important plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Ashaal HAA, Hasan MM, Fayad W, El-Bendary MAE (2018) Research article prospective role of Solanum cultures in producing bioactive agents against melanoma, breast, hematologic carcinomas cell lines and associated microbiome. J Biol Sci. https://doi.org/10.3923/jbs.2018.297.306

  • Alurappa R, Chowdappa S, Narayanaswamy R, Sinniah UR, Mohanty SK, Swamy MK (2018) Endophytic fungi and bioactive metabolites production: an update. In: Microbial biotechnology. Springer, Singapore, pp 455–482

    Chapter  Google Scholar 

  • Alvin A, Miller KI, Neilan BA (2014) Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 169:483–495. https://doi.org/10.1016/j.micres.2013.12.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ashraf A, Javaid A (2005) Fungi associated with rhizome of turmeric (Curcuma longa L.) in Pakistan. Mycopath 3:69–71

    Google Scholar 

  • Bailey BA, Bae H, Strem MD, Robert DP, Thomas SE, Crozier J, Samuels GJ, Choi IY, Holmes KA (2006) Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta 224:1449–1464

    Article  PubMed  CAS  Google Scholar 

  • Bisignano G, Tomaino A, Lo Cascio R, Crisafi G, Uccella N, Saija A (1999) On the in vitro antimicrobial activity of oleuropein and hydroxytyrosol. J Pharm Pharmacol 51:971–974

    Article  PubMed  CAS  Google Scholar 

  • Canel C, Moraes RM, Dayan FE, Ferreira D (2000) Podophyllotoxin. Phytochemistry 54(2):115–120. https://doi.org/10.1016/s0031-9422(00)00094-7

    Article  PubMed  CAS  Google Scholar 

  • Chang YC, Baker R, Kleifeld O, Chet I (1986) Increased growth of plants in the presence of the biological control agent Trichoderma harzianum. Plant Dis 70:145–148

    Article  Google Scholar 

  • Chithra S, Jasim B, Anisha C, Mathew J, Radhakrishnan EK (2014) LC-MS/MS based identification of piperine production by endophytic Mycosphaerella sp. PF13 from Piper nigrum. Appl Biochem Biotechnol 173:30–35

    Article  PubMed  CAS  Google Scholar 

  • Cragg GM, Newman DJ (2005) Plants as a source of anti-cancer agents. J Ethnopharmacol 100:72–79. https://doi.org/10.1016/j.jep.2005.05.011

    Article  PubMed  CAS  Google Scholar 

  • Cremasco MA, Hritzko BJ, Wang LNH (2009) Experimental purification of paclitaxel from a complex mixture of taxanes using a simulated moving bed. Braz J Chem Eng 26(1):207–218

    Article  CAS  Google Scholar 

  • da Costa IM, Cavalcanti JRLP, de Queiroz DB, de Azevedo EP, do Rêgo ACM, Araújo Filho I et al (2017) Supplementation with herbal extracts to promote behavioral and neuroprotective effects in experimental models of Parkinson’s disease: a systematic review. Phytother Res 31:959–970. https://doi.org/10.1002/ptr.5813

    Article  PubMed  Google Scholar 

  • Das A, Kamal S, Shakil NK, Sheremeti I, Oelmuller R, Dua M, Johri AK, Varma A (2012) The root endophyte fungus Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant, Coleus forskohlii. Plant Signal Behav 7(1):03–112. https://doi.org/10.4161/psb.7.1.18472

    Article  CAS  Google Scholar 

  • De Bary A (1866) Morphologie und Physiologie der Pilze, Flechten und Myxomyceten Hofmeister’s handbook of physiological botany. Wilhelm Engelmann, Leipzig. https://doi.org/10.5962/bhl.title.120970

    Book  Google Scholar 

  • Dutta T, Basu UP (1968) Isothankunic acid—a new triterpene acid from Centella asiatica (URB). Bull Natl Res Inst Sci 37:178–184

    Google Scholar 

  • Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124

    Article  PubMed  CAS  Google Scholar 

  • Galanes IT, Webb DT, Rosario OJ (1984) Steroid production by callus and cell suspension cultures of Solanum aviculare. J Natl Prod 47:373–376

    Article  CAS  Google Scholar 

  • Gao FK, Dai CC, Liu XZ (2010) Mechanisms of fungal endophytes in plant protection against pathogens. Afr J Microbiol Res 4:1346–1351

    Google Scholar 

  • Gazis R, Kuo A, Riley R, LaButti K, Lipzen A, Lin J et al (2016) The genome of Xylona heveae provides a window into fungal endophytism. Fungal Biol 120:26–42. https://doi.org/10.1016/j.funbio.2015.10.002

    Article  PubMed  CAS  Google Scholar 

  • Gershenzon J, Kreis W (1999) In: Sheffield WM (ed) Biochemistry of plant secondary metabolites. Annual plant reviews, vol 2. Academic, Sheffield, pp 222–299

    Google Scholar 

  • Gianoulis TA, Griffin MA, Spakowicz DJ, Dunican BF, Alpha CJ, Sboner A et al (2012) Genomic analysis of the hydrocarbon-producing, cellulolytic, endophytic fungus Ascocoryne sarcoides. PLoS Genet 8:e1002558. https://doi.org/10.1371/journal.pgen.1002558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanson JR (2003) Natural products, the secondary metabolites. The Royal Society of Chemistry, Cambridge, pp 112–121

    Google Scholar 

  • Hartwell JL, Schrecker AW (1951) Components of podophyllin. V. The constitution of podophyllotoxin. J Am Chem Soc 73:2909–2916. https://doi.org/10.1021/ja01150a143

    Article  CAS  Google Scholar 

  • Hausen BM (1993) Centella asiatica (Indian pennywort), an effective therapeutic but a weak sensitizer. Contact Dermatitis 29:175–179

    Article  PubMed  CAS  Google Scholar 

  • Heinig U, Scholz S, Jennewein S (2013) Getting to the bottom of taxol biosynthesis by fungi. Fungal Divers 60:161–170. https://doi.org/10.1007/s13225-013-0228-7

    Article  Google Scholar 

  • Inamdar PK, Yeole RD, Ghogare AB, de Souza NJ (1996) Determination of biologically active constituents in Centella asiatica. J Chromatogr 746:127–130

    Article  Google Scholar 

  • Jiang DF, Ma P, Yang J, Wang X, Xu K, Huang Y, Chen S (2003) Formation of blood resin in abiotic Dracaena cochinchinensis inoculated with Fusarium 9568D. Ying Yong Sheng Tai Xue Bao 14:477–478

    PubMed  CAS  Google Scholar 

  • Jisha S, Anith KN, Manjula S (2012) Induction of root colonization by Piriformospora indica leads to enhanced asiaticoside production in Centella asiatica. Mycorrhiza 22:195–202. https://doi.org/10.1007/s00572-011-0394-y

    Article  CAS  Google Scholar 

  • Jisha S, Gouri PR, Anith KN, Sabu KK (2018a) Piriformospora indica cell wall extract as the best elicitor for asiaticoside production in Centella asiatica (L.) Urban, evidenced by morphological, physiological and molecular analyses. Plant Physiol Biochem 125:106–115

    Article  PubMed  CAS  Google Scholar 

  • Jisha S, Gouri PR, Anith KN, Sabu KK (2018b) Stress analysis and cytotoxicity in response to the biotic elicitor, Piriformospora indica and its’ cell wall extract in Centella asiatica L. Urban. Physiol Mol Pathol 103:8–15

    Article  CAS  Google Scholar 

  • Joseph B, Priya RM (2011) Bioactive compounds from endophytes and their potential in pharmaceutical effect: a review. Am J Biochem Mol Biol 1:291–309. https://doi.org/10.3923/ajbmb.2011.291.309

    Article  Google Scholar 

  • Kaul S, Sharma T, Dhar KM (2016) “Omics” tools for better understanding the plant-endophyte interactions. Front Plant Sci 7:955. https://doi.org/10.3389/fpls.2016.00955

    Article  PubMed  PubMed Central  Google Scholar 

  • Khare E, Mishra J, Arora NK (2018) Multifaceted interactions between endophytes and plant: developments and prospects. Front Microbiol 9:2732. https://doi.org/10.3389/fmicb.2018.02732

    Article  PubMed  PubMed Central  Google Scholar 

  • Kohler A, Tisserant E (2014) Chapter two-exploring the transcriptome of mycorrhizal interactions. Adv Bot Res 70:53–78

    Article  Google Scholar 

  • Krings M, Taylor TN, Hass H, Kerp H, Dotzler N, Hermsen EJ (2007) Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses. New Phytol 174:648–657

    Article  PubMed  Google Scholar 

  • Kumar A, Patil D, Rajamohanan PR, Ahmad A (2013) Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS One 8:e71805. https://doi.org/10.1371/journal.pone.0071805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar GK, Kumar KS, Krishnan PN (2018) Tissue culture studies and estimation of camptothecin from Ophiorrhiza prostrata D. Don. Indian J Plant Physiol 23:582–592

    Article  CAS  Google Scholar 

  • Kusari S, Lamshoft M, Spiteller M (2009) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 107:1019–1030

    Article  PubMed  CAS  Google Scholar 

  • Lee MJ, Tsai YJ, Lin MY, You HL, Kalyanam N, Ho CT, Pan MH (2019) Calebin-A induced death of malignant peripheral nerve sheath tumor cells by activation of histone acetyltransferase. Phytomedicine 57:377–384

    Article  PubMed  CAS  Google Scholar 

  • Li YC, Tao WY (2009) Paclitaxel-producing fungal endophyte stimulates the accumulation of taxoids in suspension cultures of Taxus cuspidate. Sci Hortic 121(1):97–102. https://doi.org/10.1016/j.scienta.2009.01.016

    Article  CAS  Google Scholar 

  • Maehara S, Ikeda M, Haraguchi H, Kitamura C, Nagoe T, Ohashi K, Shibuya H (2011) Microbial conversion of curcumin into colorless hydro derivatives by the endophytic fungus Diaporthe sp. associated with Curcuma longa. Chem Pharm Bull 59:1042–1044. https://doi.org/10.1248/cpb.59.1042

    Article  CAS  Google Scholar 

  • Majeed A, Majeed M, Thajuddin N, Arumugam S, Ali F, Beede K, Adams SJ, Gnanamani M (2019) Bioconversion of curcumin into calebin-A by the endophytic fungus Ovatospora brasiliensis EPE-10 MTCC 25236 associated with Curcuma caesia. AMB Express 9:79. https://doi.org/10.1186/s13568-019-0802-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malusa E, Laurenti E, Juszczuk I, Ferrari RP, Rychter AM (2002) Free radical production in roots of Phaseolus vulgaris subjected to phosphate deficiency stress. Plant Physiol Biochem 40:963–967

    Article  CAS  Google Scholar 

  • Maquart FX, Chastang F, Simeon A, Birembaut P, Gillery P, Wegrowski Y (1999) Triterpenes from Centella asiatica stimulate extracellular matrix accumulation in rat experimental wounds. Eur J Dermatol 9:289–296

    PubMed  CAS  Google Scholar 

  • Montgomery A, Adeyeni T, San KK, Heuertz RM, Ezekiel UR (2016) Curcumin sensitizes silymarin to exert synergistic anticancer activity in colon cancer cells. J Cancer 7:1250–1257. https://doi.org/10.7150/jca.15690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mosse B (1967) Effects of host nutrient status on mycorrhizal infection. Annual Report of the Rothamsted Experiment Station. p 79

    Google Scholar 

  • Nadeem M, Ram M, Alam P, Ahmad MM, Mohammad A, Al-Qurainy F, Khan S, Abdin MZ (2012) Fusarium solani, P1, a new endophytic podophyllotoxin-producing fungus from roots of Podophyllum hexandrum. https://doi.org/10.5897/ajmr11.1596

  • Namdeo AG (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn Rev 1:69–79

    CAS  Google Scholar 

  • Pandey SS, Singh S, Babu CS, Shanker K, Srivastava NK, Shukla AK, Kalra A (2016) Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis. Sci Rep 6:26583. https://doi.org/10.1038/srep26583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parniske M (2000) Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease? Curr Opin Plant Biol 3:320–328

    Article  PubMed  CAS  Google Scholar 

  • Pateraki I, Andersen-Ranberg J, Jensen NB, Wubshet SG, Heskes AM, Forman V, Hallstrom B, Hamberger B, Motawia MS, Olsen CE, Staerk D, Hansen J, Møller BL, Staerk D (2017) Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii. Elife 6:e23001

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad A, Mathur A, Kalra A, Gupta MM, Lal RK, Mathur AK (2013) Fungal elicitor-mediated enhancement in growth and asiaticoside content of Centella asiatica L. shoot cultures. Plant Growth Regul 69:265–273. https://doi.org/10.1007/s10725-012-9769-0

    Article  CAS  Google Scholar 

  • Prasad NR, Muthusamy G, Shanmugam M, Ambudkar SV (2016) South Asian medicinal compounds as modulators of resistance to chemotherapy and radiotherapy. Cancers (Basel) 8:E32

    Article  CAS  Google Scholar 

  • Pu X, Qu X, Chen F, Bao J, Zhang G, Luo Y (2019) Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: isolation, identification, and fermentation conditions optimization for camptothecin production. Appl Microbiol Biotechnol 97:9365–9375

    Article  CAS  Google Scholar 

  • Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68:1717–1719

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez RJ, Henson J, Volbenburg V, Hoy M, Wright L, Beckwith F, Kim YO, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    Article  PubMed  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837. https://doi.org/10.1094/MPMI-19-0827

    Article  PubMed  CAS  Google Scholar 

  • Ryabushkina NA (2005) Synergism of metabolite action in plant responses to stresses. Russ J Plant Physiol 52:547–552

    Article  CAS  Google Scholar 

  • Schardl CL, Scott B, Florea S, Zhang D (2009) Epichloe endophytes: clavicipitaceous symbionts of grasses. In: Deising HB (ed) The mycota V: plant relationships, 2nd edn. Springer, Berlin, pp 275–306

    Google Scholar 

  • Shapiro CL, Yeap BY, Godleski J, Jochelson MS, Shipp MA, Skarin AT, Canellos GP (1991) Drug-related pulmonary toxicity in non-Hodgkin’s lymphoma. Comparative results with three different treatment regimens. Cancer 68:699–705

    Article  PubMed  CAS  Google Scholar 

  • Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmuller R (2005) The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis root through a homeodomain transcription factor which binds to a conserved motif in their promoters. J Biol Chem 280:26241–26247

    Article  PubMed  CAS  Google Scholar 

  • Soliman SSM, Raizada MN (2018) Darkness: a crucial factor in fungal taxol production. Front Microbiol 9:353. https://doi.org/10.3389/fmicb.2018.00353

    Article  PubMed  PubMed Central  Google Scholar 

  • Soujanya KN, Siva R, Kumara PM, Srimany A, Ravikanth G, Mulani FA, Aarthy T, Thulasiram HV, Kumar TRS, Nataraja KN, Uma Shaanker R (2017) Camptothecin-producing endophytic bacteria from Pyrenacantha volubilis Hook. (Icacinaceae): a possible role of a plasmid in the production of camptothecin. Phytomedicine 36:160–167

    Article  PubMed  CAS  Google Scholar 

  • Sreekanth D, Kristin IM, Brett AN (2017) Endophytic fungi from Cathranthus roseus: a potential resource for the discovery of antimicrobial polyketides. Nat Prod Chem Res 5:256. https://doi.org/10.4172/2329-6836.1000256

    Article  CAS  Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of pacific yew. Science 260:214–216

    Article  PubMed  CAS  Google Scholar 

  • Strobel G, Yang X, Sears J, Kramer R, Sidhu RS, Hess WM (1996) Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology 142:435–440

    Article  PubMed  CAS  Google Scholar 

  • Swamy MK, Akhtar MS, Sinniah UR (2016a) Response of PGPR and AM fungi toward growth and secondary metabolite production in medicinal and aromatic plants. In: Plant, soil and microbes. Springer International, Singapore, pp 145–168

    Chapter  Google Scholar 

  • Swamy MK, Akhtar MS, Sinniah UR (2016b) Root exudates and their molecular interactions with rhizospheric microbes. In: Plant, soil and microbes. Springer, Cham, pp 59–77

    Chapter  Google Scholar 

  • Takimoto CH, Calvo E (2008) Principles of oncologic pharmacotherapy. In: Pazdur R, Wagman LD, Camphausen KA, Hoskins WJ (eds) Cancer management: a multidisciplinary approach. UBM Medica, London, pp 42–58

    Google Scholar 

  • Uzma F, Mohan CD, Hashem A, Konappa NM, Rangappa S, Kamath PV, Singh BP, Mudili V, Gupta VK, Siddaiah CN, Chowdappa S, Alqarawi AA, Abd-Allah EF (2018) Endophytic fungi—alternative sources of cytotoxic compounds: a review. Front Pharmacol 9:309. https://doi.org/10.3389/fphar.2018.00309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Venieraki A, Dimou M, Katinakis P (2017) Endophytic fungi residing in medicinal plants have the ability to produce the same or similar pharmacologically active secondary metabolites as their hosts. Hell Plant Prot J 10:51–66. https://doi.org/10.1515/hppj-2017-0006

    Article  Google Scholar 

  • Verma VC, Lobkovsky E, Gange AC, Singh SK, Prakash S (2011) Piperine production by endophytic fungus Periconia sp. isolated from Piper longum L. J Antibiot 64:427–431

    Article  CAS  Google Scholar 

  • Wang FW, Jiao RH, Cheng AB, Tan SH, Song YC (2007) Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and Brefeldin A obtained from Cladosporium sp. World J Microbiol Biotechnol 23:79–83. https://doi.org/10.1007/s11274-006-9195-4

    Article  CAS  Google Scholar 

  • Xu XH, Su ZZ, Wang C, Kubicek CP, Feng XX, Mao LJ et al (2014) The rice endophyte Harpophora oryzae genome reveals evolution from a pathogen to a mutualistic endophyte. Sci Rep 4:5783. https://doi.org/10.1038/srep05783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yong JW, Ge L, Ng YF, Tan SN (2009) The chemical composition and biological properties of coconut (Cocos nucifera L.) water. Molecules 14:5144–5164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuting C, Rongliang Z, Zhongjian J, Yong J (1990) Flavonoids as superoxide scavengers and antioxidants. Free Radic Biol Med 19:19–21

    Article  Google Scholar 

  • Yvon AM, Wadsworth P, Jordan MA (1999) Taxol suppresses dynamics of individual microtubules in living human tumor cells. Mol Biol Cell 10:947–959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zainol MK, Abdul-Hamid A, Yusof S, Muse R (2003) Antioxidative activity and total phenolic compounds of leaf, root and petiole of four accessions of Centella asiatica (L.) Urban. Food Chem 81:575–581

    Article  CAS  Google Scholar 

  • Zaiyou J, Li M, Xiqiao H (2017) An endophytic fungus efficiently producing paclitaxel isolated from Taxus wallichiana var. mairei. Medicine 96(27):e7406. https://doi.org/10.1097/MD.0000000000007406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng W, Ma L, Zhao J, Li Z, Sun F, Lu X (2013) Comparative transcriptome analysis of two rice varieties in response to rice stripe virus and small brown planthoppers during early interaction. PLoS One 8(12):e82126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhi-lin Y, Chuan-chao D, Lian-qing C (2007) Regulation and accumulation of secondary metabolites in plant-fungus symbiotic system. Afr J Biotechnol 6(11):1266–1273

    Google Scholar 

  • Zhou X, Zhu H, Liu L, Lin J, Tang K (2010) A review: recent advances and future prospects of taxol-producing endophytic fungi. Appl Microbiol Biotechnol 86:1707–1717. https://doi.org/10.1007/s00253-010-2546-y

    Article  PubMed  CAS  Google Scholar 

  • Zhu B, Wu L, Wan H, Yang K, Si J, Qin L (2018) Fungal elicitors stimulate biomass and active ingredients accumulation in Dendrobium catenatum plantlets. Biologia 73:917–926

    Article  CAS  Google Scholar 

  • Zuccaro A, Lahrmann U, Guldener U, Langen G, Pfiffi S, Biedenkopf D, Wong P, Samans B, Grimm C, Basiewicz M, Murat C, Martin F, Kogel KH (2011) Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog 7:e1002290. https://doi.org/10.1371/journal.ppat.1002290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kallevettankuzhy Krishnannair Sabu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Satheesan, J., Sabu, K.K. (2020). Endophytic Fungi for a Sustainable Production of Major Plant Bioactive Compounds. In: Swamy, M. (eds) Plant-derived Bioactives. Springer, Singapore. https://doi.org/10.1007/978-981-15-1761-7_8

Download citation

Publish with us

Policies and ethics