Skip to main content

Optimizing Breast Mass Segmentation Algorithms with Generative Adversarial Nets

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1058))

Abstract

Breast cancer is the most ordinary malignant tumor in women worldwide. Early breast cancer screening is the key to reduce mortality. Clinical trials have shown that Computer Aided Design improves the accuracy of breast cancer detection. Segmentation of mammography is a critical step in Computer Aided Design. In recent years, FCN has been applied in the field of image segmentation. Generative Adversarial Networks is also popularized for its ability on generate images which is difficult to distinguish from real images, and have been applied in the image semantic segmentation domain. We apply the Dilated Convolutions to the partial convolutional layer of the Multi-FCN and use the ideas of Generative Adversarial Networks to train and correct our segmentation network. Experiments show that the Dice index of the model D-Multi-FCN-CRF-Adversarial Training on the datasets InBreast and DDSM-BCRP can be increased to 91.15% and 91.8%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Oeffinger, K.C.: Breast cancer screening for women at average risk: 2015 guideline update from the American Cancer Society. JAMA 314(15), 1599–1614 (2015)

    Article  Google Scholar 

  2. Dalmiya, S.: Application of wavelet based k-means algorithm in mammogram segmentation. Int. J. Comput. Appl. 52(15), 15–19 (2016)

    Google Scholar 

  3. Cordeiro, F.R.: An adaptive semi-supervised Fuzzy GrowCut algorithm to segment masses of regions of interest of mammographic images. Appl. Soft Comput. 46, 613–628 (2016)

    Article  Google Scholar 

  4. Beller, M., Stotzka, R.: An example-based system to support the segmentation of stellate lesions. In: Meinzer, H.P., Handels, H. (eds.) Bildverarbeitung fur die Medizin 2005, Informatik aktuell, pp. 475–479. Springer, Berlin (2005). https://doi.org/10.1007/3-540-26431-0_97

    Chapter  Google Scholar 

  5. Cardoso, J.S.: Closed shortest path in the original coordinates with an application to breast cancer. Int. J. Pattern Recogn. Artif. Intell. 29(1), 1555002 (2015)

    Article  Google Scholar 

  6. Greenspan, H.: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35(5), 1153–1159 (2016)

    Article  Google Scholar 

  7. Kallenberg, M.: Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans. Med. Imaging 35(5), 1322–1331 (2016)

    Article  Google Scholar 

  8. Zhu, W., Lou, Q., Vang, Y.S., Xie, X.: Deep multi-instance networks with sparse label assignment for whole mammogram classification. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 603–611. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_69

    Chapter  Google Scholar 

  9. Dhungel, N., Carneiro, G.: Tree RE-weighted belief propagation using deep learning potentials for mass segmentation from mammograms. In: IEEE International Symposium on Biomedical Imaging, pp. 760–763. IEEE (2015)

    Google Scholar 

  10. Dhungel, N., Carneiro, G.: Deep structured learning for mass segmentation from mammograms. In: IEEE International Conference on Image Processing, pp. 2950–2954. IEEE, Quebec City (2015)

    Google Scholar 

  11. Dhungel, N., Carneiro, G., Bradley, A.P.: Deep learning and structured prediction for the segmentation of mass in mammograms. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 605–612. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_74

    Chapter  Google Scholar 

  12. Zhu, W.: Adversarial deep structural networks for mammographic mass segmentation. CoRR (2016)

    Google Scholar 

  13. Goodfellow, I.J., Pouget-Abadie, J.: Generative adversarial nets. In: International Conference on Neural Information Processing Systems, pp. 2672–2680. MIT Press (2014)

    Google Scholar 

  14. Radford, A.: Unsupervised representation learning with deep convolutional generative adversarial networks. Computer Science (2015)

    Google Scholar 

  15. Wolterink, J.M.: Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans. Med. Imaging 36(12), 2536–2545 (2017)

    Article  Google Scholar 

  16. Ganin, Y.: Domain-adversarial training of neural networks. Mach. Learn. Res. 17(1), 2096-2030 (2017)

    MathSciNet  Google Scholar 

  17. Kamnitsas, K., et al.: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 597–609. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_47

    Chapter  Google Scholar 

  18. Luc, P.: Semantic segmentation using adversarial networks. CoRR (2016)

    Google Scholar 

  19. Kohl, S.: Adversarial networks for the detection of aggressive prostate cancer. CoRR (2017)

    Google Scholar 

  20. Dai, W.: Scan: structure correcting adversarial network for chest x-rays organ segmentation. CoRR (2017)

    Google Scholar 

  21. Yang, D., et al.: Automatic liver segmentation using an adversarial image-to-image network. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 507–515. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_58

    Chapter  Google Scholar 

  22. Moeskops, P., Veta, M., Lafarge, M.W., Eppenhof, K.A.J., Pluim, J.P.W.: Adversarial training and dilated convolutions for brain MRI segmentation. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 56–64. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_7

    Chapter  Google Scholar 

  23. Yu, F.: Multi-scale context aggregation by dilated convolutions (2015)

    Google Scholar 

  24. Wolterink, J.M., Leiner, T., Viergever, M.A., Išgum, I.: Dilated convolutional neural networks for cardiovascular MR segmentation in congenital heart disease. In: Zuluaga, M.A., Bhatia, K., Kainz, B., Moghari, M.H., Pace, D.F. (eds.) RAMBO/HVSMR-2016. LNCS, vol. 10129, pp. 95–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52280-7_9

    Chapter  Google Scholar 

  25. Chen, L.C.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. Comput. Sci. 4, 357–361 (2014)

    Google Scholar 

  26. Chen, L.C.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2016)

    Article  Google Scholar 

  27. Chen, L.C.: Rethinking atrous convolution for semantic image segmentation. CoRR (2017)

    Google Scholar 

  28. Chen, L.C.: Encoder-decoder with atrous separable convolution for semantic image segmentation. CoRR (2018)

    Google Scholar 

  29. Zhu, W.: Co-occurrence feature learning for skeleton based action recognition using regularized deep LSTM networks. In: AAAI, vol. 2 (2016)

    Google Scholar 

  30. Zhu, W., Miao, J.: Hierarchical extreme learning machine for unsupervised representation learning. In: International Joint Conference on Neural Networks, pp. 1–8. IEEE (2015)

    Google Scholar 

  31. Long, J.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2014)

    Google Scholar 

  32. Zeiler, M.D., Krishnan, D.: Deconvolutional networks. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2528–2535. IEEE (2010)

    Google Scholar 

  33. Zheng, S.: Conditional Random Fields as Recurrent Neural Networks. CoRR, pp. 1529–1537 (2015)

    Google Scholar 

  34. Chen, L C.: Attention to scale: scale-aware semantic image segmentation. CoRR, pp. 3640–3649 (2015)

    Google Scholar 

  35. Sermanet, P.: OverFeat: integrated recognition, localization and detection using convolutional networks. Eprint Arxiv (2013)

    Google Scholar 

  36. Ines, C.: INbreast: toward a full-field digital mammographic database. Acad. Radiol. 19(2), 236–248 (2012)

    Article  Google Scholar 

  37. Ball, J.E., Bruce, LM.: Digital mammographic computer aided diagnosis (CAD) using adaptive level set segmentation. In: International Conference of the IEEE Engineering in Medicine Biology Society. IEEE (2007)

    Google Scholar 

  38. Kingma, D.: Adam: a method for stochastic optimization. Computer Science (2014)

    Google Scholar 

  39. Szegedy, C.: Intriguing properties of neural networks. Computer Science (2013)

    Google Scholar 

  40. Heath, M., Bowyer, K.: Current status of the digital database for screening mammography. In: Digital mammography, pp. 457–460. Springer, Dordrecht (1998). https://doi.org/10.1007/978-94-011-5318-8_75

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 61672181, No. 51679058, Natural Science Foundation of Heilongjiang Province under Grant No. F2016005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiwei Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yin, Q., Pan, H., Yang, B., Bian, X., Chen, C. (2019). Optimizing Breast Mass Segmentation Algorithms with Generative Adversarial Nets. In: Cheng, X., Jing, W., Song, X., Lu, Z. (eds) Data Science. ICPCSEE 2019. Communications in Computer and Information Science, vol 1058. Springer, Singapore. https://doi.org/10.1007/978-981-15-0118-0_47

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0118-0_47

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0117-3

  • Online ISBN: 978-981-15-0118-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics