Skip to main content

Unsupervised Domain Adaptation in Brain Lesion Segmentation with Adversarial Networks

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2017)

Abstract

Significant advances have been made towards building accurate automatic segmentation systems for a variety of biomedical applications using machine learning. However, the performance of these systems often degrades when they are applied on new data that differ from the training data, for example, due to variations in imaging protocols. Manually annotating new data for each test domain is not a feasible solution. In this work we investigate unsupervised domain adaptation using adversarial neural networks to train a segmentation method which is more robust to differences in the input data, and which does not require any annotations on the test domain. Specifically, we derive domain-invariant features by learning to counter an adversarial network, which attempts to classify the domain of the input data by observing the activations of the segmentation network. Furthermore, we propose a multi-connected domain discriminator for improved adversarial training. Our system is evaluated using two MR databases of subjects with traumatic brain injuries, acquired using different scanners and imaging protocols. Using our unsupervised approach, we obtain segmentation accuracies which are close to the upper bound of supervised domain adaptation.

K. Kamnitsas—Part of this work was carried on when KK was an intern at Microsoft Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79(1–2), 151–175 (2010)

    Article  MathSciNet  Google Scholar 

  2. Bermúdez-Chacón, R., Becker, C., Salzmann, M., Fua, P.: Scalable unsupervised domain adaptation for electron microscopy. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 326–334. Springer, Cham (2016). doi:10.1007/978-3-319-46723-8_38

    Chapter  Google Scholar 

  3. Ciompi, F., de Hoop, B., van Riel, S.J., Chung, K., Scholten, E.T., Oudkerk, M., de Jong, P.A., Prokop, M., van Ginneken, B.: Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. MedIA 26(1), 195–202 (2015)

    Google Scholar 

  4. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(59), 1–35 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: NIPS (2014)

    Google Scholar 

  6. Heimann, T., Mountney, P., John, M., Ionasec, R.: Learning without labeling: domain adaptation for ultrasound transducer localization. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 49–56. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40760-4_7

    Chapter  Google Scholar 

  7. Jiang, J.: A literature survey on domain adaptation of statistical classifiers (2008). http://sifaka.cs.uiuc.edu/jiang4/domain_adaptation/survey/da_survey.pdf

  8. Kamnitsas, K., Ledig, C., Newcombe, V.F., Simpson, J.P., Kane, A.D., Menon, D.K., Rueckert, D., Glocker, B.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. MedIA 36, 61–78 (2016)

    Google Scholar 

  9. Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: AISTATS, vol. 2, p. 6 (2015)

    Google Scholar 

  10. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)

    Google Scholar 

  11. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: ICML (2015)

    Google Scholar 

  12. Moeskops, P., Wolterink, J.M., Velden, B.H.M., Gilhuijs, K.G.A., Leiner, T., Viergever, M.A., Išgum, I.: Deep learning for multi-task medical image segmentation in multiple modalities. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 478–486. Springer, Cham (2016). doi:10.1007/978-3-319-46723-8_55

    Chapter  Google Scholar 

  13. van Opbroek, A., Ikram, M.A., Vernooij, M.W., De Bruijne, M.: Transfer learning improves supervised image segmentation across imaging protocols. TMI 34(5), 1018–1030 (2015)

    Google Scholar 

  14. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  15. Shenton, M., Hamoda, H., Schneiderman, J., Bouix, S., Pasternak, O., Rathi, Y., Vu, M.A., Purohit, M., Helmer, K., Koerte, I., et al.: A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav. 6(2), 137–192 (2012)

    Article  Google Scholar 

  16. Shin, H.C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R.M.: Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learning. TMI 35(5), 1285–1298 (2016)

    Google Scholar 

  17. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: maximizing for domain invariance. arXiv preprint (2014). arXiv:1412.3474

  18. Ullman, S., Assif, L., Fetaya, E., Harari, D.: Atoms of recognition in human and computer vision. Proc. Nat. Acad Sci. 113(10), 2744–2749 (2016)

    Article  Google Scholar 

  19. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984). http://doi.acm.org/10.1145/1968.1972

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the EPSRC (grant No: EP/N023668/1) and partially funded by an European Union Framework Program 7 grant (CENTER-TBI; Agreement No: 60215). Part of this work was carried on when KK was an intern at Microsoft Research Cambridge. KK is also supported by the President’s Ph.D. Scholarship of Imperial College London. VN is supported by an Academy of Medical Sciences/Health Foundation Clinician Scientist Fellowship. DM is supported by the Neuroscience Theme of the NIHR Cambridge Biomedical Research Centre and NIHR Senior Investigator awards. We gratefully acknowledge the support of NVIDIA Corporation with the donation of two Titan X GPUs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Kamnitsas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kamnitsas, K. et al. (2017). Unsupervised Domain Adaptation in Brain Lesion Segmentation with Adversarial Networks. In: Niethammer, M., et al. Information Processing in Medical Imaging. IPMI 2017. Lecture Notes in Computer Science(), vol 10265. Springer, Cham. https://doi.org/10.1007/978-3-319-59050-9_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59050-9_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59049-3

  • Online ISBN: 978-3-319-59050-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics