Skip to main content

Molecular Mechanisms Associated with Drought and Heat Tolerance in Plants and Options for Crop Improvement for Combined Stress Tolerance

  • Chapter
  • First Online:
Agronomic Crops

Abstract

Plant responses to biotic and abiotic stresses have been extensively studied in isolation. But, in their natural environments, plants are frequently exposed to combination of stresses. The recent studies using model as well as non-model systems indicate that plant responses to combined stresses are often unique and cannot be completely deduced from their responses to individual stresses. These responses are regulated by complex and distinct regulatory pathways, mediated by diverse genes, proteins, and metabolites, which might vary with plant species and with the intensity of stress experienced. A thorough understanding of these mechanisms is essential for improving crop tolerance to combined stresses. Drought and heat stress cause severe impact on crop growth and productivity, independently, and are more likely to coexist in field conditions, especially in the changing climate scenario. This chapter aims to brief the relevance of combined drought and heat stress, elucidate the underlying mechanisms under individual stresses as well as in combination, and highlight the options for crop improvement under combination of stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal GK, Rakwal R, Iwahashi H (2002) Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochem Biophys Res Commun 294:1009–1016

    Google Scholar 

  • Agrawal GK, Agrawal SK, Shibato J, Iwahashi H, Rakwal R (2003) Novel rice MAP kinases OsMSRMK3 and OsWJUMK1 involved in encountering diverse environmental stresses and developmental regulation. Biochem Biophys Res Commun 300:775–783

    Article  CAS  PubMed  Google Scholar 

  • Ashoub A, Baeumlisberger M, Neupaertl M, Karas M, Bruggemann W (2015) Characterization of common and distinctive adjustments of wild barley leaf proteome under drought acclimation, heat stress and their combination. Plant Mol Biol 87:459–471

    Article  CAS  PubMed  Google Scholar 

  • Awasthi R, Kaushal N, Vadez V, Turner NC, Berger J, Siddique KH, Nayyar H (2014) Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Funct Plant Biol 41(11):1148–1167

    Article  CAS  PubMed  Google Scholar 

  • Awasthi R, Bhandari K, Nayyar H (2015) Temperature stress and redox homeostasis in agricultural crops. Front Environ Sci 3:11

    Article  Google Scholar 

  • Awasthi R, Gaur P, Turner NC, Vadez V, Siddique KH, Nayyar H (2017) Effects of individual and combined heat and drought stress during seed filling on the oxidative metabolism and yield of chickpea (Cicer arietinum) genotypes differing in heat and drought tolerance. Crop Pasture Sci 68(9):823–841

    Google Scholar 

  • Babitha KC (2012) Development of multiple gene construct with regulatory genes and their functional validation. PhD thesis, University of Agricultural Sciences, Bangalore

    Google Scholar 

  • Bae H, Kim SK, Cho SK, Kang BG, Kim WT (2011) Overexpression of OsRDCP1, a rice RING domain-containing E3 ubiquitin ligase, increased tolerance to drought stress in rice (Oryza sativa L.). Plant Sci 180:775–782

    Google Scholar 

  • Barnabas B, Jager K, Feher A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31(1):11–38

    CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  • Basu S, Ramegowda V, Kumar A, Pereira A (2016) Plant adaptation to drought stress. F1000Research 5:1554

    Article  CAS  Google Scholar 

  • Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323(5911):240–244

    Article  CAS  PubMed  Google Scholar 

  • Beauclair L, Yu A, Bouche N (2010) microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis. Plant J 62(3):454–462

    Article  CAS  PubMed  Google Scholar 

  • Bechtold U, Field B (2018) Molecular mechanisms controlling plant growth during abiotic stress. J Exp Bot 69(11):2753–2758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt D, Saxena SC, Jain S, Dobriyal AK, Majee M, Arora S (2012) Cloning, expression and functional validation of drought inducible ascorbate peroxidase (Ec-apx1) from Eleusine coracana. Mol Biol Rep 40(2):1155–1165

    Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1249

    Google Scholar 

  • Caarls L, Pieterse CM, VanWees SC (2015) How salicylic acid takes transcriptional control over jasmonic acid signaling. Front Plant Sci 6:170

    Article  PubMed  PubMed Central  Google Scholar 

  • Carmo-Silva AE, Gore MA, Andrade-Sanchez P, French AN, Hunsaker DJ, Salvucci ME (2012) Decreased CO2 availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. Environ Exp Bot 83:1–11

    Google Scholar 

  • Castiglioni P, Warner D, Bensen RJ, Anstrom DC, Harrison J, Stoecker M, Abad M, Kumar G, Salvador S, D’Ordine R, Navarro S (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol 147(2):446–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charng YY, Liu HC, Liu NY, Chi WT, Wang CN, Chang SH, Wang TT (2007) A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol 143(1):251–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JB, Yang JW, Zhang ZY, Feng XF, Wang SM (2013) Two P5CS genes from common bean exhibiting different tolerance to salt stress in transgenic Arabidopsis. J Genet 92(3):461–469

    Article  CAS  PubMed  Google Scholar 

  • Chen YS, Lo SF, Sun PK, Lu CA, Ho TH (2015) Yu SM (2015) A late embryogenesis abundant protein HVA1 regulated by an inducible promoter enhances root growth and abiotic stress tolerance in rice without yield penalty. Plant Biotechnol J 13(1):105–116

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236

    Article  CAS  PubMed  Google Scholar 

  • Choi JY, Seo YS, Kim SJ, Kim WT, Shin JS (2011) Constitutive expression of CaXTH3, a hot pepper xyloglucan endotransglucosylase/hydrolase, enhanced tolerance to salt and drought stresses without phenotypic defects in tomato plants (Solanum lycopersicum cv. Dotaerang). Plant Cell Rep 30:867–877

    Google Scholar 

  • Correia B, Hancock RD, Amaral J, Gomez-Cadenas A, Valledor L, Pinto GC (2018) Combined drought and heat activates protective responses in Eucalyptus globulus that are not activated when subjected to drought or heat stress alone. Front Plant Sci 9:819

    Google Scholar 

  • Ding H, He J, Wu Y, Wu XX, Ge C, Wang Y, Zhong S, Peiter E, Liang JS, Xu W (2018) The tomato mitogen-activated protein kinase SlMPK1 is as a negative regulator of the high temperature stress response. Plant Physiol:00067

    Google Scholar 

  • Dreesen FE, De-Boeck HJ, Janssens IA, Nijs I (2012) Summer heat and drought extremes trigger unexpected changes in productivity of a temperate annual/biannual plant community. Environ Exp Bot 79:21–30

    Article  Google Scholar 

  • Droillard M, Boudsocq M, Barbier-Brygoo H, Lauriere C (2002) Different protein kinase families are activated by osmotic stresses in Arabidopsis thaliana cell suspensions. Involvement of the MAP kinases AtMPK3 and AtMPK6. FEBS Lett 527:43–50

    Google Scholar 

  • Duan J, Cai W (2012) OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance. PLoS One 7(9):e45117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72(4):673–689

    Article  CAS  PubMed  Google Scholar 

  • Fang YJ, Liao KF, Du H, Xu Y, Song HZ, Li XH, Xiong L (2015) A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot 66:6803–6817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser CM, Chapple C (2011) The phenylpropanoid pathway in Arabidopsis. Arab Book 9:e0152

    Article  Google Scholar 

  • Fu J, Momcilovic I, Clemente TE, Nersesian N, Trick HN, Ristic Z (2008) Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress. Plant Mol Biol 68:277–288

    Google Scholar 

  • Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488(7412):535

    Article  CAS  PubMed  Google Scholar 

  • Ghanti KKS, Sujata KG, Vijay Kumar BM, Nataraja KN, Janardhan RK, Srinath RM, Kishor PK (2011) Heterologous expression of P5CS gene in chickpea enhances salt tolerance without affecting yield. Biol Plant 55:634–640

    Article  CAS  Google Scholar 

  • Giri J, Vij S, Dansana PK, Tyagi AK (2011) Rice A20/AN1 zinc-finger containing stress-associated proteins (SAP1/11) and a receptor-like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis plants. New Phytol 191(3):721–732

    Article  CAS  PubMed  Google Scholar 

  • Go YS, Kim H, Kim HJ, Suh MC (2014) Arabidopsis cuticular wax biosynthesis is negatively regulated by the DEWAX gene encoding an AP2/ERF-type transcription factor. Plant Cell 26:1666–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goel D, Singh AK, Yadav V, Babbar SB, Murata N, Bansal KC (2011) Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses. J Plant Physiol 168(11):1286–1294

    Article  CAS  PubMed  Google Scholar 

  • Grigorova B, Vassileva V, Klimchuk D, Vaseva I, Demirevska K, Feller U (2012) Drought, high temperature, and their combination affect ultrastructure of chloroplasts and mitochondria in wheat (Triticum aestivum L.) leaves. J Plant Interact 7:204–213

    Google Scholar 

  • Guo M, Liu JH, Ma X, Luo DX, Gong ZH, Lu MH (2016) The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Front Plant Sci 7:114

    PubMed  PubMed Central  Google Scholar 

  • Hamidou F, Halilou O, Vadez V (2013) Assessment of groundnut under combined heat and drought stress. J Agron Crop Sci 199:1–11

    Article  Google Scholar 

  • Hema R, Vemanna RS, Sreeramulu S, Reddy CP, Senthil-Kumar M, Udayakumar M (2014) Stable expression of mtlD Gene imparts multiple stress tolerance in finger millet. PLoS One 9(6):e99110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Hong B, Ma C, Yang Y, Wang T, Yamaguchi-Shinozaki K, Gao J (2009) Over-expression of AtDREB1A in chrysanthemum enhances tolerance to heat stress. Plant Mol Biol 70(3):231–240

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Li Y, Li C, Yang H, Wang W, Lu M (2010) Characterization of small heat shock proteins associated with maize tolerance to combined drought and heat stress. J Plant Growth Regul 29(4):455–464

    Article  CAS  Google Scholar 

  • Huang YC, Niu CY, Yang CR, Jinn TL (2016) The heat-stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses. Plant Physiol:00860

    Google Scholar 

  • Hubbard M, Germida JJ, Vujanovic V (2014) Fungal endophytes enhance wheat heat and drought tolerance in terms of grain yield and second-generation seed viability. J Appl Microbiol 116(1):109–122

    Article  CAS  PubMed  Google Scholar 

  • Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J 24:655–665

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2014) Summary for policymakers. In: Field CB, Barros VR, Dokken DJ (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1–32

    Google Scholar 

  • Ji CY, Jin R, Xu Z, Kim HS, Lee CJ, Kang L, Kim SE, Lee HU, Lee JS, Kang CH, Chi YH (2017) Overexpression of Arabidopsis P3B increases heat and low temperature stress tolerance in transgenic sweet potato. BMC Plant Biol 17(1):139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia J, Zhou J, Shi W, Cao X, Luo J, Polle A, Luo ZB (2017) Comparative transcriptomic analysis reveals the roles of overlapping heat−/drought-responsive genes in poplars exposed to high temperature and drought. Sci Rep 7:43215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang SY, Bhalla R, Ramamoorthy R, Luan HF, Venkatesh PN, Cai M, Ramachandran S (2012) Over-expression of OSRIP18 increases drought and salt tolerance in transgenic rice plants. Transgenic Res 21(4):785–795

    Article  CAS  PubMed  Google Scholar 

  • Johnson SM, Lim FL, Finkler A, Fromm H, Slabas AR, Knight MR (2014) Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress. BMC Genomics 15(1):456

    Google Scholar 

  • Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, Hirt H (1996) Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci USA 93:11274–11279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, Lone AA, Pareek A, Singla-Pareek SL (2016) Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci 7:1029

    Article  PubMed  PubMed Central  Google Scholar 

  • Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko KR, Marsch-Martinez N, Krishnan A, Nataraja KN, Udayakumar M, Pereira A (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci USA 104(39):15270–15275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keles Y, Oncel I (2002) Response of antioxidative defence system to temperature and water stress combinations in wheat seedlings. Plant Sci 163:783–790

    Article  CAS  Google Scholar 

  • Kidokoro S, Watanabe K, Ohori T, Moriwaki T, Maruyama K, Mizoi J, Myint Phyu Sin Htwe N, Fujita Y, Sekita S, Shinozaki K, Yamaguchi-Shinozaki K (2015) Soybean DREB 1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression. Plant J 81(3):505–518

    Article  CAS  PubMed  Google Scholar 

  • Killi D, Bussotti F, Raschi A, Haworth M (2017) Adaptation to high temperature mitigates the impact of water deficit during combined heat and drought stress in C3 sunflower and C4 maize varieties with contrasting drought tolerance. Physiol Plant 159(2):130–147

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Sato S, Sasaki K, Saburi S, Matsui H, Imai R (2013) COLD SHOCK DOMAIN PROTEIN 3 is involved in salt and drought stress tolerance in Arabidopsis. FEBS Open Bio 3:438–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koussevitzky S, Suzuki N, Huntington S, Armijo L, Sha W, Cortes D, Shulaev V, Mittler R (2008) Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J Biol Chem 283:34197–34203

    Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63(4):1593–1608

    Article  CAS  PubMed  Google Scholar 

  • Krasensky J, Broyart C, Rabanal FA, Jonak C (2014) The redox-sensitive chloroplast trehalose-6-phosphatephosphatase AtTPPD regulates salt stress tolerance. Antioxid Redox Signal 21(9):1289–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar K, Rao KP, Sharma P, Sinha AK (2008) Differential regulation of rice mitogen activated protein kinase kinase (MKK) by abiotic stress. Plant Physiol Biochem 46:891–897

    Article  CAS  PubMed  Google Scholar 

  • Lamaoui M, Jemo M, Datla R, Bekkaoui F (2018) Heat and drought stresses in crops and approaches for their mitigation. Front Chem 6:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748

    Article  CAS  PubMed  Google Scholar 

  • Lata C, Muthamilarasan M, Prasad M (2015) Drought stress responses and signal transduction in plants. In: Pandey GK (ed) Elucidation of abiotic stress signaling in plants. https://doi.org/10.1007/978-1-4939-2540-7_7

    Chapter  Google Scholar 

  • Lata R, Chowdhury S, Gond SK, White JF Jr (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol 66(4):268–276

    Article  CAS  PubMed  Google Scholar 

  • Lawas LMF, Zuther E, Jagadish SVK, Hincha DK (2018) Molecular mechanisms of combined heat and drought stress resilience in cereals. Curr Opin Plant Biol. https://doi.org/10.1016/j.pbi.2018.04.002

  • Li H-W, Zang B-S, Deng X-W, Wang X-P (2011) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234:1007–1018

    Article  CAS  PubMed  Google Scholar 

  • Li X, Guo C, Gu J, Duan W, Zhao M, Ma C, Du X, Lu W, Xiao K (2014a) Overexpression of VP, a vacuolar H+-pyrophosphatase gene in wheat (Triticum aestivum L.), improves tobacco plant growth under Pi and N deprivation, high salinity, and drought. J Exp Bot 65(2):683–696

    Google Scholar 

  • Li X, Yang Y, Sun X, Lin H, Chen J, Ren J, Hu X, Yang Y (2014b) Comparative physiological and proteomic analyses of poplar (Populus yunnanensis) plantlets exposed to high temperature and drought. PLoS One 9:e107605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Liu J, Zhang H, Liu C, Ran Y, Gao C (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim SD, Cho HY, Park YC, Ham DJ, Lee JK, Jang CS (2013) The rice RING finger E3 ligase, OsHCI1, drives nuclear export of multiple substrate proteins and its heterogeneous overexpression enhances acquired thermotolerance. J Exp Bot 64:2899–2914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Link V, Sinha AK, Vashista P, Hofmann MG, Proels RK, Ehness R, Roitsch T (2002) A heat-activated MAP kinase in tomato: a possible regulator of the heat stress response. FEBS Lett 531(2):179–183

    Article  CAS  PubMed  Google Scholar 

  • Liu JG, Qin QL, Zhang Z, Peng RH, Xiong AS, Chen JM, Yao QH (2009) OsHSF7 gene in rice, Oryza sativa L., encodes a transcription factor that functions as a high temperature receptive and responsive factor. BMB Rep 42(1):16–21

    Google Scholar 

  • Liu G, Li X, Jin S, Liu X, Zhu L, Nie Y, Zhang X (2014) Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS One 9(1):e86895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Z, Xin M, Qin J, Peng H, Ni Z, Yao Y, Sun Q (2015) Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.). BMC Plant Biol 15(1):152

    Google Scholar 

  • Liu JP, Zhang C, Wei C, Liu X, Wang M, Yu F, Xie Q, Tu J (2016) The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice. Plant Physiol 170:429–443

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Qin J, Tian X, Xu S, Wang Y, Li H, Wang X, Peng H, Yao Y, Hu Z, Ni Z (2018) Global profiling of alternative splicing landscape responsive to drought, heat and their combination in wheat (Triticum aestivum L.). Plant Biotechnol J 16(3):714–726

    Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science:1204531

    Google Scholar 

  • Machado S, Paulsen GM (2001) Combined effects of drought and high temperature on water relations of wheat and sorghum. Plant Soil 233(2):179–187

    Article  CAS  Google Scholar 

  • Martinez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143:1001–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K (1996) A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc Natl Acad Sci USA 93:765–769

    Google Scholar 

  • Moeder W, Ung H, Mosher S, Yoshika K (2010) SA-ABA antagonism in defense responses. Plant Signal Behav 5:1231–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moustafa K, Lefebvre-De Vos D, Leprince A-S, Savoure A, Lauriere C (2008) Analysis of the Arabidopsis mitogen-activated protein kinase families: organ specificity and transcriptional regulation upon water stresses. Sch Res Exch 2008:12. https://doi.org/10.3814/2008/143656

  • Nataraja KN, Parvathi MS (2016) Tolerance to drought stress in plants: unravelling the signaling networks. In: Hossain MA, Wani SH, Bhattachajee S, Burritt DJ, Tran L-SP (eds) Drought stress tolerance in plants, vol 2 – molecular and genetic perspectives. Springer, Cham

    Google Scholar 

  • Nataraja KN, Madhura BG, Parvathi MS (2017) Omics: Modern tools for precise understanding of drought adaptation in plants. In: Zargar SM, Rai V (eds) Plant OMICS and crop breeding. Taylor and Francis AAP Inc, Canada

    Google Scholar 

  • Nguyen CC, Nakaminami K, Matsui A, Kobayashi S, Kurihara Y, Toyooka K, Tanaka M, Seki M (2016) Oligouridylate binding protein 1b plays an integral role in plant heat stress tolerance. Front Plant Sci 7:853

    PubMed  PubMed Central  Google Scholar 

  • Ning J, Li X, Hicks LM, Xiong L (2010) A raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol 152:876–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey P, Ramegowda V, Senthil-Kumar M (2015) Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Front Plant Sci 6:723

    Article  PubMed  PubMed Central  Google Scholar 

  • Parankusam S, Adimulam SS, Bhatnagar-Mathur P, Sharma KK (2017) Nitric oxide (NO) in plant heat stress tolerance: current knowledge and perspectives. Front Plant Sci 8:1582

    Article  PubMed  PubMed Central  Google Scholar 

  • Parvathi MS, Nataraja KN (2016) Emerging tools, concepts and ideas to track the modulator genes underlying plant drought adaptive traits: an overview. Plant Signal Behav 11(1):e1074370

    Article  CAS  Google Scholar 

  • Parvathi MS, Nataraja KN (2017) Simultaneous expression of stress regulatory genes for abiotic stress tolerance. In: Muthappa S-K (ed) Plant tolerance to individual and concurrent stresses. Springer, New Delhi

    Google Scholar 

  • Parvathi MS, Sreevathsa R, Rama N, Nataraja KN (2015) Simultaneous expression of AhBTF3, AhNFYA7and EcZF modulates acclimation responses to abiotic stresses in rice (Oryza sativa L). Procedia Environ Sci 29:236–237

    Google Scholar 

  • Pasapula V, Shen G, Kuppu S, Paez-Valencia J, Mendoza M, Hou P, Chen J, Qiu X, Zhu L, Zhang X, Auld D, Blumwald E, Zhang H, Gaxiola R, Payton P (2011) Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J 9:88–99

    Article  CAS  PubMed  Google Scholar 

  • Pei L, Wang J, Li K, Li Y, Li B, Gao F, Yang A (2012) Overexpression of Thellungiella halophila H+-pyrophosphatase gene improves low phosphate tolerance in maize. PLoS One 7:e43501

    Google Scholar 

  • Prasad PVV, Pisipati SR, Momcilovic I, Ristic Z (2011) Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J Agron Crop Sci 197(6):430–441

    Article  CAS  Google Scholar 

  • Prasch CM, Sonnewald U (2013) Simultaneous application of heat, drought and virus to Arabidopsis thaliana plants reveals significant shifts in signaling networks. Plant Physiol 162(4):1849–1866

    Google Scholar 

  • Pruthvi V, Narasimhan R, Nataraja KN (2014) Simultaneous expression of abiotic stress responsive transcription factors, AtDREB2A, AtHB7 and AtABF3 improves salinity and drought tolerance in peanut (Arachis hypogaea L.). PLoS One 9(12):e111152

    Google Scholar 

  • Ramegowda V, Basu S, Krishnan A, Pereira A (2014) Rice GROWTH UNDER DROUGHT KINASE is required for drought tolerance and grain yield under normal and drought stress conditions. Plant Physiol 166(3):1634–1645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rampino P, Mita G, Fasano P, Borrelli GM, Aprile A, Dalessandro G, De Bellis L, Perrotta C (2012) Novel durum wheat genes up-regulated in response to a combination of heat and drought stress. Plant Physiol Biochem 56:72–78

    Article  CAS  PubMed  Google Scholar 

  • Ramu VS, Swetha TN, Sheela SH, Babitha CK, Rohini S, Reddy MK, Tuteja N, Reddy CP, Prasad TG, Udayakumar M (2016) Simultaneous expression of regulatory genes associated with specific drought-adaptive traits improves drought adaptation in peanut. Plant Biotechnol J 14:1008–1020

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen S, Barah P, Suarez-Rodriguez MC, Bressendorff S, Friis P, Costantino P, Bones AM, Nielsen HB, Mundy J (2013) Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol 161(4):1783–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray S, Agarwal P, Arora R, Kapoor S, Tyagi AK (2007) Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica). Mol Gen Genomics 278:493–505

    Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110(4):513–520

    Article  CAS  PubMed  Google Scholar 

  • Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rollins JA, Habte E, Templer SE, Colvy T, Schmidt J, Von Korff M (2013) Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). J Exp Bot 64:3201–3212

    Google Scholar 

  • Saibo NJM, Lourenco T, Oliveira MM (2009) Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Ann Bot 103:609–623

    Article  CAS  PubMed  Google Scholar 

  • Sainz M, Diaz P, Monza J, Borsani O (2010) Heat stress results in loss of chloroplast Cu/Zn superoxide dismutase and increased damage to Photosystem II in combined drought-heat stressed Lotus japonicus. Physiol Plant 140(1):46–56

    Google Scholar 

  • Sajeevan RS, Nataraja KN, Shivashankara KS, Pallavi N, Gurumurthy DS, Shivanna MB (2017) Expression of Arabidopsis SHN1 in Indian Mulberry (Morus indica L.) increases leaf surface wax content and reduces post-harvest water loss. Front. Plant Sci 8:418

    CAS  Google Scholar 

  • Sangamesh MB, Jambagi S, Vasanthakumari MM, Shetty NJ, Kolte H, Ravikanth G, Nataraja KN, Shaanker RU (2018) Thermotolerance of fungal endophytes isolated from plants adapted to the Thar Desert, India. Symbiosis 75(2):135–147

    Article  Google Scholar 

  • Sato H, Todaka D, Kudo M, Mizoi J, Kidokoro S, Zhao Y, Shinozaki K, Yamaguchi-Shinozaki K (2016) The Arabidopsis transcriptional regulator DPB 3-1 enhances heat stress tolerance without growth retardation in rice. Plant Biotechnol J 14(8):1756–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schachtman DP, Goodger JQ (2008) Chemical root to shoot signaling under drought. Trends Plant Sci 13(6):281–287

    Article  CAS  PubMed  Google Scholar 

  • Sehgal A, Sita K, Kumar J, Singh S, Siddique KH, Nayyar H (2017) Effects of drought, heat and their interaction on the growth, yield and photosynthetic function of lentil (Lens culinaris Medikus) genotypes varying in heat and drought sensitivity. Front Plant Sci 8:1776

    Google Scholar 

  • Shah NH, Paulsen GM (2003) Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant Soil 257(1):219–226

    Article  CAS  Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Manivannan P, Panneerselvam R, Shao MA (2009) Understanding water deficit stress-induced changes in the basic metabolism of higher plants–biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit Rev Biotechnol 29(2):131–151

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Zhang L, An H, Wu C, Guo X (2011) GhMPK16, a novel stress-responsive group D MAPK gene from cotton, is involved in disease resistance and drought sensitivity. BMC Mol Biol 12:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58(2):221–227

    Article  CAS  PubMed  Google Scholar 

  • Shriram V, Kumar V, Devarumath RM, Khare TS, Wani SH (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci 7:817

    Article  PubMed  PubMed Central  Google Scholar 

  • Sita K, Sehgal A, Hanumantha Rao B, Nair RM, Vara Prasad PV, Kumar S, Gaur PM, Farooq M, Siddique KH, Varshney RK, Nayyar H (2017) Food legumes and rising temperatures: effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Front Plant Sci 8:658

    Article  Google Scholar 

  • Song J, Liu Q, Hu B, Wu W (2017) Photoreceptor PhyB involved in Arabidopsistemperature perception and heat-tolerance formation. Int J Mol Sci 18(6):1194

    Google Scholar 

  • Sprenger H, Kurowsky C, Horn R, Serban A, Seddig S, Rudack K, Fischer A, Walther D, Zuther E, Köhl K, Hincha DK (2016) The drought response of potato reference cultivars with contrasting tolerance. Plant Cell Environ 39:2370–2389

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Sejima H, Tam R, Schlauch K, Mittler R (2011) Identification of the MBF1 heat-response regulon of Arabidopsis thaliana. Plant J 66(5):844–851

    Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43

    Article  PubMed  Google Scholar 

  • Tanaka H, Osakabe Y, Katsura S, Mizuno S, Maruyama K, Kusakabe K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) Abiotic stress-inducible receptor-like kinases negatively control ABA signaling in Arabidopsis. Plant J 70(4):599–613

    Article  CAS  PubMed  Google Scholar 

  • Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141–152

    Article  CAS  PubMed  Google Scholar 

  • Templer SE, Ammon A, Pscheidt D, Ciobotea O, Schuy C, McCollum C, Sonnewald U, Hanemann A, Forster J, Ordon F, von Korff M (2017) Metabolite profiling of barley flag leaves under drought and combined heat and drought stress reveals metabolic QTLs for metabolites associated with antioxidant defense. J Exp Bot 68(7):1697–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuteja N, Sahoo RK, Garg B, Tuteja R (2013) OsSUV3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. IR64). Plant J 76(1):115–127

    Google Scholar 

  • Tuteja N, Banu MSA, Huda KMK, Gill SS, Jain P, Pham XH, Tuteja R (2014) Pea p68, a DEAD-box helicase, provides salinity stress tolerance in transgenic tobacco by reducing oxidative stress and improving photosynthesis machinery. PLoS One 9(5):e98287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valente MA, Faria JA, Soares-Ramos JR, Reis PA, Pinheiro GL, Piovesan ND, Morais AT, Menezes CC, Cano MA, Fietto LG, Loureiro ME, Aragao FJ, Fontes EP (2009) The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco. J Exp Bot 60:533–546

    Article  CAS  PubMed  Google Scholar 

  • Vemanna RS, Babitha KC, Rao HMH, Sathyanarayanagupta SK, Sarangi SK, Nataraja KN, Udayakumar M (2013) Modified multisite gateway cloning strategy for consolidation of genes in plants. Mol Biotechnol 53(2):129–138

    Article  CAS  PubMed  Google Scholar 

  • Vile D, Pervent M, Belluau M, Vasseur F, Bresson J, Muller B, Granier C, Simonneau T (2012) Arabidopsis growth under prolonged high temperature and water deficit: independent or interactive effects? Plant Cell Environ 35(4):702–718

    Article  PubMed  Google Scholar 

  • Voytas DF (2013) Plant genome engineering with sequence-specific nucleases. Annu Rev Plant Biol 64:327–350

    Article  CAS  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61(3):199–223

    Article  Google Scholar 

  • Wang M, Zhang Y, Wang J, Wu X, Guo X (2007) A novel MAP kinase gene in cotton (Gossypium hirsutum L.), GhMAPK, is involved in response to diverse environmental stresses. J Biochem Mol Biol 40:325–332

    Google Scholar 

  • Wang J, Ding H, Zhang A et al (2010) A novel mitogen-activated protein kinase gene in maize (Zea mays), ZmMPK3, is involved in response to diverse environmental cues. J Integr Plant Biol 52:442–452

    Google Scholar 

  • Wang A, Yu X, Mao Y, Liu Y, Liu G, Liu Y, Niu X (2015) Overexpression of a small heat-shock-protein gene enhances tolerance to abiotic stresses in rice. Plant Breed 134(4):384–393

    Article  CAS  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4(3):162–176

    Article  Google Scholar 

  • Wardlaw IF (2002) Interaction between drought and chronic high temperature during kernel filling in wheat in a controlled environment. Ann Bot 90(4):469–476

    Article  PubMed  PubMed Central  Google Scholar 

  • Wen JQ, Oono K, Imai R (2002) Two novel mitogen-activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low-temperature signaling pathway in rice. Plant Physiol 129:1880–1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao BZ, Chen X, Xiang CB, Tang N, Zhang QF, Xiong LZ (2009) Evaluation of seven function known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol Plant 2:73–83

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15:745–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Vanderbeld B, Wan J, Huang Y (2010a) Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol Plant 3(3):469–490

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Ji W, Zhu Y, Gao P, Li Y, Cai H, Bai X, Guo D (2010b) GsCBRLK, a calcium/calmodulin-binding receptor-like kinase, is a positive regulator of plant tolerance to salt and ABA stress. J Exp Bot 61(9):2519–2533

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Nie J, Cao C, Jin Y, Yan M, Wang F, Liu J, Xiao Y, Liang Y, Zhang W (2010) Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol 188:762–773

    Google Scholar 

  • Zandalinas SI, Rivero RM, Martinez V, Gomez-Cadenas A, Arbona V (2016a) Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC Plant Biol 16(1):105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zandalinas SI, Balfagon D, Arbona V, Gomez-Cadenas A, Inupakutika MA, Mittler R (2016b) ABA is required for the accumulation of APX1 and MBF1c during a combination of water deficit and heat stress. J Exp Bot 67(18):5381–5390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zandalinas SI, Sales C, Beltran J, Gomez-Cadenas A, Arbona V (2017) Activation of secondary metabolism in citrus plants is associated to sensitivity to combined drought and high temperatures. Front Plant Sci 7:1954

    Article  PubMed  PubMed Central  Google Scholar 

  • Zandalinas SI, Mittler R, Balfagon D, Arbona V, Gomez-Cadenas A (2018) Plant adaptations to the combination of drought and high temperatures. Physiol Plant 162(1):2–12

    Article  CAS  PubMed  Google Scholar 

  • Zang X, Geng X, Wang F, Liu Z, Zhang L, Zhao Y, Tian X, Ni Z, Yao Y, Xin M, Hu Z (2017) Overexpression of wheat ferritin gene TaFER-5B enhances tolerance to heat stress and other abiotic stresses associated with the ROS scavenging. BMC Plant Biol 17(1):14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang M, Li G, Huang W, Bi T, Chen G, Tanz Z, Su W, Sun W (2010) Proteomic study of Carissa spinarum in response to combined heat and drought stress. Proteomics 10:3117–3129

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Wang S, Lv J, Liu Z, Wang Y, Ma N, Meng Q (2017) SUMO E3 ligase SlSIZ1 facilitates heat tolerance in tomato. Plant Cell Physiol 59:58–71

    Article  CAS  Google Scholar 

  • Zhao F, Zhang D, Zhao Y, Wang W, Yang H, Tai F, Li C, Hu X (2016) The difference of physiological and proteomic changes in maize leaves adaptation to drought, heat, and combined both stresses. Front Plant Sci 7:1471

    PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Niu S, Fan G, Dend M, Wang Y (2018) Genome-Wide analysis of gene and microRNA expression in diploid and autotetraploid Paulownia fortunei (Seem) Hemsl. under drought stress by transcriptome, microRNA, and degradome sequencing. Forests 9(2):88

    Article  Google Scholar 

  • Zhou S, Hu W, Deng X, Ma Z, Chen L, Huang C, Wang C, Wang J, He Y, Yang G, He G (2012) Overexpression of the wheat aquaporin gene, TaAQP7 , enhances drought tolerance in transgenic tobacco. PLoS One 7:e52439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu L, Guo J, Zhu J, Zhou C (2014) Enhanced expression of EsWAX1 improves drought tolerance with increased accumulation of cuticular wax and ascorbic acid in transgenic Arabidopsis. Plant Physiol Biochem 75:24–35

    Article  PubMed  CAS  Google Scholar 

  • Zinta G, AbdElgawad H, Domagalska MA, Vergauwen L, Knapen D, Nijs I, Janssens IA, Beemster GT, Asard H (2014) Physiological, biochemical, and genome-wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels. Glob Chang Biol 20:3670–3685

    Google Scholar 

  • Zinta G, AbdElgawad H, Peshev D, Weedon JT, Van den Ende W, Nijs I, Janssens IA, Beemster GT, Asard H (2018) Dynamics of metabolic responses to periods of combined heat and drought in Arabidopsis thaliana under ambient and elevated atmospheric CO2. J Exp Bot 69(8):2159–2170

    Google Scholar 

Download references

Acknowledgments

This work is partly supported by the Department of Biotechnology, Government of India, New Delhi (BT/TDS/121/SP20276/2016), RKVY-Government of India (No. DR/Prof. (S)/RKVY/Alloc./B-44/2017-18), and Indian Council of Agricultural Research (ICAR-CAAST- F.No./NAHEP/CAAST/2018-19), Government of India, New Delhi. DKH thanks the Department of Science and Technology (DST), Government of India, New Delhi, for providing DST-INSPIRE research fellowship (IF120808).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Nataraja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parvathi, M.S., Dhanyalakshmi, K.H., Nataraja, K.N. (2020). Molecular Mechanisms Associated with Drought and Heat Tolerance in Plants and Options for Crop Improvement for Combined Stress Tolerance. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-15-0025-1_23

Download citation

Publish with us

Policies and ethics