Skip to main content

Phycoremediation: Role of Algae in Waste Management

  • Chapter
  • First Online:
Environmental Contaminants: Ecological Implications and Management

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 14))

Abstract

Phycoremediation is a green technology because of its vast environmental benefits, and in the past decade, there has been a steady rise in the number of phycoremediation plants throughout the world. The success in the widespread use of this technology will rely on joint efforts by entrepreneurs, academicians and policymakers. Considering the replacement of existing secondary treatment systems with more environment-friendly and profitable phycoremediation technology or at least integrating into the conventional systems, wherever feasible, is of paramount importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19(3):257–275

    Article  CAS  Google Scholar 

  • Acién FG, Molina E, Reis A et al (2018) Photobioreactors for the production of microalgae. In: Microalgae-based biofuels and bioproducts, Woodhead Publishing series. Elsevier, pp 1–44

    Google Scholar 

  • Adedibu AA (1982) Spatial pattern of solid waste generation in Ilorin. Paper presented at the annual conference of Nigerian Geographical Association, Ibadan, Nigeria

    Google Scholar 

  • Adey WH (1982) U.S. Patent No. 4,333,263. Washington, DC: U.S. Patent and Trademark Office

    Google Scholar 

  • Ahluwalia AS, Kaur MS, Dua (1989) Physico-chemical characteristics and effect of some industrial effluents on the growth of a green-algae Scenedesmus sp. Indian J Environ Protect 8:338

    Google Scholar 

  • Akkerman I, Janssen M, Rocha J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrog Energy 27:1195–1208

    Article  CAS  Google Scholar 

  • Al-Hasan RH, Khanafer M, Eliyas M, Radwan SS (2001) Hydrocarbon accumulation by picocyanobacteria from the Arabian Gulf. J Appl Microbiol 91:533–540

    Article  CAS  Google Scholar 

  • Amin S (2009) Review on biofuel oil and gas production processes from microalgae. Energy Convers Manag 50:1834–1840

    Article  CAS  Google Scholar 

  • Andrade AD, Rollemberg MCE (2005) Proton and metal binding capacity of the green freshwater alga Chaetophora elegans. Process Biochem 40:1931–1936

    Article  CAS  Google Scholar 

  • Ansari FA, Ravindran B, Gupta SK, Nasr M, Rawat I, Bux F (2019) Techno-economic estimation of wastewater phycoremediation and environmental benefits using Scenedesmus obliquus microalgae. J Environ Manag 240:293–302

    Article  CAS  Google Scholar 

  • Ballén-Segura M, Rodríguez HL, Ospina PD, Bolaños VA, Pérez K (2016) Using Scenedesmus sp. for the phycoremediation of tannery wastewater. Tecciencia 11(21):69–75

    Article  Google Scholar 

  • Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279

    Article  CAS  Google Scholar 

  • Becker EW (1994) In: Sir J (ed) Microalgae – biotechnology and microbiology. Cambridge University Press, Baddiley

    Google Scholar 

  • Becker W (2004) Microalgae in human and animal nutrition. In: Richmond A (ed) Handbook of microalgal culture. Blackwell, Oxford, pp 312–351

    Google Scholar 

  • Beckmann J, Lehr F, Finazzi G, Hankamer B, Posten C, Wobbe L, Kruse O (2009) Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. J Biotechnol 142(1):70–77

    Article  CAS  Google Scholar 

  • Beer LL, Boyd ES, Peters JW, Posewitz MC (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20(3):264–271

    Article  CAS  Google Scholar 

  • Bender J, Rodriguez-Eaton S, Ekanemesang UM, Phillips P (1994) Characterization of metal-binding bioflocculants produced by the cyanobacterial component of mixed microbial mats. Appl Environ Microbiol 60(7):2311–2315

    CAS  Google Scholar 

  • Benemann JR, Oswald WJ (1996) “Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass”. Final report, US DOE

    Google Scholar 

  • Benemann JR, Goebel RP, Weissman JC, Augenstein DC (1982) “Microalgae as a source of liquid fuels”. Final technical report USDOE-OER

    Google Scholar 

  • Blier R, Laliberte G, De la Noue J (1996) Production of the cyanobacterium Phormidium bohneri in parallel with epuration of a dairy anaerobic effluent. Process Biochem 31:587–593

    Article  CAS  Google Scholar 

  • Borowitzka MA (1995) Microalgae as source of pharmaceuticals and other biologically active compounds. J Appl Algol 7:3–15

    CAS  Google Scholar 

  • Brown LM (1996) Uptake of carbon dioxide from flue gas by microalgae. Energy Convers Manag 37:1363–1367

    Article  CAS  Google Scholar 

  • Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev 19:360–369

    Article  CAS  Google Scholar 

  • Casiot C, Bruneel O, Personné JC, Leblanc M, Elbaz-Poulichet MF (2004) Arsenic oxidation and bioaccumulation by the acidophilic protozoan, Euglena mutabilis, in acid mine drainage (Carnoules, France). Sci Total Environ 320(2–3):259–267

    Article  CAS  Google Scholar 

  • Cerniglia CE, Van Baalen C, Gibson GT (1980) Metabolism of naphthalene by the cyanobacterium Oscillatoria sp., strain JCM. J Gen Microbiol 116:485–494

    CAS  Google Scholar 

  • Chevalier P, De la Noue (1985) Efficiency of immobilized hyperconcentrated algae for ammonium and orthophosphate removal from wastewaters. Biotechnol Lett 7:395–400

    Article  CAS  Google Scholar 

  • Chinnasamy S, Rao PH, Bhaskar S, Rengasamy R, Singh M (2012) Algae: a novel biomass feedstock for biofuels. In: Microbial biotechnology: energy and environment, pp 224–239

    Google Scholar 

  • Choi HJ (2016) Dairy wastewater treatment using microalgae for potential biodiesel application. Environ Eng Res 21(4):393–400

    Article  CAS  Google Scholar 

  • Chojnacka K, Chojnacki A, Gorecka H (2005) Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue–green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemos 59:75–84

    Article  CAS  Google Scholar 

  • Cohen Y (2002) Bioremediation of oil by marine microbial mats. Int Microbiol 5:189–193

    Article  CAS  Google Scholar 

  • Daneshvar N, Aleboyeh A, Khataee AR (2005) The evaluation of electrical energy per order (EEo) for photooxidative decolorization of four textile dye solutions by the kinetic model. Chemosphere 59(6):104–128

    Article  CAS  Google Scholar 

  • Das D, Veziroǧlu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26(1):13–28

    Article  CAS  Google Scholar 

  • De la Noüe J, Pruix D (1988) Biological tertiary treatment of urban wastewater with chitosan immobilized Phormidium. Appl Microbiol Biotechnol 29:292–297

    Article  Google Scholar 

  • De la Noue, J., Chevalier, P., and Proulx, D. 1990. Effluent treatment with immobilized microalgae and cyanobacteria: A critical assessment. In Wastewater treatment by immobilized cells, Boca Raton: CRC Press Inc, p 143–152.

    Google Scholar 

  • De la Noüe J, Laliberté G, Proulx D (1992) Algae and wastewater. J Appl Phycol 4:247–254

    Article  Google Scholar 

  • Demirbas A (2006) Oily products from mosses and algae via pyrolysis. Energy Sour A: Recover Utilization Environ Eff 28:933–940

    Article  CAS  Google Scholar 

  • Demirbas A (2011) Waste management, waste resource facilities and waste conversion processes. Energy Convers Manag 52(2):1280–1287

    Article  Google Scholar 

  • Dewangan N (2016) Wastewater treatment using inverse fluidization unit by algae. B. Tech Thesis, Department of Chemical Engineering, National Institute of Technology (NIT), Rourkela, Odisha

    Google Scholar 

  • Dodd JC (1986) Elements of pond design and construction. In: Richmond A (ed) Handbook of microalgal mass culture. CRC Press, Boca Raton, pp 265–283

    Google Scholar 

  • Dote Y, Sawayama S, Inoue S, Minowa T, Yokoyama S (1994) Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction. Fuel 74:1375–1378

    Google Scholar 

  • Dunahay TG, Jarvis EE, Dais SS, Roessler PG (1996) Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol 58:223–231

    Article  Google Scholar 

  • Elizabath KM, Priyadarshini BH (2004) Bioremediation of toxic pollutants by marine algae from Visakhapatnam City. IJEP 24(2):134–137

    Google Scholar 

  • Fedorov AS, Kosourov S, Ghirardi ML, Seibert M (2005) Continuous hydrogen photoproduction by Chlamydomonas reinhardtii. Appl Biochem Biotechnol 121(1–3):403–412

    Google Scholar 

  • Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:13–28

    Article  CAS  Google Scholar 

  • Gaffron H (1944) Photosynthesis, photoreduction and dark reduction of carbon dioxide in certain algae. Biol Rev 19(1):1–20

    Article  CAS  Google Scholar 

  • Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26(2):219–240

    Article  CAS  Google Scholar 

  • Gani P, Mohamed N, Matias-Peralta H, Latiff AA (2016) Application of phycoremediation technology in the treatment of food processing wastewater by freshwater microalgae Botryococcus sp. J Eng Appl Sci 11:7288–7292

    CAS  Google Scholar 

  • Gao F, Yang Z, Li C, Zeng G, Ma D, Zhou L (2015) A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent. Bioresour Technol 179:8–12

    Article  CAS  Google Scholar 

  • Garcia J, Mujeriego R, Hernandez-Marine M (2000) High rate algal pond operating strategies for urban wastewater nitrogen removal. J Appl Phycol 12:331–339

    Article  CAS  Google Scholar 

  • Gavrilescu M, Chisti Y (2005) Biotechnology – a sustainable alternative for chemical industry. Biotechnol Adv 23:471–499

    Article  CAS  Google Scholar 

  • Ghirardi ML, Zhang JP, Lee JW, Flynn T, Seibert M, Greenbaum E (2000) Microalgae: a green source of renewable H2. Trends Biotechnol 18:506–511

    Article  CAS  Google Scholar 

  • Ghosh UK (2018) An approach for phycoremediation of different wastewaters and biodiesel production using microalgae. Environ Sci Pollut R 5:18673–18681

    Google Scholar 

  • Golueke CG, Oswald WJ, Gotaas HB (1957) Anaerobic digestion of algae. Appl Microbiol 5:47–55

    CAS  Google Scholar 

  • Graham LE, Wilcox WL (2000) Algae. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Gross M, Henry W, Michael C, Wen Z (2013) Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest. Bioresour Technol 150:195–201

    Article  CAS  Google Scholar 

  • Guil-Guerrero JL, Navarro-Juárez R, López-Martínez JC, Campra-Madrid P, Rebolloso-Fuentes MM (2004) Functional properties of the biomass of three microalgal species. J. Food Eng 65:511–517

    Article  Google Scholar 

  • Gupta RP, Ahuja S, Khan PK, Saxena H, Mohapatra (2000) Microbial biosorbents: meeting challenges of heavy metals pollution in aqueous solutions. Curr Sci 78(8):767–973

    Google Scholar 

  • Gupta SK, Ansari FA, Shriwastav A, Sahoo NK, Rawat I, Bux F (2016) Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for bio-fuels. J Clean Prod 115:255–264

    Article  CAS  Google Scholar 

  • Hanagata N, Takeuchi T, Fukuju Y (1992) Tolerance of microalgae to high CO2 and high temperature. Phytochemistry 31:3345–3348

    Article  CAS  Google Scholar 

  • Harayama S, Kishira H, Kasai Y, Shutsubo K (1999) Petroleum biodegradation in marine environments. J Mol Microbiol Biotechnol 1:63–70

    CAS  Google Scholar 

  • Harris PO, Ramelow GJ (1990) Binding of metal ions by particulate biomass derived from Chlorella vulgaris and Scenedesmus quadricauda. Environ Sci Technol 24:220–228

    Article  CAS  Google Scholar 

  • Harun R, Danquah MK (2011) Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochem 46:304–309

    Article  CAS  Google Scholar 

  • Heerenklage J, Maxfield T, Zapf A, Adwiraah H, Wieczorek N, Koerner I (2010) Anaerobic digestion of microalgae - possibilities and limits. In Third International Symposium on Energy from Biomass and Waste, Venice, Italy; 8–11 November

    Google Scholar 

  • Hernández D, Riaño B, Coca M, Solana M, Bertucco A, Garcia-Gonzalez MC (2016) Microalgae cultivation in high rate algal ponds using slaughterhouse wastewater for biofuel applications. Chem Eng J 285:449–458

    Article  CAS  Google Scholar 

  • Hirano A, Ueda R, Hirayama S, Ogushi Y (1997) CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 22:137–142

    Article  CAS  Google Scholar 

  • Holan ZR, Volesky B (1994) Biosorption of lead and nickel by biomass of marine algae. Biotechnol Bioeng 43:1001–1009

    Article  CAS  Google Scholar 

  • Integrated Pollution Prevention and Control (IPPC) (2003) Reference document on best available techniques for the textiles industry

    Google Scholar 

  • Jinqi L, Houtian L (1992) Degradation of azo dyes by algae. Environ Pollut 75:273–278

    Article  CAS  Google Scholar 

  • John J (2000) A self-sustainable remediation system for acidic mine voids. Paper presented in the 4th International conference of diffuse pollution, 506–11

    Google Scholar 

  • Johnson MB, Wen Z (2010) Development of an attached microalgal growth system for biofuel production. Appl Microbiol Biotechnol 85:525–534

    Article  CAS  Google Scholar 

  • Kalin M, Fyson A, Wheeler WN (2006) The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage. Sci Total Environ 366(2–3):395–408

    Article  CAS  Google Scholar 

  • Kamaleswari J, Murugesan S, Sivasubramanian V (2007) Screening of freshwater algae for phycoremediation potentialities of industrial effluents and waste water. Ecol Environ Conv 13(4):29–33

    Google Scholar 

  • Kannan N, Karthikeyan G, Vallinayagam, Tamilselvan N (2004) A study on assessment of pollution load of sugar industry effluent. ISEP 24(1):256–262

    Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzym Microb Technol 38(5):569–582

    Article  CAS  Google Scholar 

  • Khan SA, Rashmi Hussain MZ, Prasad S, Banerjee UC (2009) Prospects of biodiesel production from microalgae in India. Renew Sust Energy Rev 13:2361–2372

    Article  CAS  Google Scholar 

  • Kim S, Park JE, Cho YB, Hwang SJ (2013) Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Bioresour Technol 144:8–13

    Article  CAS  Google Scholar 

  • Kobayashi H, Rittman BE (1982) Microbial removal of hazardous organic compounds. Environ Sci Technol 16:170A–183A

    Article  CAS  Google Scholar 

  • Kothari R, Pathak VV, Kumar V, Kumar V, Singh DP (2012) Experimental study for growth potential of unicellular alga Chlorella pyrenoidosa on dairy wastewater; an integrated approach for treatment and biofuel production. Bioresour Technol 116:466–470

    Article  CAS  Google Scholar 

  • Kotteswari M, Murugesan S, Kamaleshwari J, Veeralakshmi M (2007) Biomanagement of dairy effluent using cyanobacteria. Indian Hydrobiol 10(1):109–116

    Google Scholar 

  • Kotteswari M, Murugesan S, Ranjith Kumar R (2012) Phycoremediation of dairy effluent by using the microalgae Nostoc sp. Int J Environ Res Dev 2:35–43

    Google Scholar 

  • Kshirsagar C (2010) Ecofriendly and cost effective treatment of herbal and bulk drug pharmaceutical wastewaters using Spirulina. Indian J Environ Prot 30(9):773–779

    CAS  Google Scholar 

  • Kumar KV, Ramamurthi V, Sivanesan S (2006) Dyes and pigments. Biosorption of malachite a green cationic dye onto Pithophora sp., a fresh water algae. Dyes Pigments 69:74–79

    Article  CAS  Google Scholar 

  • Kurano N, Ikemoto H, Miyashita H, Hasegawa T, Miyachi S (1996) Carbon dioxide uptake rate of Chlorococcum littorale. Oceanogr Lit Rev 43:953

    Google Scholar 

  • Kushwaha JP, Srivastava VC, Mall ID (2011) An overview of various technologies for the treatment of dairy wastewaters. Crit Rev Food Sci Nutr 51:442–452

    Article  CAS  Google Scholar 

  • Lee EG-H, Mueller JC, Walden CC (1978) Decolorization of bleached kraft mill effluents by algae. TAPPI 61(7):59–62

    CAS  Google Scholar 

  • Lee LHB, Lustigman I, Yu C, Hsu S (1992) Effects of lead and cobalt on the growth of Anacystis nidulans. Environ Contam Toxicol 48:230–236

    Article  CAS  Google Scholar 

  • Li Y, Zhou W, Hu B, Min M, Chen P, Ruan RR (2011) Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: strains screening and significance evaluation of environmental factors. Bioresour Technol 102(23):10861–10867

    Article  CAS  Google Scholar 

  • Lincoln EP, Wilkie AC, French B (1996) Cyanobacteria process for renovating dairy wastewater. Biomass Bioenergy 10:63–68

    Article  CAS  Google Scholar 

  • Liu T, Wang J, Hu Q et al (2013) Attached cultivation technology of microalgae for efficient biomass feedstock production. Bioresour Technol 127:216–222

    Article  CAS  Google Scholar 

  • Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR (2010) A realistic technology and engineering assessment. A report submitted to Energy Biosciences Institute, University of California, Berkeley, California

    Google Scholar 

  • Maeda K, Owada M, Kimura N, Omata L, Karube I (1995) CO2fixation from the flue gas on coal fired thermal power plant by microalgae. Energy Convers Manag 36:717–720

    Article  CAS  Google Scholar 

  • Manoharan C, Subramanaian G (1992) Interaction between paper mill effluent and the cyanobacterium Oscillatoria pseudogeminata var. unigranulata. Poll Res 11(2):73–84

    CAS  Google Scholar 

  • Markou G, Chatzipavlidis I, Georgakakis D (2012) Carbohydrates production and bio-flocculation characteristics in cultures of Arthrospira platensis: improvements through phosphorus limitation process. Bioenergy Res 5:915–925

    Article  CAS  Google Scholar 

  • Massoud AH, Derbalah AS, Belal ESB (2008) Microbial detoxification of metalaxyl in aquatic system. J Environ Sci 20:262–267

    Article  CAS  Google Scholar 

  • McGenity TJ, Folwell BD, McKew BA, Sanni GO (2012) Marine crude-oil biodegradation: a central role for interspecies interactions. Aquat Biosyst 8:10

    Article  Google Scholar 

  • McKendry P (2002) Energy production from biomass (Part 2): conversion technologies. Bioresour Technol 83:47–54

    Article  CAS  Google Scholar 

  • Meher LC, Vidya Sagar D, Naik SN (2006) Technical aspects of biodiesel production by transesterification — a review. Renew Sust Energ Rev 10:248–268

    Article  CAS  Google Scholar 

  • Melis A (2002) Green alga hydrogen production: progress, challenges and prospects. Int J Hydrog Energy 27:1217–1228

    Article  CAS  Google Scholar 

  • Metting FB (1996) Biodiversity and application of microalgae. J Ind Microbiol 17:477–489

    CAS  Google Scholar 

  • Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846

    Article  CAS  Google Scholar 

  • Mohan N, Rao PH, Kumar RR, Sivasubramanian V (2010) Mass cultivation of Chroococcus turgidus and Oscillatoria sp. and effective harvesting of biomass by low-cost methods. Nature Precedings. https://doi.org/10.1038/npre.2010.4331.1

  • Munoz R, Guieysee B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815

    Article  CAS  Google Scholar 

  • Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B (2007) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5(6):802–814

    Article  CAS  Google Scholar 

  • Nagasathya A, Thajuddin N (2008) Decolourization of paper mill effluent using hypersaline cyanobacterium. Res J Environ Sci 2(5):408–414

    Article  CAS  Google Scholar 

  • Nagase H, Yoshihara K, Eguchi K et al (2001) Uptake pathway and continuous removal of nitric oxide from flue gas using microalgae. Biochem Eng J 7:241–246

    Article  CAS  Google Scholar 

  • Nakano Y, Miyatake K, Okuno H, Hamazaki K, Takenaka S, Honami N, Kiyota M, Aiga I, Kondo J (1996) Growth of photosynthetic algae euglena in high CO2 conditions and its photosynthetic characteristics. Acta Hortic 9:49–54

    Article  Google Scholar 

  • Neilson A, Lewin R (1974) Uptake and utilization of organic carbon by algae. Phycology 13:229–257

    Google Scholar 

  • Nigerian Institute of Safety Professionals (2003) Contractor employee HSE training manual, level 3. ECNEL Ltd, Port Harcourt

    Google Scholar 

  • Nithiya A, Rao PH, Kumar TS (2016) Bioremediation of aquaculture wastewater using nitrifying bacteria-microalga consortium with special reference to ammoniacal nitrogen. Int J Curr Res Acad Rev 4(12):164–177

    Article  CAS  Google Scholar 

  • Ogbonna JC, Yoshizawa H, Tanaka H (2000) Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. J Appl Phycol 12:277–284

    Article  CAS  Google Scholar 

  • Olguin EJ (2003) Phycoremediation: key issues for cost-effective nutrient removal process. Biotechnol Adv 22:81–91

    Article  CAS  Google Scholar 

  • Omofonwan SI, Eseigbe JO (2009) Effects of solid waste on the quality of underground water in Benin Metropolis, Nigeria. J Hum Ecol 26(2):99–105

    Article  Google Scholar 

  • Oswald WJ (1988) Micro-algae and waste-water treatment. In: Borowitzka MBL (ed) Micro-algal biotechnology. Cambridge University Press, Cambridge, UK, pp 305–328

    Google Scholar 

  • Oswald WJ (2003) My sixty years in applied algology. J Appl Phycol 15:99–106

    Article  CAS  Google Scholar 

  • Oswald WJ, Gotaas B (1957) Photosynthesis in sewage treatment. Trans Am Soc Civil Eng 122:73–105

    Google Scholar 

  • Oswald WJ, Gotaas HB, Golueke CG, Kellen WR, Gloyna EF, Hermann ER (1957) Algae in waste treatment. Sewage Ind Wastes 29(4):437–457

    Google Scholar 

  • Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9(3):165–177

    Article  CAS  Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57(3):287–293

    Article  CAS  Google Scholar 

  • Ramelow GJ, Fralick D, Zhao Y (1992) Factors affecting the uptake of aqueous metal ions by dried seaweed biomass. Microbios 72:81–93

    CAS  Google Scholar 

  • Rao PH, Sivasubramanian V (2016) Phycoremediation – present and the future. J Algal Biomass Utln 7(3):68–69

    Google Scholar 

  • Rao PH, Kumar RR, Subramanian VV, Sivasubramanian V (2010) Environmental impact assessment of Chlorella vulgaris employed in phycoremediation of effluent from a leather-processing chemical industry. J Algal Biomass Utln 1(2):42–50

    Google Scholar 

  • Rao PH, Kumar RR, Raghaven BG, Subramanian VV, Sivasubramanian V (2011a) Application of phycoremediation technology in the treatment of wastewater from leather-processing chemical manufacturing facility. Water SA 37(1):7–14

    Google Scholar 

  • Rao PH, Kumar RR, Raghavan BG, Subramanian VV, Sivasubramanian V (2011b) Is phycovolatilization of heavy metals a probable (or possible) physiological phenomenon? An in situ pilot-scale study at a leatherprocessing chemical industry. Water Env Res 83(4):291–297

    Article  CAS  Google Scholar 

  • Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2011) Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424

    Article  CAS  Google Scholar 

  • Rawat I, Gupta SK, Srivastav A, Singh P, Kumari S, Bux F (2016) Microalgae applications in wastewater treatment. In: Bux F, Chisti Y (eds) Algae biotechnology: products and processes. Springer, Cham, pp 249–268

    Chapter  Google Scholar 

  • Reith JH, Wijffels RH, Barten H (2003) Bio-methane and bio-hydrogen: status and perspectives of biological methane and hydrogen production. Dutch Biological Hydrogen Foundation

    Google Scholar 

  • Roessler PG, Bleibaum JL, Thompson GA, Ohlrogge JB (1994) Characteristics of the gene that encodes acetyl-CoA carboxylase in the diatom Cyclotella cryptica. Ann N Y Acad Sci 721:250–256

    Article  CAS  Google Scholar 

  • Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19:430–436

    Article  CAS  Google Scholar 

  • Sakthivel R, Elumalai S (2016) Phycoremediation of industrial effluent from tannery in Peranampattu and Ambur area of Palar River. Eur J Biomed Pharm Sci 3(3):260–266

    CAS  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1(1):20–43

    Article  Google Scholar 

  • Seckbach J, Gross H, Nathan MB (1971) Growth and photosynthesis of Cyanidium Caldarium cultured under pure CO2. Israel J Bot 20:84–90

    CAS  Google Scholar 

  • Semple KT, Cain RB, Schemidt S (1999) Biodegradation of aromatic compounds by microalgae. FEMS Microbiol Lett 170:291–300

    Article  CAS  Google Scholar 

  • Setlik I, Veladimir S, Malek I (1970) Dual purpose open circulation units for large scale culture of algae in temperate zones. I. Basic design considerations and scheme for pilot plant. Algological Studies (Trebon) 1:111–164

    Google Scholar 

  • Sharma R, Chandra S, Singh A, Singh K (2014) Degradation of pulp and paper mill effluents. IIOAB J 5:6–12

    CAS  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s Aquatic Species Program-biodiesel from algae. National Renewable Energy Laboratory, Golden, Report NREL/TP-580–24190

    Google Scholar 

  • Shiraiwa Y, Goyal A, Tolbert NE (1993) Alkalization of the medium by unicellular green algae during uptake dissolved inorganic carbon. Plant Cell Physiol 34(5):649–657

    Article  CAS  Google Scholar 

  • Shriwastav A, Gupta SK, Ansari FA, Rawat I, Bux F (2014) Adaptability of growth and nutrientuptake potential of Chlorella sorokiniana with variable nutrient loading. Bioresour Technol 174:60–66

    Article  CAS  Google Scholar 

  • Sivasubramanian V, Subramanian VV, Raghavan BG, Kumar RR (2009) Large scale phycoremediation of acidic effluent from an alginate industry. ScienceAsia 35:220–226

    Article  CAS  Google Scholar 

  • Sivasubramanian V, Subramanian V, Ranjithkumar R, Muthukumaran M (2010a) Production of algal biomass integrated with Phycoremediation – a sustainable and economically viable approach. J Algal Biomass Utln 1(4):10–57

    Google Scholar 

  • Sivasubramanian V, Subramanian VV, Muthukumaran M (2010b) Bioremediation of chrome-sludge from an electroplating industry using the micro alga Desmococcus olivaceus – a pilot study. J Algal Biomass Utln 1(3):104–128

    Google Scholar 

  • Sobczuk TM, Camacho FG, Rubio FC, Fernandez FGA, Grima EM (2000) Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors. Biotechnol Bioeng 67:465–475

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  Google Scholar 

  • Sreekanth D, Pooja K, Seeta Y, Himabindu V, Reddy PM (2014) Bioremediation of dairy wastewater using microalgae for the production of biodiesel. IJSEAT 2:783–791

    Google Scholar 

  • Tang EPY, Vincent WF, Proulx D, Lessard P, De la Noue J (1997) Polar cyanobacteria versus green algae for tertiary wastewater treatment in cool climates. J. Appl Phycol 9:371–381

    Article  CAS  Google Scholar 

  • Tarlan E, Dilek FE, Yetis U (2002) Effectiveness of algae in the treatment of a wood-based pulp and paper industry wastewater. Bioresour Technol 84:1–5

    Article  CAS  Google Scholar 

  • Tesmer MG, Joyce TW (1980) Algal assay bottle test response to pulp and paper mill effluents. TAPPI 63(9):105–108

    Google Scholar 

  • Thomas DG, Minj N, Mohan N, Rao PH (2016) Cultivation of microalgae in domestic wastewater for biofuel applications – an upstream approach. J Algal Biomass Utln 7(1):62–70

    Google Scholar 

  • Ueno Y, Kurano N, Miyachi S (1998) Ethanol production by dark fermentation in the marine green alga, Chlorococcum littorale. J Ferment Bioengineer 86(1):38–43

    Article  CAS  Google Scholar 

  • Umamaheswari J, Shanthakumar S (2016) Efficacy of microalgae for industrial wastewater treatment: a review on operating conditions, treatment efficiency and biomass productivity. Rev Environ Sci Bio 15(2):265–284

    Article  CAS  Google Scholar 

  • Usha MT, Chandra TS, Sarada R, Chauhan VS (2016) Removal of nutrients and organic pollution load from pulp and paper mill effluent by microalgae in outdoor open pond. Bioresour Technol 214:856–860

    Article  CAS  Google Scholar 

  • Vanerkar AP, Fulke AB, Lokhande SK, Giripunje MD, Satyanarayan S (2015) Recycling and treatment of herbal pharmaceutical wastewater using Scenedesmus quadricauda. Curr Sci 108(5):979–983

    CAS  Google Scholar 

  • Venkataraman LV (2005) Algal industrial application- dose it have a future? Indian Hydrobiology 7(Supplement):43–47

    Google Scholar 

  • Vignesh M, Shivasankar S, Rao PH, Kumar RR, Sivasubramanian V (2006) Phycoremediation of effluents from tannery and pharmaceutical industries – a lab study. Indian Hydrobiol 9(1):51–60

    Google Scholar 

  • Walker JD, Colwell RR, Petrakis L (1975) Degradation of petroleum by an alga, Prototheca zopfii. Appl Microbiol 30:79–81

    CAS  Google Scholar 

  • Watanabe Y, Hall DO (1995) Photosynthetic CO2 fixation technologies using a helical tubular bioreactor incorporating the filamentous cyanobacterium Spirulina platensis. Energ Convers Manag 36:721–724

    Article  CAS  Google Scholar 

  • Weissman JC, and Goebel RP 1987. Design and analysis of microalgal open pond systems for the purpose of producing fuels. A subcontract report, U.S. Dept. of Energy

    Google Scholar 

  • WWAP (United Nations World Water Assessment Programme) (2017) Wastewater: the untapped resource. The United Nations World Water Development Report. Paris:ISBN 978-92-3-100201-4

  • Yan H, Pan G (2004) Increase in biodegradation of dimethyl phthalate byClosterium lunulausing inorganic carbon. Chemosphere 55:1281–1285

    Article  CAS  Google Scholar 

  • Zamalloa C, Boon N, Verstraete W (2012) Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions. Appl Energy 92:733–738

    Article  CAS  Google Scholar 

  • Zhu H, Béland M (2006) Evaluation of alternative methods of preparing hydrogen producing seeds from digested wastewater sludge. Int J Hydrog Energy 31(14):1980–1988

    Article  CAS  Google Scholar 

  • Zhou Y, Schideman L, Yu G, Zhang Y (2013) A synergistic combination of algal wastewater treatment and hydrothermal biofuel production maximized by nutrient and carbon recycling. Energy Environ Sci 6:3765–3779

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Polur Hanumantha Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rao, P.H., Kumar, R.R., Mohan, N. (2019). Phycoremediation: Role of Algae in Waste Management. In: Bharagava, R. (eds) Environmental Contaminants: Ecological Implications and Management . Microorganisms for Sustainability, vol 14. Springer, Singapore. https://doi.org/10.1007/978-981-13-7904-8_3

Download citation

Publish with us

Policies and ethics