Skip to main content

Metal Toxicity and Nitrogen Metabolism in Plants: An Overview

  • Chapter
  • First Online:
Carbon and Nitrogen Cycling in Soil

Abstract

Heavy metal pollution has emerged as a severe threat to the environment as well as global food security. Exposure of plants to the heavy metals could cause perturbations in various physiological, biochemical, and metabolic processes including nitrogen (N) uptake and assimilation. Here, we discussed the effects of metal toxicity on N uptake, N forms, mechanism of metal toxicity, and nitrogen assimilation in plants. We provided a detailed description on the behavior of various enzymes including nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), and glutamate dehydrogenase (GDH) under metal toxicity. We highlighted the response of various nitrogenous compounds and their special role under metal toxicity. In addition, we discussed the effects of excess metals on N fixation in plants and provided the guidelines for further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

As:

Arsenic

Cd:

Cadmium

Cu:

Copper

Fe:

Iron

GB:

Glycine betaine

GDH:

Glutamate dehydrogenase

Gln:

Glutamine

Glu:

Glutamate

GOGAT:

Glutamate synthase

GS:

Glutamine synthetase

Hg:

Mercury

MDA:

Malondialdehyde

Mn:

Manganese

Mo:

Molybdenum

N:

Nitrogen

NH4 + :

Ammonium

Ni:

Nickel

NiR:

Nitrite reductase

NO3 :

Nitrate

NR:

Nitrate reductase

Pb:

Lead

ROS:

Reactive oxygen species

SH:

Sulfhydryl

V:

Vanadium

Zn:

Zinc

References

  • Alcázar R, Marco F, Cuevas JC et al (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28(23):1867–1876

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals, concepts and applications. Chemosphere 91(7):869–881

    Article  CAS  Google Scholar 

  • Andrews M, Raven JA, Lea PJ (2013) Do plants need nitrate? The mechanisms by which nitrogen form affects plants. Ann Appl Biol 163(2):174–199

    Article  CAS  Google Scholar 

  • Anjum SA, Tanveer M, Hussain S et al (2016) Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress. Environ Sci Pollut Res 23(12):11864–11875

    Article  CAS  Google Scholar 

  • Anjum SA, Tanveer M, Hussain S et al (2017) Alteration in growth, leaf gas exchange, and photosynthetic pigments of maize plants under combined cadmium and arsenic stress. Water Air Soil Pollut 228(1):13

    Article  CAS  Google Scholar 

  • Antunes F, Aguilar M, Pineda M et al (2008) Nitrogen stress and the expression of asparagine synthetase in roots and nodules of soybean (Glycine max). Physiol Plant 133:736–743

    Article  CAS  Google Scholar 

  • Arora NK, Khare E, Singh S et al (2010) Effect of Al and heavy metals on enzymes of nitrogen metabolism of fast and slow growing rhizobia under explanta conditions. World J Microbiol Biotechnol 26:811–816

    Article  CAS  Google Scholar 

  • Ashoka P, Meena RS, Kumar S, Yadav GS, Layek J (2017) Green nanotechnology is a key for eco-friendly agriculture. J Clean Prod 142:4440–4441

    Article  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycinebetaine and proline in improving plant abiotic resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Ashraf U, Kanu AS, Mo Z et al (2015) Lead toxicity in rice: effects, mechanisms, and mitigation strategies-a mini review. Environ Sci Pollut Res 22(23):18318–18332

    Article  CAS  Google Scholar 

  • Ashraf U, Hussain S, Anjum SA et al (2017) Alterations in growth, oxidative damage, and metal uptake of five aromatic rice cultivars under lead toxicity. Plant Physiol Biochem 115:461–471

    Article  CAS  Google Scholar 

  • Astolfi S, Zuchi S, Passera C (2004) Role of sulphur availability on cadmium induced changes of nitrogen and sulphur metabolism in maize (Zea mays L.) leaves. J Plant Physiol 161:795–802

    Article  CAS  Google Scholar 

  • Athar R, Ahmad M (2002a) Heavy metal toxicity: effect on plant growth and metal uptake by wheat, and on free living Azotobacter. Water Air Soil Pollut 138(1–4):165–180

    Article  CAS  Google Scholar 

  • Athar R, Ahmad M (2002b) Heavy metal toxicity in legume-microsymbiont system. J Plant Nutr 25(2):369–386

    Article  CAS  Google Scholar 

  • Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14:1–94

    Article  CAS  Google Scholar 

  • Aziz O, Hussain S, Rizwan M et al (2018) Increasing water productivity, nitrogen economy, and grain yield of rice by water saving irrigation and fertilizer-N management. Environ Sci Pollut Res 25:1–15. https://doi.org/10.1007/s11356-018-1855-z

    Article  CAS  Google Scholar 

  • Balestrasse KB, Gardey L, Gallego SM et al (2001) Response of antioxidant defence system in soybean nodules and roots subjected to cadmium stress. Funct Plant Biol 28(6):497–504

    Article  CAS  Google Scholar 

  • Balestrasse KB, Gallego SM, Tomaro ML (2004) Cadmium-induced senescence in nodules of soybean (Glycine max L.) plants. Plant Soil 262(1–2):373–381

    Article  CAS  Google Scholar 

  • Balestrasse KB, Gallego SM, Tomaro ML (2006) Oxidation of the enzymes involved in nitrogen assimilation plays an important role in the cadmium-induced toxicity in soybean plants. Plant Soil 284(1–2):187–194

    Article  CAS  Google Scholar 

  • Barroso JB, Francisco JC, Alfonso C et al (2006) Localization of S-nitrosoglutathione and expression of S-nitrosoglutathione reductase in pea plants under cadmium stress. J Exp Bot 57(8):1785–1793

    Article  CAS  Google Scholar 

  • Belimov AA, Dodd IC, Safronova VI et al (2015) The cadmium-tolerant pea (Pisum sativum L.) mutant SGECdt is more sensitive to mercury: assessing plant water relations. J Exp Bot 66(8):2359–2369

    Article  CAS  Google Scholar 

  • Bharwana SA, Ali S, Farooq MA et al (2014) Glycine betaine-induced lead toxicity tolerance related to elevated photosynthesis, antioxidant enzymes suppressed lead uptake and oxidative stress in cotton. Turk J Bot 38(2):281–292

    Article  CAS  Google Scholar 

  • Bianucci E, Fabra A, Castro S (2011) Cadmium accumulation and tolerance in Bradyrhizobium spp. (Peanut Microsymbionts). Curr Microbiol 62:96–100

    Article  CAS  Google Scholar 

  • Bielawski W (1994) Effect of some compounds on glutamine synthetase isoform activity from Triticale seedling leaves. Acta Physiol Plant 16:303–308

    CAS  Google Scholar 

  • Bishnoi NR, Chugh LK, Sawhney SK (1993) Effect of chromium on photosynthesis, respiration and nitrogen fixation in pea (Pisum sativum L.) seedlings. J Plant Physiol 142(1):25–30

    Article  CAS  Google Scholar 

  • Boussama N, Ouariti O, Suzuki A (1999a) Cd-stress on nitrogen assimilation. J Plant Physiol 159:310–317

    Article  Google Scholar 

  • Boussama N, Ouariti O, Ghorbal MH (1999b) Changes in growth and nitrogen assimilation in barley seedlings under cadmium stress. J Plant Nutr 22:731–752

    Article  CAS  Google Scholar 

  • Bravo S, Amorós JA, Pérez-de-los-Reyes C et al (2017) Influence of the soil pH in the uptake and bioaccumulation of heavy metals (Fe, Zn, Cu, Pb and Mn) and other elements (Ca, K, Al, Sr and Ba) in vine leaves, Castilla-La Mancha (Spain). J Geochem Explor 174:79–83

    Article  CAS  Google Scholar 

  • Britto DT, Kronzucker HJ (2002) NH4+ toxicity in higher plants: a critical review. J Plant Physiol 159(6):567–584

    Article  CAS  Google Scholar 

  • Broos K, Beyens H, Smolders E (2005) Survival of rhizobia in soil is sensitive to elevated zinc in the absence of the host plant. Soil Biol Biochem 37:573–579

    Article  CAS  Google Scholar 

  • Burger M, Jackson LE (2003) Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems. Soil Biol Biochem 35(1):29–36

    Article  CAS  Google Scholar 

  • Burzynski M (1990) Activity of some enzymes involved in N03’ assimilation in cucumber seedlings treated with lead or cadmium. Acta Physiol Plant 12:105–110

    CAS  Google Scholar 

  • Burzynski M, Buczek J (1994) The influence of Cd, Pb, Cu and Ni on NO-uptake by cucumber seedlings. II. In vivo and in vitro effects of Cd, Pb, Cu and Ni on the plasmalemma ATPase and oxidoreductase from cucumber seedling roots. Acta Physiol Plant 16:297–302

    CAS  Google Scholar 

  • Burzynski M, Buczek J (1997) The effect of Cu2+ on uptake and assimilation of ammonium by cucumber seedlings. Acta Physiol Plant 19:3–8

    Article  Google Scholar 

  • Burzynski M, Buczek J (1998) Uptake and assimilation of ammonium ions by cucumber seedlings from solutions with different pH and addition of heavy metals. Acta Soc Bot Polon 67:197–200

    Article  CAS  Google Scholar 

  • Carillo P, Mastrolonardo G, Nacca F et al (2005) Nitrate reductase in durum wheat seedlings as affected by nitrate nutrition and salinity. Funct Plant Biol 32(3):209–219

    Article  CAS  Google Scholar 

  • Carpena RO, Vázquez S, Esteban E et al (2003) Cadmium-stress in white lupin: effects on nodule structure and functioning. Plant Physiol Biochem 41(10):911–919

    Article  CAS  Google Scholar 

  • Cesco S, Neumann G, Tomasi N et al (2010) Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 329(1–2):1–25

    Article  CAS  Google Scholar 

  • Chaffai R, Koyama H (2011) Heavy metal tolerance in Arabidopsis thaliana. In: Advances in botanical research, vol 60. Academic, Dordrecht, pp 1–49

    Chapter  Google Scholar 

  • Chaffei C, Gouia H, Ghorbel MH (2003) Nitrogen metabolism in tomato plants under cadmium stress. J Plant Nutr 26:1617–1634

    Article  CAS  Google Scholar 

  • Chaffei C, Pageau K, Suzuki A et al (2004) Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Cell Physiol 45:1681–1693

    Article  CAS  Google Scholar 

  • Chen C, Wabduragala S, Becker DF et al (2006) Tomato QM-like protein protects Saccromyces cerevisiae cells against oxidative stress by regulation intracellular proline levels. Appl Environ Microbiol 72:4001–4006

    Article  CAS  Google Scholar 

  • Cheng Y, Wang J, Mary B et al (2013) Soil pH has contrasting effects on gross and net nitrogen mineralizations in adjacent forest and grassland soils in central Alberta, Canada. Soil Biol Biochem 57:848–857

    Article  CAS  Google Scholar 

  • Cheng Y, Wang C, Chai S et al (2018) Ammonium N influences the uptakes, translocations, subcellular distributions and chemical forms of Cd and Zn to mediate the Cd/Zn interactions in dwarf polish wheat (Triticum polonicum L.) seedlings. Chemosphere 193:1164–1171

    Article  CAS  Google Scholar 

  • Chibuike G, Obiora S (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:1–12

    Article  CAS  Google Scholar 

  • Chien HF, Kao CH (2000) Accumulation of ammonium in rice leaves in response to excess cadmium. Plant Sci 156:111–115

    Article  CAS  Google Scholar 

  • Choppala G, Saifullah BN et al (2014) Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Crit Rev Plant Sci 33:374–391

    Article  CAS  Google Scholar 

  • Chugh LK, Gupta VK, Sawhney SK (1992) Effect of cadmium on enzymes of nitrogen metabolism in pea seedlings. Phytochemistry 31:395–400

    Article  CAS  Google Scholar 

  • Cruz FJR, de Almeida HJ, dos Santos et al (2014) Growth, nutritional status and nitrogen metabolism in ‘Vigna unguiculata’ (L.) Walp is affected by aluminum. Aust J Crop Sci 8(7):1132

    CAS  Google Scholar 

  • Dabonne S, Koffi B, Kouadio E et al (2010) Traditional utensils: potential sources of poisoning by heavy metals. Br J Pharmacol Toxicol 151(2):90–92

    Google Scholar 

  • Dadhich RK, Meena RS (2014) Performance of Indian mustard (Brassica juncea L.) in response to foliar spray of thiourea and thioglycolic acid under different irrigation levels. Indian J Ecol 41(2):376–378

    Google Scholar 

  • Datta R, Anand S, Moulick A, Baraniya D, Pathan SI, Rejsek K, Vranova V, Sharma M, Sharma D, Kelkar A (2017a) How enzymes are adsorbed on soil solid phase and factors limiting its activity: a review. Int Agrophys 31(2):287–302

    Article  CAS  Google Scholar 

  • Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena RS, Formanek P (2017b) Enzymatic degradation of lignin in soil: a review. Sustain MDPI 1163(9):1–18

    Google Scholar 

  • Datta R, Baraniya D, Wang Y-F, Kelkar A, Meena RS, Yadav GS, Teresa Ceccherini M, Formanek P (2017c) Amino acid: its dual role as nutrient and scavenger of free radicals in soil. Sustainability 9(8):1402

    Article  CAS  Google Scholar 

  • Demidchik V, Sokolik A, Yurin V (1997) The effect of Cu2+ on ion transport systems of the plant cell plasmalemma. Plant Physiol 114:1313–1325

    Article  CAS  Google Scholar 

  • Devi SR, Prasad MNV (1999) Membrane lipid alterations in heavy metal exposed plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants, from molecules to ecosystems. Springer, New York, pp 99–116

    Chapter  Google Scholar 

  • Dinakar N, Nagajyothi PC, Suresh S et al (2008) Phytotoxicity of cadmium on protein, proline and antioxidant enzyme activities in growing Arachis hypogaea L. seedlings. J Environ Sci 20(2):199–206

    Article  CAS  Google Scholar 

  • Dinakar N, Nagajyothi PC, Suresh S et al (2009) Cadmium induced changes on proline, antioxidant enzymes, nitrate and nitrite reductases in Arachis hypogaea L. J Environ Biol 30(2):289–294

    CAS  Google Scholar 

  • Domínguez MJ, Gutiérrez F, León R (2003) Cadmium increases the activity levels of glutamate dehydrogenase and cysteine synthase in Chlamydomonas reinhardtii. Plant Physiol Biochem 41:828–832

    Article  CAS  Google Scholar 

  • Ekmekci Y, Tanyolac D, Ayhan B (2008) Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J Plant Physiol 165:600–611

    Article  CAS  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F et al (2018) Growth responses and photosynthetic indices of bamboo plant (Indocalamus latifolius) under heavy metal stress. Sci World J 2018:1

    Article  CAS  Google Scholar 

  • Fageria NK, Filho MPB, Moreira A et al (2009) Foliar fertilization of crop plants. J Plant Nutr 32:1044–1064

    Article  CAS  Google Scholar 

  • Fashola M, Ngole-Jeme V, Babalola O (2016) Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. Int J Environ Res Public Health 13:1047

    Article  CAS  Google Scholar 

  • Fontaine JX, Saladino F, Agrimonti C et al (2006) Control of the synthesis and subcellular targeting of the two GDH gene products in leaves and stems of Nicotiana plumbaginifolia and Arabidopsis thaliana. Plant Cell Physiol 47:410–418

    Article  CAS  Google Scholar 

  • Frink CR, Waggoner PE, Ausubel JH (1999) Nitrogen fertilizer: retrospect and prospect. Proc Natl Acad Sci 96(4):1175–1180

    Article  CAS  Google Scholar 

  • Gajewska E, Skłodowska M (2009) Nickel-induced changes in nitrogen metabolism in wheat shoots. J Plant Physiol 166:1034–1044

    Article  CAS  Google Scholar 

  • Garnett T, Conn V, Kaiser BN (2009) Root based approaches to improving nitrogen use efficiency in plants. Plant Cell Environ 32(9):1272–1283

    Article  CAS  Google Scholar 

  • Geiger M, Haake V, Ludewig F (1999) The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco. Plant Cell Environ 22(10):1177–1199

    Article  Google Scholar 

  • Ghosh S, Saha J, Biswas AK (2013) Interactive influence of arsenate and selenate on growth and nitrogen metabolism in wheat (Triticum aestivum L.) seedlings. Acta Physiol Plant 35(6):1873–1885

    Article  CAS  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial process in agricultural soils. A review. Soil Biol Biochem 30:1389–1414

    Article  CAS  Google Scholar 

  • Gouia H, Ghorbal MH, Meyer C (2000a) Effects of cadmium on activity of nitrate reductase and on other enzymes of the nitrate assimilation pathway in bean. Plant Physiol Biochem 38:629–638

    Article  CAS  Google Scholar 

  • Gouia H, Suzuki A, Brulfert J et al (2000b) Effects of cadmium on the co-ordination of nitrogen and carbon metabolism in bean seedlings. J Plant Physiol 160:367–376

    Article  Google Scholar 

  • Gouia H, Suzuki A, Brulfert J et al (2003) Effects of cadmium on the co-ordination of nitrogen and carbon metabolism in bean seedlings. J Plant Physiol 160(4):367–376

    Article  CAS  Google Scholar 

  • Graham PH, Vance CP (2000) Nitrogen fixation in perspective: an overview of research and extension needs. Field Crops Res 65(2–3):93–106

    Article  Google Scholar 

  • Greenwood NN, Earnshaw A (2012) Chemistry of the elements. Elsevier, Amsterdam/London/New York

    Google Scholar 

  • Groppa MD, Tomaro ML, Benavides MP (2007) Polyamines and heavy metal stress: the antioxidant behavior of spermine in cadmium-and copper-treated wheat leaves. Biometals 20(2):185–195

    Article  CAS  Google Scholar 

  • Gumpu MB, Sethuraman S, Krishnan UM et al (2015) A review on detection of heavy metal ions in water? An electrochemical approach. Sens Actuators B Chem 213:515–533

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11

    Article  CAS  Google Scholar 

  • Hernandez LE, Giirate A, Carpenta-Ruiz R (1996) Influence of cadmium on the assimilation of two cultivars of Zea mays. In: Cleemput OV, Hofman G, Vermoesen A (eds) Progress in nitrogen cycling studies. Kluwer Academic Publishers, Dordrecht, pp 115–132

    Google Scholar 

  • Hernandez LE, Garate A, Carpena-Ruiz R (1997) Effects of cadmium on the uptake, distribution and assimilation of nitrate in Pisum sativum. Plant Soil 189:97–106

    Article  CAS  Google Scholar 

  • Huang H, Xiong ZT (2009) Toxic effects of cadmium, acetochlor and bensulfuron-methyl on nitrogen metabolism and plant growth in rice seedlings. Pest Biochem Physiol 94:64–67

    Article  CAS  Google Scholar 

  • Hussain D, Haydon MJ, Wang Y et al (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339

    Article  CAS  Google Scholar 

  • Hussain S, Khan F, Cao W et al (2016) Seed priming alters the production and detoxification of reactive oxygen intermediates in rice seedlings grown under sub-optimal temperature and nutrient supply. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.00439

  • Imran M, Kanwal S, Hussain S et al (2015) Efficacy of zinc application methods for concentration and estimated bioavailability of zinc in grains of rice grown on a calcareous soil. Pak J Agric Sci 52(1):169–175

    Google Scholar 

  • Ireland RJ, Lea PJ (1999) The enzymes ofglu-nine, glutamate, asparagine and aspartate metabolism. In: Singh BK (ed) Plant amino acids: biochemistry and biotechnology, vol 109. Marcel Dekker, New York

    Google Scholar 

  • Islam MM, Hoque MA, Okuma E et al (2010) Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J Plant Physiol 166:1587–1159

    Article  CAS  Google Scholar 

  • Jerzykiewicz J (2001) Aluminium effect on the nitrate assimilation in cucumber (Cucumis sativus L.) roots. Acta Physiol Plant 23:213–219

    Article  CAS  Google Scholar 

  • Jha AB, Dubey RS (2004) Arsenic exposure alters activity behavior of key nitrogen assimilatory enzymes in growing rice plants. Plant Growth Regul 43:259–268

    Article  CAS  Google Scholar 

  • Kakkar RK, Sawhney VK (2002) Polyamine research in plants–a changing perspective. Physiol Plant 116(3):281–292

    Article  CAS  Google Scholar 

  • Kalyanaraman SB, Sivagurunathan P (1993) Effect of cadmium, copper and zinc on the growth of blackgram. J Plant Nutr 16:2029–2042

    Article  CAS  Google Scholar 

  • Kapoor V, Li X, Elk M et al (2015) Impact of heavy metals on transcriptional and physiological activity of nitrifying bacteria. Environ Sci Technol 49(22):13454–13462

    Article  CAS  Google Scholar 

  • Kevrešan S, Petrović N, Popović M et al (1998) Effect of heavy metals on nitrate and protein metabolism in sugar beet. Biol Plant 41(2):235–240

    Article  Google Scholar 

  • Kevrešan S, Petrović N, Popović M et al (2001) Nitrogen and protein metabolism in young pea plants as affected by different concentrations of nickel, cadmium, lead, and molybdenum. J Plant Nutr 24(10):1633–1644

    Article  Google Scholar 

  • Khan F, Hussain S, Tanveer M et al (2018) Coordinated effects of lead toxicity and nutrient deprivation on growth, oxidative status, and elemental composition of primed and non-primed rice seedlings. Environ Sci Pollut Res 19:1–10

    CAS  Google Scholar 

  • Krapp A, Fraisier V, Schleible WR et al (1998) Expression studies ofNrt2: INp, a putative high affinity nitrate transporter: evidence for its role in nitrate uptake. Plant J 6:723–732

    Article  Google Scholar 

  • Kubik-Dobosz G, Halajko T, Gbrska A (2001) Expression of amtl gene in the presence of some toxic ions. Acta Physiol Plant 23:187–192

    Article  CAS  Google Scholar 

  • Kumar S, Meena RS, Yadav GS, Pandey A (2017) Response of sesame (Sesamum indicum L.) to sulphur and lime application under soil acidity. Int J Plant Soil Sci 14(4):1–9

    Article  Google Scholar 

  • Lam HM, Coschigano KT, Melo-Oliveira O et al (1996) The molecular genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47:569–593

    CAS  Google Scholar 

  • Lee KC, Cunningham BA, Paulsen GM et al (1976) Effects of cadmium on respiration rate and activities of several enzymes in soybean seedlings. Physiol Plant 36(1):4–6

    Article  CAS  Google Scholar 

  • Lehmann S, Funck D, Szabados L et al (2010) Proline metabolism and transport in plant development. Amino Acids 39(4):949–962

    Article  CAS  Google Scholar 

  • Li P, Lu J, Wang Y et al (2018) Nitrogen losses, use efficiency, and productivity of early rice under controlled-release urea. Agric Ecosyst Environ 251:78–87

    Article  CAS  Google Scholar 

  • Llorens N, Arola L, Blade C et al (2000) Effects of copper exposure upon nitrogen metabolism in tissue cultured Vitis vinifera. Plant Sci 160:159–163

    Article  CAS  Google Scholar 

  • Lloyd DR, Phillips DH (1999) Oxidative DNA damage mediated by copper (II), iron (II) and nickel (II) Fenton reactions: evidence for site-specific mechanisms in the formation of double-strand breaks, 8-hydroxydeoxyguanosine and putative intrastrand cross-links. Mutat Res/Fundam Mol Mech Mutagen 424(1):23–36

    Article  CAS  Google Scholar 

  • Lojkova L, Datta R, Sajna M, Marfo TD, Janous D, Pavelka M, Formanek P (2015) Limitation of proteolysis in soils of forests and other types of ecosystems by diffusion of substrate. In: Amino acids, vol 8. Springer, Wien, pp 1690–1691

    Google Scholar 

  • Loulakakis KA, Loulakakis-Roubelakis KA (1996) The seven NAD(H)-glutamate dehydrogenase isoenzymes exhibit similar anabolic and catabolic activities. Physiol Plant 96:29–35

    Article  CAS  Google Scholar 

  • Ma B, Wang S, Cao S et al (2016) Biological nitrogen removal from sewage via anammox: recent advances. Bioresour Technol 200:981–990

    Article  CAS  Google Scholar 

  • Malar S, Vikram SS, Favas PJ et al (2016) Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot Stud 55(1):54

    Article  CAS  Google Scholar 

  • Mandal SM, Gouri SS, De D et al (2011) Effect of arsenic on nodulation and nitrogen fixation of blackgram (Vigna mungo). Indian J Microbiol 51(1):44–47

    Article  CAS  Google Scholar 

  • Mandal C, Ghosh N, Dey N et al (2013) Physiological responses of Salvinia natans L to aluminium stress and its interaction with putrescine. J Stress Physiol Biochem 9(4):1

    Google Scholar 

  • Marfo TD, Datta R, Lojkova L, Janous D, Pavelka M, Formanek P (2015) Limitation of activity of acid phosphomonoesterase in soils. In: Amino acids, vol 8. Springer, Wien, pp 1690–1691

    Google Scholar 

  • Masclaux-Daubresse C, Valadier MH, Carrayol E et al (2002) Diurnal changes in the expression of glutamate dehydrogenase and nitrate reductase are involved in the C/N balance of tobacco source leaves. Plant Cell Environ 25:1451–1462

    Article  CAS  Google Scholar 

  • Matiru VN, Dakora FD (2004) Potential use of rhizobial bacteria as promoters of plant growth for increased yield in landraces of African cereal crops. Afr J Biotechnol 3(1):1–7

    Article  CAS  Google Scholar 

  • Mattioni C, Gabbrielli R, Vangronsveld J et al (1997) Nickel and cadmium toxicity and enzymatic activity in intolerant and non-tolerant populations of Silene italica Pers. J Plant Physiol 150(1–2):173–177

    Article  CAS  Google Scholar 

  • Matysik J, Alia BB et al (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 10:525–532

    Google Scholar 

  • McAllister CH, Beatty PH, Good AG (2012) Engineering nitrogen use efficient crop plants: the current status. Plant Biotechnol J 10(9):1011–1025

    Article  CAS  Google Scholar 

  • Meena H, Meena RS (2017) Assessment of sowing environments and bio-regulators as adaptation choice for clusterbean productivity in response to current climatic scenario. Bangladesh J Bot 46(1):241–244

    Google Scholar 

  • Meena RS, Yadav RS (2015) Yield and profitability of groundnut (Arachis hypogaea L) as influenced by sowing dates and nutrient levels with different varieties. Leg Res 38(6):791–797

    Google Scholar 

  • Meena RS, Kumar S, Pandey A (2017) Response of sulfur and lime levels on productivity, nutrient content and uptake of sesame under guava (Psidium guajava L.) based Agri-horti system in an acidic soil of eastern Uttar Pradesh, India. J Crop Weed 13(2):222–227

    Google Scholar 

  • Meena RS, Kumar V, Yadav GS, Mitran T (2018) Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere: a review. Plant Growth Regul 84:207–223

    Article  CAS  Google Scholar 

  • Mengel, Kirkby (1987) Further elements of importance. Principle of plant nutrition, 4th edn. IPI Bern, Switzerland, pp 577–582

    Google Scholar 

  • Mevel G, Prieur D (2000) Heterotrophic nitrification by a thermophilic Bacillus species as influenced by different culture conditions. Can J Microbiol 46(5):465–473

    Article  CAS  Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15(4):523–530

    CAS  Google Scholar 

  • Miflin BJ, Habash DZ (2002) The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot 53:979–987

    Article  CAS  Google Scholar 

  • Miflin BJ, Lea PJ, Wallsgrove RM (1980) The role of glutamine in ammonia assimilation and reassimilation in plants. In: Glutamine: metabolism, enzymology, and regulation. Academic Press, New York, pp 213–234

    Chapter  Google Scholar 

  • Miller JO (2016) Soil PH and nutrient availability. http://hdl.handle.net/1903/18519

  • Miller AJ, Smith SJ (1996) Nitrate transport and compartmentation in cereal root cells. J Exp Bot 47:1455–1463

    Article  Google Scholar 

  • Mittal S, Sawhney SK (1990) Influence of lead on enzymes of nitrogen metabolism in germinating pea seeds. Plant Physiol Biochem 17:73

    Google Scholar 

  • Molaei A, Lakzian A, Datta R, Haghnia G, Astaraei A, Rasouli-Sadaghiani M, Ceccherini MT (2017a) Impact of chlortetracycline and sulfapyridine antibiotics on soil enzyme activities. Int Agrophys 31(4):499–505

    Article  CAS  Google Scholar 

  • Molaei A, Lakzian A, Haghnia G, Astaraei A, Rasouli-Sadaghiani M, Ceccherini MT, Datta R (2017b) Assessment of some cultural experimental methods to study the effects of antibiotics on microbial activities in a soil: an incubation study. PLoS One 12(7):e0180663

    Article  CAS  Google Scholar 

  • Myers RJK (1975) Temperature effects on ammonification and nitrification in a tropical soil. Soil Biol Biochem 7:83–86

    Article  CAS  Google Scholar 

  • Nichol BE, Oliveira LA, Glass ADM (1993) The effects of aluminum on the influx of calcium, potassium, ammonium, nitrate and phosphate in an aluminum-sensitive cultivar of barley (Hordeum vulgare L.). Plant Physiol 101:1263–1266

    Article  CAS  Google Scholar 

  • Oaks A (1994) Primary nitrogen assimilation in higher plants and its regulation. Can J Bot 72(6):739–750

    Article  CAS  Google Scholar 

  • Orzechowski S, Bielawski W (1997) Heavy metals and ammonium assimilation in triticale. J Appl Genet 38:265–270

    Google Scholar 

  • Orzechowski S, Kwinta J, Gworek B et al (1997) Biochemical indicators of environmental contamination with heavy metals. Pol J Environ Stud 6:47–50

    CAS  Google Scholar 

  • Pajuelo E, Rodríguez-Llorente ID, Dary M et al (2008) Toxic effects of arsenic on Sinorhizobium–Medicago sativa symbiotic interaction. Environ Pollut 154(2):203–211

    Article  CAS  Google Scholar 

  • Pandey M, Srivastava HS (1993) Inhibition of nitrate reductase activity and nitrate accumulation by mercury in maize leaf segments. Indian J Environ Health 39:473–481

    Google Scholar 

  • Parlak KU (2016) Effect of nickel on growth and biochemical characteristics of wheat (Triticum aestivum L.) seedlings. NJAS-Wageningen J Life Sci 76:1–5

    Article  Google Scholar 

  • Paudyal SP, Aryal RR, Chauhan SVS et al (2007) Effect of heavy metals on growth of rhizobium strains and symbiotic efficiency of two species of tropical legumes. Sci World 5:27–32

    Article  Google Scholar 

  • Pérez-Tienda J, Corrêa A, Azcón-Aguilar C et al (2014) Transcriptional regulation of host NH4+ transporters and GS/GOGAT pathway in arbuscular mycorrhizal rice roots. Plant Physiol Biochem 75:1–8

    Article  CAS  Google Scholar 

  • Perkins LB, Johnson DW, Nowak RS (2011) Plant-induced changes in soil nutrient dynamics by native and invasive grass species. Plant Soil 345(1–2):365–374

    Article  CAS  Google Scholar 

  • Popović M, Kevrešan S, Kandrač J et al (1996) The role of sulphur in detoxification of cadmium in young sugar beet plants. Biol Plant 38(2):281–287

    Article  Google Scholar 

  • Prasad MN, Strzalka K (eds) (2013) Physiology and biochemistry of metal toxicity and tolerance in plants. Springer, Dordrecht

    Google Scholar 

  • Quesada A, Hidalgo J, Femandez E (1997) Three nrt genes are differentially regulated in Chlamydomonas. Mol Genet 258:373–377

    Article  Google Scholar 

  • Rai V, Vajpayee P, Singh SN et al (2004) Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Sci 167(5):1159–1169

    Article  CAS  Google Scholar 

  • Ram K, Meena RS (2014) Evaluation of pearl millet and mungbean intercropping systems in arid region of Rajasthan (India). Bangladesh J Bot 43(3):367–370

    Article  Google Scholar 

  • Rengel Z, Bose J, Chen Q et al (2016) Magnesium alleviates plant toxicity of aluminium and heavy metals. Crop Pasture Sci 66(12):1298–1307

    Article  CAS  Google Scholar 

  • Riaz M, Yan L, Wu X et al (2018a) Boron alleviates the aluminum toxicity in trifoliate orange by regulating antioxidant defense system and reducing root cell injury. J Environ Manag 208:149–158

    Article  CAS  Google Scholar 

  • Riaz M, Yan L, Wu X et al (2018b) Boron reduces aluminum-induced growth inhibition, oxidative damage and alterations in the cell wall components in the roots of trifoliate orange. Ecotoxicol Environ Saf 153:107–115

    Article  CAS  Google Scholar 

  • Riaz M, Yan L, Wu X et al (2018c) Mechanisms of organic acids and boron induced tolerance of aluminum toxicity: a review. Ecotoxicol Environ Saf 165:25–35

    Article  CAS  Google Scholar 

  • Rosales EP, Iannone MF, Groppa MD et al (2012) Polyamines modulate nitrate reductase activity in wheat leaves: involvement of nitric oxide. Amino Acids 42(2–3):857–865

    Article  CAS  Google Scholar 

  • Ruiz JM, Rivero RM, Romero L (2007) Comparative effect of Al, Se, and Mo toxicity on NO3 assimilation in sunflower (Helianthus annuus L.) plants. J Environ Manag 83(2):207–212

    Article  CAS  Google Scholar 

  • Saifullah N, Sarwar S, Bibi M et al (2014) Effectiveness of zinc application to minimize cadmium toxicity and accumulation in wheat (Triticum aestivum L). Environ Earth Sci 71:1663–1672

    Article  CAS  Google Scholar 

  • Santamarı’a MM, Marrero ARD, Herna’ndez J et al (2003) Effect of thorium on the growth and capsule morphology of Bradyrhizobium. Environ Microbiol 5:916–924

    Article  CAS  Google Scholar 

  • Sarwar N, Malhi SS, Zia MH et al (2010) Role of mineral nutrition in minimizing cadmium accumulation by plants. J Sci Food Agric 90(6):925–937

    CAS  Google Scholar 

  • Sarwar N, Ishaq W, Farid G et al (2015) Zinc-cadmium interactions: impact on wheat physiology and mineral acquisition. Ecotoxicol Environ Saf 122:528–536

    Article  CAS  Google Scholar 

  • Sarwar N, Imran M, Shaheen MR et al (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    Article  CAS  Google Scholar 

  • Schmitt M, Watanabe T, Jansen S (2016) The effects of aluminium on plant growth in a temperate and deciduous aluminium accumulating species. AoB Plants 8:plw065

    Article  CAS  Google Scholar 

  • Selosse MA, Baudoin E, Vandenkoornhuyse P (2004) Symbiotic microorganisms, a key for ecological success and protection of plants. C R Biol 327(7):639–648

    Article  Google Scholar 

  • Sen G, Eryilmaz IE, Ozakca D (2014) The effect of aluminium-stress and exogenous spermidine on chlorophyll degradation, glutathione reductase activity and the photosystem II D1 protein gene (psbA) transcript level in lichen Xanthoria parietina. Phytochemistry 98:54–59

    Article  CAS  Google Scholar 

  • Seth CS (2012) A review on mechanisms of plant tolerance and role of transgenic plants in environmental clean-up. Bot Rev 78(1):32–62

    Article  Google Scholar 

  • Shah K, Dubey RS (2003) Environmental stresses and their impact on nitrogen assimilation in higher plants. In: Hemantranjan A (ed) Advances in plant physiology, vol 5. Scientific Publishers, Jodhpur, pp 397–431

    Google Scholar 

  • Shahzad B, Tanveer M, Rehman A (2018) Nickel; whether toxic or essential for plants and environment: a review. Plant Physiol Biochem 132:641. https://doi.org/10.1016/j.plaphy.2018.10.014

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57(4):711–726

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. J Plant Physiol 162(8):854–864

    Article  CAS  Google Scholar 

  • Sharma JOT, Subhadra AV (2010) The effect of mercury on nitrate reductase activity in bean leaf segments (Phaseolus vulgaris) and its chelation by phytochelatin synthesis. Life Sci Med Res 2010:1–8

    Google Scholar 

  • Sharma SS, Schat H, Vooijs R (1998) In vitro alleviation of heavy metal-induced enzyme inhibition by proline. Phytochemistry 49(6):1531–1535

    Article  CAS  Google Scholar 

  • Shaw BP, Sahu SK, Mishra RK (2004) Heavy metal induced oxidative damage in terrestrial plants. In: Presad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems, 2nd edn. Springer, Berlin, pp 84–126

    Chapter  Google Scholar 

  • Shi H, Chan Z (2014) Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway. J Integr Plant Biol 56(2):114–121

    Article  CAS  Google Scholar 

  • Shruti M, Dubey RS (2006) Heavy metal uptake and detoxification mechanisms in plants. Int J Agric Res 1:122–141

    Article  CAS  Google Scholar 

  • Silveira JAG, Melo ARB, Viégas RA et al (2001) Salinity-induced effects on nitrogen assimilation related to growth in cowpea plants. Environ Exp Bot 46(2):171–179

    Article  CAS  Google Scholar 

  • Singh PK, Tewari RK (2003) Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. J Environ Biol 24(1):107–112

    CAS  Google Scholar 

  • Singh RP, Singh DP, Jaiwal PK (2008) Nitrate and ammonium transporters in plants. Plant membrane and vacuolar transporters. CAB International, Wallingford, pp 83–103

    Book  Google Scholar 

  • Singh H, Singh A, Hussain I et al (2017) Oxidative stress induced by lead in Vigna radiata L. seedling attenuated by exogenous nitric oxide. Trop Plant Res 4(2):225–234

    Article  Google Scholar 

  • Skopelitis DS, Paranychianakis NV, Paschalidis KA et al (2006) Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell 18:2767–2781

    Article  CAS  Google Scholar 

  • Stan V, Gament E, Corena CP et al (2011) Effects of heavy metal from polluted soils on the rhizobium diversity. Not Bot Hort Agrobot Cluj 39:88–95

    Article  CAS  Google Scholar 

  • Stitt M (1999) Nitrate regulation of metabolism and growth. Curr Opin Plant Biol 2:178–186

    Article  CAS  Google Scholar 

  • Syntichaki KM, Loulakakis KA, Loulakakis-Roubelakis KA (1996) The amino-acid sequence similarity of plant glutamate dehydrogenase to the extremophilic archaeal enzyme conforms to its stress-related function. Gene 68:87–92

    Article  Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  Google Scholar 

  • Talano MA, Cejas RB, González PS et al (2013) Arsenic effect on the model crop symbiosis Bradyrhizobium–soybean. Plant Physiol Biochem 63:8–14

    Article  CAS  Google Scholar 

  • Terce-Laforgue´ T, Dubois F, Ferrario-Me’ry S et al (2004) Glutamate dehydrogenase of tobacco is mainly induced in the cytosol of phloem companion cells when ammonia is provided either externally or released during photorespiration. Plant Physiol 136:4308–4317

    Article  CAS  Google Scholar 

  • Vajpayee P, Tripathi RD, Rai UN et al (2000) Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere 41:1075–1082

    Article  CAS  Google Scholar 

  • Van Assche F, Cardinaels C, Clijsters H (1988) Induction of enzyme capacity in plants as a result of heavy metal toxicity: dose-response relations in Phaseolus vulgaris L., treated with zinc and cadmium. Environ Pollut 52(2):103–115

    Article  Google Scholar 

  • Varma D, Meena RS, Kumar S (2017) Response of mungbean to fertility and lime levels under soil acidity in an alley cropping system in Vindhyan region, India. Int J Chem Stud 5(2):384–389

    Google Scholar 

  • Verkleij JA, Golan-Goldhirsh A, Antosiewisz DM et al (2009) Dualities in plant tolerance to pollutants and their uptake and translocation to the upper plant parts. Environ Exp Bot 67(1):10–22

    Article  CAS  Google Scholar 

  • Verma SK, Singh SB, Prasad SK, Meena RN, Meena RS (2015) Influence of irrigation regimes and weed management practices on water use and nutrient uptake in wheat (Triticum aestivum L. Emend. Fiori and Paol.). Bangladesh J Bot 44(3):437–442

    Article  Google Scholar 

  • Wang MY, Siddiqi MY, Ruth TJ et al (1993) Ammonium uptake by rice roots. Plant Physiol 103:1259–1267

    Article  CAS  Google Scholar 

  • Wang L, Zhou Q, Ding L et al (2008) Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. J Hazard Mater 154:818–825

    Article  CAS  Google Scholar 

  • Wang Y, Lu J, Ren T et al (2017) Effects of nitrogen and tiller type on grain yield and physiological responses in rice. AoB Plants 9. https://doi.org/10.1093/aobpla/plx012

  • Wani PA (2008) Heavy metal toxicity to plant growth promoting rhizobacteria (PGPR) and certain legume crops. Ph.D. Thesis, Aligarh Muslim University, Aligarh, India

    Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Impact of heavy metal toxicity on plant growth, symbiosis, seed yield and nitrogen and metal uptake in chickpea. Aust J Exp Agric 47(6):712–720

    Article  CAS  Google Scholar 

  • Weber MB, Schat H, Ten Bookum-Van Der Maarel WM (1991) The effect of copper toxicity on the contents of nitrogen compounds in Silvena vulgaris (Moench) Garcke. Plant Soil 133:101–109

    Article  CAS  Google Scholar 

  • Wu LH, Luo YM, Xing XR et al (2004) EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agric Ecosyst Environ 102(3):307–318

    Article  CAS  Google Scholar 

  • Xiong ZT, Liu C, Geng B (2006a) Phytotoxic effects of copper on nitrogen metabolism and plant growth in Brassica pekinensis Rupr. Ecotoxicol Environ Saf 64(3):273–280

    Article  CAS  Google Scholar 

  • Xiong ZT, Zhao F, Li MJ (2006b) Lead toxicity in Brassica pekinensis Rupr.: effect on nitrate assimilation and growth. Environ Toxicol Int J 21(2):147–153

    Article  CAS  Google Scholar 

  • Xu J, Yin H, Li X (2009) Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum L. Plant Cell Rep 28(2):325–333

    Article  CAS  Google Scholar 

  • Yadav GS, Babu S, Meena RS, Debnath C, Saha P, Debbaram C, Datta M (2017) Effects of godawariphosgold and single supper phosphate on groundnut (Arachis hypogaea) productivity, phosphorus uptake, phosphorus use efficiency and economics. Indian J Agric Sci 87(9):1165–1169

    CAS  Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    Article  CAS  Google Scholar 

  • Yang Y, Zhang Y, Wei X et al (2011) Comparative antioxidative responses and proline metabolism in two wheat cultivars under short term lead stress. Ecotoxicol Environ Saf 74(4):733–740

    Article  CAS  Google Scholar 

  • Yao S, Ni JR, Ma T et al (2013) Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp. HA2. Bioresour Technol 139:80–86

    Article  CAS  Google Scholar 

  • Yu CC, Hung KT, Kao CH (2005) Nitric oxide reduces Cu toxicity and Cu-induced NH4+ accumulation in rice leaves. J Plant Physiol 162(12):1319–1330

    Article  CAS  Google Scholar 

  • Zhou X, Gu Z, Xu H et al (2016) The effects of exogenous ascorbic acid on the mechanism of physiological and biochemical responses to nitrate uptake in two rice cultivars (Oryza sativa L.) under aluminum stress. J Plant Growth Regul 35(4):1013–1024

    Article  CAS  Google Scholar 

  • Zia-ur-Rehman M, Sabir M, Nadeem M (2015) Remediating cadmium-contaminated soils by growing grain crops using inorganic amendments. In: Soil remediation and plants: prospects and challenges. Elsevier Inc/Academic, London, pp 367–396

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hussain, S. et al. (2020). Metal Toxicity and Nitrogen Metabolism in Plants: An Overview. In: Datta, R., Meena, R., Pathan, S., Ceccherini, M. (eds) Carbon and Nitrogen Cycling in Soil. Springer, Singapore. https://doi.org/10.1007/978-981-13-7264-3_7

Download citation

Publish with us

Policies and ethics