Skip to main content

Rhizobacteria for Reducing Heavy Metal Stress in Plant and Soil

  • Chapter
  • First Online:
Plant Growth Promoting Rhizobacteria for Sustainable Stress Management

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 12))

Abstract

The intensity of pollution expansion is increasing day by day of which heavy metal pollution has taken the center stage of discussion since the last few decades. Heavy metals have direct detrimental effect on our ecosystem in general and on the agroecosystem in particular, thereby proving to be hazardous for plants, animals, and microbes. One of the most common, low-cost, and eco-friendly strategies that can be employed to counter this problem effectively is through bioremediation. However among several types of bioremediation, microbial bioremediation with the use of rhizobacteria is best suited for alleviating heavy metal stresses in the agroecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abarshi MM, Dantala EO, Mada SB (2017) Bioaccumulation of heavy metals in some tissues of croaker fish from oil spilled rivers of Niger Delta region, Nigeria. Asian Pac J Trop Biomed 7(6):563–568

    Article  Google Scholar 

  • Abbas T, Muhammad R, Shafaqat A, Muhammad A, Abid M, Muhammad ZR, Muhammad I, Muhammad A, Muhammad Q (2018) Biochar application increased the growth and yield and reduced cadmium in drought-stressed wheat grown in an aged contaminated soil. Ecotoxicol Environ Saf 148:825–833

    Article  CAS  PubMed  Google Scholar 

  • Abdelilah D, Zein OA, Mohamed EM (2010) Origins of trace elements in cultivated soils irrigated by sewage, Ourzirha Area (Meknes, Morocco). Agric Biol J N Am 1(6):1140–1147

    Article  CAS  Google Scholar 

  • Achparaki M, Thessalonikeos E (2012) Heavy metals toxicity. Aristotle Univ Med J 39(1):29–34

    Google Scholar 

  • Agrawal S, Singh A, Sharma R, Agrawal M (2007) Bioaccumulation of heavy metal in leafy vegetables: a threat to human health (a review). Terrest Aquat Environ Toxicol 1:13–23

    Google Scholar 

  • Akpor OB, Ohiobor GO, Olaolu TD (2014) Heavy metal pollutants in wastewater effluents: sources, effects, and remediation. Adv Biosci Bioeng 2(4):37–43

    Google Scholar 

  • Aksu A (2015) Sources of metal pollution in the urban atmosphere (a case study: Tuzla, Istanbul). J Environ Health Sci Eng 13:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Fartusie FS, Mohssan SN (2017) Essential trace elements and their vital roles in human body. Indian J Adv Chem Sci 5(3):127–136

    Google Scholar 

  • Ali EH (2007) Comparative study of the effect of stress by the heavy metals Cd+2, Pb+2, and Zn+2 on morphological characteristics of Saprolegnia delica Coker and Dictyuchus carpophorus Zopf. Pol J Microbiol 56(4):257–264

    CAS  PubMed  Google Scholar 

  • Alves LR, Reis AR, Gratao PL (2016) Heavy metals in agricultural soils: from plants to our daily life(a review). Científica 44(3):346-361

    Google Scholar 

  • Appenroth KJ (2010) What are heavy metals in plant sciences? Acta Physiol Plant 32:615–619

    Article  CAS  Google Scholar 

  • Aras S, Aydin SS, Körpe DA, Dönmez Ç (2012) Comparative genotoxicity analysis of heavy metal contamination in higher plants. In: Begum G (ed) Ecotoxicology. Intech Open, Rijeka, pp 107–124

    Google Scholar 

  • Arunakumara KKIU, Walpola BC, Yoon MH (2013) Current status of heavy metal contamination in Asia’s rice lands. Environ Sci Biotechnol 12(4):355–377

    Article  CAS  Google Scholar 

  • Ashish B, Neeti K, Haminashu K (2013) Copper toxicity: a comprehensive study. Res J Recent Sci 2:58–67

    CAS  Google Scholar 

  • Ashraf MW (2011) Concentrations of cadmium and lead in different cigarette brands and human exposure to these metals via smoking. J Arts Sci Commer II(2):140–147

    Google Scholar 

  • Athar R, Ahmad M (2002) Heavy metal toxicity: effect on plant growth and metal uptake by wheat, and on free-living acetobacter. Water Air Soil Pollut 138:165–180

    Article  CAS  Google Scholar 

  • ATSDR (1992) Toxicological profile for thallium. U.S. Department of Health and Human Services, Public Health Service, Atlanta

    Google Scholar 

  • ATSDR (1999) Toxicological profile for mercury. U.S. Department of Health and Human Services, Public Health Service, Atlanta

    Google Scholar 

  • ATSDR (2003) Toxicological profile for selenium. U.S. Department of Health and Human Services, Public Health Service, Atlanta

    Google Scholar 

  • ATSDR (2004) Toxicological profile for copper. U.S. Department of Health and Human Services, Public Health Service, Atlanta

    Google Scholar 

  • ATSDR (2005a) Toxicological profile for nickel. U.S. Department of Health and Human Services, Public Health Service, Atlanta

    Google Scholar 

  • ATSDR (2005b) Toxicological profile for zinc. U.S. Department of Health and Human Services, Public Health Service, Atlanta

    Google Scholar 

  • ATSDR (2007a) Toxicological profile for arsenic. U.S. Department of Health and Human Services, Public Health Service, Atlanta

    Google Scholar 

  • ATSDR (2007b) Toxicological profile for lead. U.S. Department of Health and Human Services, Public Health Service, Atlanta

    Google Scholar 

  • ATSDR (2012a) Toxicological profile for cadmium. U.S. Department of Health and Human Services, Public Health Service, Atlanta

    Google Scholar 

  • ATSDR (2012b) Toxicological profile for chromium. U.S. Department of Health and Human Services, Public Health Service, Atlanta

    Google Scholar 

  • ATSDR (2017) Minimal risk levels (MRLs) for hazardous substances list. Agency for Toxic Substances and Disease Registry, Atlanta

    Google Scholar 

  • ATSDR (2018) Minimal risk levels (MRLs) for hazardous substances list. Agency for Toxic Substances and Disease Registry, Atlanta

    Google Scholar 

  • Ayangbenro A, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14(1):1–16

    Article  PubMed Central  CAS  Google Scholar 

  • Ayyasamy PM, Lee S (2012) Biotransformation of heavy metals from soil in synthetic medium enriched with glucose and Shewanella sp. HN-41 at various pH. Geomicrobiol J 29(9):843–851

    Article  CAS  Google Scholar 

  • Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzym Microb Technol 32:78–91

    Article  CAS  Google Scholar 

  • Belimov AA, Dietz KJ (2000) Effect of associative bacteria on element composition of barley seedlings grown in solution culture at toxic cadmium concentrations. Microbiol Res 155:113–121

    Article  CAS  PubMed  Google Scholar 

  • Bellows BC (2005) Arsenic in poultry litter: organic regulations. ATTRA, pp 1–12

    Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    Article  CAS  Google Scholar 

  • Benzarti S, Mohri S, Ono Y (2008) Plant response to heavy metal toxicity: a comparative study between the hyperaccumulator Thlaspi caerulescens (Ecotype Ganges) and nonaccumulator plants: lettuce, radish, and alfalfa. Environ Toxicol 23(5):607–616

    Article  CAS  PubMed  Google Scholar 

  • Bielicka A, Bojanowska I, Wiśniewski A (2005) Two faces of chromium-pollutant, and bioelement. Pol J Environ Stud 14:5–10

    CAS  Google Scholar 

  • Bingol M, Yentür G, Er Demirhan B, Öktem AB (2010) Determination of some heavy metal levels in soft drinks from Turkey using ICP-OES method. Czech J Food Sci 28:213–216

    Article  CAS  Google Scholar 

  • BIS (2012) Annual report-2012-13, Bureau of Indian Standards

    Google Scholar 

  • Borowska S, Brzóska MM (2015) Metals in cosmetics: implications for human health. J Appl Toxicol 35(6):551–572

    Article  CAS  PubMed  Google Scholar 

  • Chakraborti D, Rahman MM, Das B, Chatterjee A, Das D, Nayak B, Pal A, Chowdhury UK, Ahmed S, Biswas BK, Sengupta MK, Hossain MA, Samanta G, Roy MM, Dutta RN, Saha KC, Mukherjee SC, Pati S, Kar PB, Mukherjee A, Kumar M (2017) Groundwater arsenic contamination and its health effects in India. Hydrogeol. J 25(4):1165–1181

    Article  CAS  Google Scholar 

  • Brad BH (2005) Sources and origins of heavy metals. In: Heavy metals in the environment: origin, interaction, and remediation. Elsevier Academic Press, Amsterdam, pp 1–27

    Google Scholar 

  • Chatterjee S, Sau GB, Mukherjee SK (2009) Plant growth promotion by a hexavalent chromium reducing bacterial strain, Cellulosimicrobium cellulans KUCr3. World J Microbiol Biotechnol 10:1829–1836

    Article  CAS  Google Scholar 

  • Chaudhari PR, Gupta R, Gajghate DG, Wate SR (2012) Heavy metal pollution of ambient air in Nagpur City. Environ Monit Assess 184(4):2487–2496

    Article  CAS  PubMed  Google Scholar 

  • Cheng S (2003) Heavy metals in plants and phytoremediation. Environ Sci Pollut Res Int 10(5):335–340

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Liu X, Li X, Zhao K, Zhang J, Xu J, Shi J, Dahlgren RA (2009) Heavy metal sources identification and sampling uncertainty analysis in a field-scale vegetable soil of Hangzhou. China Environ Pollut 157(3):1003–1010

    Article  CAS  PubMed  Google Scholar 

  • Chen J, He F, Zhang X, Sun X, Zheng J, Zheng J (2014) Heavy metal pollution decreases microbial abundance, diversity, and activity within particle-size fractions of a paddy soil. FEMS Microbiol Ecol 87(1):164–181

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Teng Y, Lu S, Wang Y, Wang J (2015) Contamination features and health risk of soil heavy metals in China. Sci Total Environ 512-513:143-153

    Article  CAS  Google Scholar 

  • Chung JY, Yu SD, Hong YS (2014) Environmental source of arsenic exposure. J Prev Med Public Health 47(5):253–257

    Article  PubMed  PubMed Central  Google Scholar 

  • Clarkson TW (1992) Mercury: major issues in environmental health. Environ Health Perspect 100:31–38

    Article  Google Scholar 

  • Clemens S, Ma JF (2016) Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu Rev Plant Biol 67:489–512

    Article  CAS  PubMed  Google Scholar 

  • Cvjetko P, Cvjetko I, Pavlica M (2010) Thallium toxicity in humans. Arh Hig Rada Toksikol 61:111–119

    CAS  PubMed  Google Scholar 

  • Darwish WS, Hussein MA, El-Desoky KI, Ikenaka Y, Nakayama S, Mizukawa H, Ishizuka M (2015) Incidence and public health risk assessment of toxic metal residues (cadmium and lead) in Egyptian cattle and sheep meats. Intl Food Res J 22(4):1719–1726

    CAS  Google Scholar 

  • Das KK, Das SN, Dhundasi SA (2008) Nickel, its adverse health effects and oxidative stress. Indian J Med Res 128:412–425

    CAS  PubMed  Google Scholar 

  • De J, Ramaiah N, Vardanyan L (2008) Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar Biotechnol 10(4):471–477

    Article  CAS  Google Scholar 

  • Dey S, Gupta S, Mahanty U (2014) Study of particulate matters, heavy metals and gaseous pollutants at Gopalpur (23°29′52.67″ N, 87°23′46.08″E), a tropical industrial site in eastern India. IOSR-JESTFT 8(2):01–13

    Article  CAS  Google Scholar 

  • Ding M, Shi X (2002) Molecular mechanisms of Cr(VI)-induced carcinogenesis. Mol Cell Biochem 234:293–300

    Article  PubMed  Google Scholar 

  • Dinis MDL, Fiuza A (2011) Exposure assessment to heavy metals in the environment: measures to eliminate or reduce the exposure to critical receptors. In: Simeonov LI et al (eds) Environmental heavy metal pollution and effects on child mental 27 development: risk assessment and prevention strategies. Springer, Dordrecht, pp 27–50

    Chapter  Google Scholar 

  • Djukic D, Mandic L (2018) Microorganisms as indicators of soil pollution with heavy metals. Acta Agric Serb XI(22):45–55

    Google Scholar 

  • Drira Z, Sahnoun H, Ayadi H (2017) Spatial distribution and source identification of heavy metals in surface waters of three coastal areas (Gulf of Gabes, Tunisia). Pol J Environ Stud 26:1–13

    Article  CAS  Google Scholar 

  • Draszawka-Bolzan (2014) The contents of cadmium in perennial ryegrass (Lolium perenne L.) as affected by application of multicomponent fertilizers. Int Lett Chem Phys Astron 12:134–138

    Google Scholar 

  • Duffus JH (2002) Heavy metal-A meaningless term? Pure Appl Chem 74:793–807

    Article  CAS  Google Scholar 

  • Durham TR, Snow ET (2006) Metal ions and carcinogenesis. In: Bignold LP (ed) Cancer: cell structures, carcinogens, and genomic instability. Birkhauser Verlag, Switzerland, pp 97–130

    Chapter  Google Scholar 

  • Duruibe J, Ogwuegbu MOC, Egwurugwu J (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2:112–118

    Google Scholar 

  • Ebrahimpour MP, Rahimeh AB, Babaei H, Mohammadreza R (2011) Bioaccumulation of heavy metals in freshwater fish species, Anzali, Iran. Bull Environ Contam Toxicol 87:386–392

    Article  CAS  PubMed  Google Scholar 

  • EFSA (2006) Metals as contaminants in food: European Commission Regulation 315/93/EEC by European Food Safety Authority

    Google Scholar 

  • Eichler A, Gramlich G, Kellerhals T, Tobler L, Schwikowski M (2015) Pb pollution from leaded gasoline in South America in the context of a 2000-year metallurgical history. Sci Adv 1(2):e1400196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Helow ER, Sabry SA, Amer RM (2000) Cadmium biosorption by a cadmium resistant strain of Bacillus thuringiensis: regulation and optimization of cell surface affinity for metal cations. Biometals 13:273–280

    Article  CAS  PubMed  Google Scholar 

  • EPA (2001) Parameters of water quality: interpretation and standards. Published by the Environmental Protection Agency, Ireland. ISBN: 1-84096-015-3

    Google Scholar 

  • Eqani SAMAS, Bhowmik A, Qamar S, Shah STA, Muhammad S, Mulla S, Fasola M, Shen H (2016) Mercury contamination in deposited dust and its bioaccumulation patterns throughout Pakistan. Sci Total Environ 569–570:585–593

    Article  PubMed  CAS  Google Scholar 

  • Evans CW, Hills JM, Dickson JM (2000) Heavy metal pollution in Antarctica: a molecular ecotoxicological approach to exposure assessment. J Fish Biol 57:8–19

    Article  CAS  Google Scholar 

  • Faisal M, Hasnain S (2006) Growth stimulatory effect of Ochrobactrum intermedium and Bacillus cereus on Vigna radiata plants. Lett Appl Microbiol 43:461–466

    Article  CAS  PubMed  Google Scholar 

  • Farnese FS, Oliveira JA, Gusman GS, Leão GA, Silveira NM, Silva PM, Ribeiro C, Cambria J (2014) Effects of adding nitroprusside on arsenic stressed response of Pistia stratiotes L. under hydroponic conditions. Int J Phytoremed 16(2):123–137

    Article  CAS  Google Scholar 

  • Fernandez-Luqueno F, López-Valdez F, Gamero P, Luna S, Aguilera-González EN, Martinez A, Pérez R (2013) Heavy metal pollution in drinking water-a global risk for human health: a review. Afr J Environ Sci Technol 7:567–584

    Google Scholar 

  • Flora SJ, Mittal M, Mehta A (2008) Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J Med Res 128(4):501–523

    CAS  PubMed  Google Scholar 

  • Florea AM, Busselberg D (2006) Occurrence use and potential toxic effects of metals and metal compounds. Biometals 19:419–427

    Article  CAS  PubMed  Google Scholar 

  • Forster WA (1954) Toxic effects of heavy metals on crop plants grown in soil culture. Ann Appl Biol 41:637–651

    Article  CAS  Google Scholar 

  • Fraga CG (2005) Relevance, essentiality, and toxicity of trace elements in human health. Mol Aspects Med 26(4–5):235–244

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (2009) Biosorption: a critical review of scientific rationale, environmental importance, and significance for pollution treatment. J Chem Technol Biotechnol 84:13–28

    Article  CAS  Google Scholar 

  • Galaris D, Evangelou A (2002) The role of oxidative stress in mechanisms of metal-induced carcinogenesis. Crit Rev Oncol Hematol 42:93–103

    Article  PubMed  Google Scholar 

  • Ganesan V (2008) Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad. Curr Microbiol 56:403–407

    Article  CAS  PubMed  Google Scholar 

  • Garg VK, Yadav P, Mor S (2014) Heavy metals bioconcentration from soil to vegetables and assessment of health risk caused by their ingestion. Biol Trace Elem Res 157:256

    Article  CAS  PubMed  Google Scholar 

  • Ghorbani H, Moghaddas NH, Kashi H (2015) Effects of land use on the concentrations of some heavy metals in soils of Golestan province. Iran J Agr Sci Tech 17(4):1025–1040

    Google Scholar 

  • Gidlow DA (2004) Lead toxicity. Occup Med (Lond) 54(2):76–81

    Article  CAS  Google Scholar 

  • Gikas P, Sengor S, Ginn T, Moberly J, Peyton B (2009) The effects of heavy metals and temperature on microbial growth and lag. Global Nest J 11:325–332

    Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils. Soil Biol Biochem 30(10–11):1389–1414

    Article  CAS  Google Scholar 

  • Godwill E, Cynthia JI, Ilo US, Marcellus U, Eugene A, Osuji GA (2015) Determination of some soft drink constituents and contamination by some heavy metals in Nigeria. Toxicol Rep 2:384–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goel R, Suyal DC, Kumar V, Jain J, Soni R (2017) Stress-tolerant beneficial microbes for sustainable agricultural production. In: Panpatte DG et al (eds) Microorganisms for green revolution, microorganisms for sustainability. Springer, Singapore

    Google Scholar 

  • Golding J, Steer CD, Hibbeln JR, Emmett PM, Lowery T, Jones RE (2013) Dietary predictors of maternal prenatal blood mercury levels in the ALSPAC birth cohort study. Environ Health Perspect 121(10):1214–1218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guala SD, Vega Flora A, Covelo, Emma F (2010) The dynamics of heavy metals in plant-soil interactions. Ecol Model 221(8):1148–1152

    Article  CAS  Google Scholar 

  • Gulz PA, Gupta SK, Schulin R (2005) Arsenic accumulation of common plants from contaminated soils. Plant Soil 272:337–347

    Article  CAS  Google Scholar 

  • Gupta A, Meyer JM, Goel R (2002) Development of heavy metal-resistant mutants of phosphate solubilizing Pseudomonas sp. NBRI 4014 and their characterization. Curr Microbiol 45(5):323–327

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Rai V, Bagdwal N, Goel R (2005) In situ characterization of mercury-resistant growth-promoting fluorescent pseudomonads. Microbiol Res 160:385–388

    Article  CAS  PubMed  Google Scholar 

  • Hamsa NA, Yogesh G, Koushik U, Patil L (2017) Nitrogen transformation in soil: effect of heavy metals. Int J Curr Microbiol Appl Sci 6(5):816–832

    Article  CAS  Google Scholar 

  • Hamzah A, Wong KK, Hasan FN (2013) Determination of total arsenic in soil and arsenic-resistant bacteria from selected groundwater in Kandal Province, Cambodia. J Radioanal Nucl Chem 297:291

    Article  CAS  Google Scholar 

  • Harris GK, Shi X (2003) Signaling by carcinogenic metals and metal-induced reactive oxygen species. Mutat Res 533(1-2):183-200

    Article  CAS  PubMed  Google Scholar 

  • Hart BT, Lake PS (1987) Studies of heavy metal pollution in Australia with particular emphasis on aquatic systems. In: Hutchinson TC, Meema KM (eds) Lead, mercury, cadmium, and arsenic in the environment. Wiley, New York, pp 187–216

    Google Scholar 

  • Hartikainen ES, Lankinen P, Rajasärkkä J (2012) Impact of copper and zinc on the growth of saprotrophic fungi and the production of extracellular enzymes. Boreal Environ Res 17:210–218

    CAS  Google Scholar 

  • Hawkes SJ (1997) What is a “Heavy Metal”. J Chem Educ 74(11):1374

    Article  CAS  Google Scholar 

  • He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140

    Article  CAS  PubMed  Google Scholar 

  • He Z, Shentu J, Yang X, Baligar VC, Zhang T, Stoffella PJ (2015) Heavy metal contamination of soils: sources, indicators, and assessment. Int Environ Indic 9:17–18

    Google Scholar 

  • Hemambika B, Balasubramanian V, Kannan VR, James RA (2013) Screening of chromium-resistant bacteria for plant growth-promoting activities. Soil Sediment Contam 22:717–736

    Article  CAS  Google Scholar 

  • Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DA (2011) Arsenic exposure and toxicology: a historical perspective. Toxicol Sci 123(2):305–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humbatov FY, Ahmadov MM, Balayev VS, Suleymanov BA (2015) Trace metals in water samples taken from Azerbaijan Sector of Caspian Sea. J Chem Chem Eng 9:288–295

    CAS  Google Scholar 

  • Hutton M (1983) Sources of cadmium in the environment. Ecotoxicol Environ Saf 7:9–24

    Article  CAS  PubMed  Google Scholar 

  • Hutton M, Symon C (1986) The quantities of cadmium, lead, mercury and arsenic entering the UK environment from human activities. Sci Total Environ 57:129–150

    Article  CAS  PubMed  Google Scholar 

  • Ilyin et al (2004) Heavy metals. In: Lovblad G, Tarrason L, Torseth K, Dutchak S (eds) EMEP assessment report–part I, convention on long-range transboundary air pollution. pp 107–128

    Google Scholar 

  • Imperato M, Paola A, Naimo D, Arienzo M, Stanzione D, Violante P (2003) Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environ Pollut 124:247–256

    Article  CAS  PubMed  Google Scholar 

  • Inoue K (2013) Heavy metal toxicity. J Clin Toxicol S(3):1–2

    Google Scholar 

  • INSA (2011) Hazardous metals and minerals pollution in India: sources, toxicity, and management. Published by Shri SK Sahni, Executive Secretary on behalf of Indian National Science Academy, Bahadurshah Zafar Marg, New Delhi

    Google Scholar 

  • Israr M, Jewell A, Kumar D, Sahi SV (2011) Interactive effects of lead, copper, nickel, and zinc on growth, metal uptake and antioxidative metabolism of Sesbania drummondii. J Hazard Mat 186:1520–1526

    Article  CAS  Google Scholar 

  • Jadoon S, Malik A (2017) DNA damage by heavy metals in animals and human beings: an overview. Biochem Pharmacol 6(3):1–8

    Article  Google Scholar 

  • Jaffe D, Prestbo E, Swartzendruber P, Penzias PW, Kato S, Takami A, Hatakeyama S, Kajii Y (2005) Export of atmospheric mercury from Asia. Atmos Environ 28:3029–3038

    Article  CAS  Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jan AT, Azam M, Siddiqui K, Ali A, Choi I, Haq QM, Dallinger R (2015) Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. Int J Mol Sci 16(12):29592–29630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha Y, Subramanian RB, Mishra KK (2017) Role of plant growth promoting rhizobacteria in accumulation of heavy metal in metal contaminated soil. Emerg Life Sci Res 3(1):48–56

    Google Scholar 

  • Ji-yun N, Kuang L, Li Z, Xu W, Wang C, Chen Q, Li A, Zhao X, Xie H, Zhao D, Wu Y, Cheng Y (2016) Assessing the concentration and potential health risk of heavy metals in China’s main deciduous fruits. J Integr Agric 15(7):1645–1655

    Article  CAS  Google Scholar 

  • John R, Ahmad P, Gadgil K, Sharma S (2009) Heavy metal toxicity: effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. IJPP 3(3):65–76

    CAS  Google Scholar 

  • Jomova K, Valko M (2011) Advance in metal-induced oxidative stress and human disease. Toxicology 283:65–87

    Article  CAS  PubMed  Google Scholar 

  • Kaur S, Kamli MR, Ali A (2011) Role of arsenic and its resistance in nature. Can J Microbiol 57:769–774

    Article  CAS  PubMed  Google Scholar 

  • Khan M, Zaidi A, Goel R, Musarrat J (2011) Biomanagement of metal-contaminated soils. Environmental pollution, vol 20. Springer, Dordrecht

    Google Scholar 

  • Khan N, Mishra A, Chauhan Sharma YK, Nautiyal CS (2012) Paenibacillus lentimorbusenhances the growth PS, of chickpea (Cicer arietinum L.) in the chromium-amended soil. Antonie Van Leeuwenhoek 101:453–459

    Article  CAS  PubMed  Google Scholar 

  • Khan K, Lu Y, Khan H, Ishtiaq M, Khan S, Waqas M (2013) Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan. Food Chem Toxicol 58:449–458

    Article  CAS  PubMed  Google Scholar 

  • Krupa Z, Siedlecka A, Skórzynska-Polit E, Maksymiec W (2002) Heavy metal interactions with plant nutrients. In: Prasad MNV, Strzałka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Springer, Dordrecht, pp 287–301

    Chapter  Google Scholar 

  • Kuffner M, De Maria S, Puschenreiter M, Fallmann K, Wieshammer G, Gorfer M, Strauss J, Rivelli AR, Sessitsch A (2010) Culturable bacteria from Zn- and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J Appl Microbiol 108:1471–1484

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Gupta SB, Anurag SR (2019) Bioremediation of cadmium by mixed indigenous isolates Serratia liquefaciens BSWC3 and Klebsiella pneumoniae RpSWC3 isolated from Industrial and mining affected water samples. Pollution 5(2):351–360

    Google Scholar 

  • Kuzniar A, Banach A, Stępniewska Z, Frąc M, Oszust K, Gryta A, Kłos M, Wolińska A (2018) Community-level physiological profiles of microorganisms inhabiting soil contaminated with heavy metals. Int Agrophys 32(1):101–109

    Article  CAS  Google Scholar 

  • Lampis S, Santi C, Ciurli A, Andreolli M, Vallini G (2015) Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: a soil bioremediation perspective. Front Plant Sci 6:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee CC, Huang HT, Wu YC, Hsu YC, Kao YT, Chen HL (2018) The health risks of lead and cadmium in foodstuffs for the general population of Taiwan. J Exp Food Chem 3:137

    Google Scholar 

  • Leonard SS, Harris GK, Shi XL (2004) Metal-induced oxidative stress and signal transduction. Free Radic Biol Med 37:1921–1942

    Article  CAS  PubMed  Google Scholar 

  • Li S, Huang W, Duan Y, Xing J, Zhou Y (2015) Human fatality due to thallium poisoning: autopsy, microscopy, and mass spectrometry assays. J Forensic Sci 60(1):247–251

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Yi X, Dang Z, Wang Q, Luo H, Tang J (2017) Heavy metal contamination and health risk assessment in the vicinity of a tailing pond in Guangdong, China. Int J Environ Res Public Health 14(12):1557

    Article  PubMed Central  CAS  Google Scholar 

  • Liao X, Zhang C, Sun G, Li Z, Shang L, Fu Y, Yang Y (2018) Assessment of metalloid and metal contamination in soils from Hainan, China. Int J Environ Res Public Health 15(3):454

    Article  PubMed Central  CAS  Google Scholar 

  • Liu X, Song Q, Tang Y, Li W, Xu J, Wu J, Wang F, Brookes PC (2013) Human health risk assessment of heavy metals in the soil-vegetable system: a multi-medium analysis. Sci Total Environ 463–464:530–540

    Article  PubMed  CAS  Google Scholar 

  • Mahaffey KR, Corneliussen EP, Jelinek CF, Fiorino JA (1975) Heavy metal exposure from foods. Environ Health Perspect 12:63–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmood Q, Rashid A, Ahmad A (2012) Current status of toxic metals addition to environment and its consequences. In: Anjum NA, Ahmad I, Pereira ME, Duarte AC, Umar S (eds) The plant family Brassicaceae: contribution towards phytoremediation, environmental pollution, vol 21. Springer, Dordrecht, pp 35–69

    Chapter  Google Scholar 

  • Mahurpawar M (2015) Effects of heavy metals on human health. Int J Res Granthaalayah (IJRG):1–7

    Google Scholar 

  • Malekzadeh E, Alikhani HA, Savaghebi FGR, Zarei M (2012) Bioremediation of cadmium-contaminated soil through cultivation of maize inoculated with plant growth-promoting Rhizobacteria. Bioremed J 16(4):204–211

    Article  CAS  Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278

    Article  CAS  PubMed  Google Scholar 

  • Mamtani R, Penny S, Ismail D, Cheema S (2011) Metals and disease: a global primary health care perspective. J Toxicol 2011:1–11

    Article  CAS  Google Scholar 

  • Manios T, Stentiford E, Millner P (2002) The effect of heavy metals on the total protein concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with metalliferous wastewater. J Environ Sci Health A Tox Hazard Subst Environ Eng 37:1441–1451

    Article  CAS  PubMed  Google Scholar 

  • Maqbool F, Niaz K, Hassan FI, Khan F, Abdollahi M (2017) Immunotoxicity of mercury: pathological and toxicological effects. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 35(1):29–46

    Article  CAS  PubMed  Google Scholar 

  • Mazumder DN (2008) Chronic arsenic toxicity & human health. Indian J Med Res 128(4):436–447

    Google Scholar 

  • Meharg AA, Rahman MM (2003) Arsenic contamination of Bangladesh Paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol 37(2):229–234

    Article  CAS  PubMed  Google Scholar 

  • Meliani A, Bensoltane A (2016) Biofilm-mediated heavy metals bioremediation in PGPR Pseudomonas. J Bioremed Biodegr 7(5):1–9

    Article  CAS  Google Scholar 

  • Mesa V, Navazas A, González-Gil R, González A, Weyens N, Lauga B, Gallego JLR, Sánchez J, Peláez AI (2017) Use of endophytic and rhizosphere bacteria to improvephytoremediation of arsenic-contaminated industrial soils by autochthonous Betula celtiberica. Appl Environ Microbiol 83(8):1–18

    Article  Google Scholar 

  • Mielke HW, Powell ET, Shah A, Gonzales CR, Mielke PW (2001) Multiple metal contamination from house paints: consequences of power sanding and paint scraping in New Orleans. Environ Health Perspect 109(9):973–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min J, Min K (2016) Blood cadmium levels and Alzheimer’s disease mortality risk in older US adults. Environ Health 15(69):1–6

    Google Scholar 

  • Mishra A, Tripathi BD (2008) Heavy metal contamination of soil, and bioaccumulation in vegetables irrigated with treated wastewater in the tropical city of Varanasi, India. Toxicol Environ Chem 90(5):861–871

    Article  CAS  Google Scholar 

  • Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  CAS  PubMed  Google Scholar 

  • Montgomery EB (1995) Heavy metals and the etiology of Parkinson’s disease and other movement disorders. Toxicology 97:3–9

    Article  CAS  PubMed  Google Scholar 

  • Mudgal V, Madaan N, Mudgal A, Singh RB, Mishra S (2010) Effect of toxic metals on human health. Open Nutraceuticals J 3(1):94–99

    CAS  Google Scholar 

  • Naja GM, Volesky B (2009) Toxicity and sources of Pb, Cd, Hg, Cr, As, and radionuclides in the environment. In: Wang LK, M-HS W, Hung Y-T, Shammas NK, Chen JP (eds) Handbook of advanced industrial and hazardous wastes management. CRC, Boca Raton, pp 13–59

    Google Scholar 

  • Nazar R, Iqbal N, Masood A, Khan MIR, Syeed S, Khan NA (2012) Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Am J Plant Sci 3:1476–1489

    Article  CAS  Google Scholar 

  • Notarachille G, Arnesano F, Calò V, Meleleo D (2014) Heavy metals toxicity: effect of cadmium ions on amyloid beta protein 1–42. Possible implications for Alzheimer’s disease. Biometals 27:371–388

    Article  CAS  PubMed  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water, and soils by trace metals. Nature 333:134–139

    Article  CAS  PubMed  Google Scholar 

  • Okareh OT, Oladipo TA (2015) Heavy metals in selected tissues and organs of slaughtered goats from Akinyele Central Abattoir, Ibadan, Nigeria. JBAH 5:2224–3208

    Google Scholar 

  • Ovecka M, Takac T (2014) Managing heavy metal toxicity stress in plants: biological and biotechnological tools. Biotechnol Adv 32:73–86

    Article  CAS  PubMed  Google Scholar 

  • Oves M, Khan SM, Qari HA, Felemban NM, Almeelbi T (2016) Heavy metals: biological importance and detoxification strategies. J Bioremed Biodegr 7:334

    Google Scholar 

  • Pal P, Sen M, Manna A, Pal J, Pal P, Roy S, Roy P (2009) Contamination of groundwater by arsenic: a review of occurrence, causes, impacts, remedies and membrane-based purification. J Integr Environ Sci 6(4):295–316

    Article  Google Scholar 

  • Panagos P, Liedekerke MV, Yigini Y, Montanarella L (2013) Contaminated sites in Europe: review of the current situation based on data collected through a European network. J Environ Public Health 2013:1–11

    Article  CAS  Google Scholar 

  • Park S, Ely RL (2008) Candidate stress genes of Nitrosomonas europaea for monitoring inhibition of nitrification by heavy metals. Appl Environ Microbiol 74:5475–5482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patocka KK (2016) Lead exposure and environmental health. Mil Med Sci Lett 85(4):147–163

    Article  Google Scholar 

  • Peralta-video J, de la Guadalupe R, Gonzalez JH, Jorge GT (2004) Effects of the growth stage on the heavy metal tolerance of alfalfa plants. Adv Environ Res 8:679–685

    Article  CAS  Google Scholar 

  • Peter AL, Viraraghavan T (2005) Thallium: a review of public health and environmental concerns. Environ Int 31:493–501

    Article  CAS  PubMed  Google Scholar 

  • Piade JJ, Jaccard G, Dolka C, Belushkin M, Wajrock S (2015) Differences in cadmium transfer from tobacco to cigarette smoke, compared to arsenic or lead. Toxicol Rep 2:12–26

    Article  CAS  PubMed  Google Scholar 

  • Pierce BL, Argos M, Chen Y, Melkonian S, Parvez F, Islam T, Ahmed A, Hasan R, Rathouz PJ, Ahsan H (2010) Arsenic exposure, dietary patterns, and skin lesion risk in Bangladesh: a prospective study. Am J Epidemiol 173(3):345–354

    Article  PubMed  PubMed Central  Google Scholar 

  • Plum LM, Rink L, Haase H (2010) The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7(4):1342–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pourahmad J, Brien PJO, Jokar F, Daraei B (2003) Carcinogenic metal induced sites of reactive oxygen species formation in hepatocytes. Toxicol In Vitro 17(5–6):803–810

    Article  CAS  PubMed  Google Scholar 

  • Qu C, Wang S, Ding L, Zhang M, Wang D, Giesy JP (2018) Spatial distribution, risk and potential sources of lead in soils in the vicinity of a historic industrial site. Chemosphere 205:244–252

    Article  CAS  PubMed  Google Scholar 

  • Rafique A, Amin A, Latif Z (2015) Screening and characterization of mercury-resistant nitrogen-fixing bacteria and their use as biofertilizers and for mercury bioremediation. Pak J Zool 47(5):1271–1277

    CAS  Google Scholar 

  • Rajaganapathy V, Xavier F, Sreekumar D, Mandal PK (2011) Heavy metal contamination in soil, water and fodder and their presence in livestock and products: a review. J Environ Sci Technol 4(3):234–249

    Article  CAS  Google Scholar 

  • Rajapaksha RMCP, Tobor-Kapłon MA, Bååth E (2004) Metal toxicity affects fungal and bacterial activities in soil differently. Appl Environ Microbiol 70(5):2966–2973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajindiran S, Dotaniya ML, Coumar MV, Panwar NR, Saha JK (2015) Heavy metal polluted soils in India: status and counter measures. JNKVV Res J 49:320–337

    Google Scholar 

  • Rani A, Goel R (2009) Strategies for crop improvement in contaminated soils using metal-tolerant bioinoculants. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Berlin, pp 85–104

    Chapter  Google Scholar 

  • Rani A, Shouche YS, Goel R (2008) Declination of copper toxicity in pigeon pea and soil system by growth-promoting Proteus vulgaris KNP3 strain. Curr Microbiol 57(1):78

    Article  CAS  PubMed  Google Scholar 

  • Ravenscroft P, William B, Matin AK, Melanie B, Jerome P (2005) Arsenic in groundwater of the Bengal Basin, Bangladesh: distribution, field relations, and hydrogeological setting. Hydrogeol J 13:727–751

    Article  CAS  Google Scholar 

  • Ravenscroft P, Brammer H, Richards KS (2009) Chapter 1, Introduction. In: Arsenic pollution: a global synthesis. Wiley-Blackwell, Chichester, pp 1–24

    Chapter  Google Scholar 

  • Rice K, Kathryn C, Hornberger M, George (2002) Anthropogenic sources of arsenic and copper to sediments in a Suburban Lake, Northern Virginia. Environ Sci Technol 36:4962–4967

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues S, Pereira ME, Sarabando L, Lopes LD, Cachada A, Duarte A (2006) Spatial distribution of total Hg in urban soils from an Atlantic coastal city (Aveiro, Portugal). Sci Total Environ 368:40–46

    Article  CAS  PubMed  Google Scholar 

  • Roozbahani MM, Ardakani SS, Karimi H, Sorooshnia R (2015) Natural and anthropogenic source of heavy metals pollution in the soil samples of an industrial complex a case study. IJT 9(29):1336–1341

    CAS  Google Scholar 

  • Rosemary F, Vitharana UWA, Indraratne SP, Weerasooriya SVR (2014) Concentrations of trace metals in selected land use of a dry zone soil catena of Sri Lanka. Trop Agric Res 25(4):512–522

    Article  Google Scholar 

  • Roslan R, Omar RC, Baharuddin INZ, Zulkarnain MS, Hanafiah MIM (2016) Erosion and soil contamination control using coconut flakes and plantation of Centella Asiatica and Chrysopogon Zizanioides. IOP Conf Ser Mater Sci Eng 160(1):1–6

    Google Scholar 

  • Rossman TG (2003) Mechanism of arsenic carcinogenesis: an integrated approach. Mutat Res 533:37–65

    Article  CAS  PubMed  Google Scholar 

  • Rousseau M-C, Parent M-E, Nadon L, Latreille B, Siemiatycki J (2007) Occupational exposure to lead compounds and risk of cancer among men: a population-based case-control study. Am J Epidemiol 166(9):1005–1014

    Article  PubMed  Google Scholar 

  • Sadler WR, Trudinger PA (1967) The inhibition of microorganisms by heavy metals. Miner Deposita 2:158–168

    Article  CAS  Google Scholar 

  • Saha R, Nandi R, Saha B (2011) Sources and toxicity of hexavalent chromium. J Coord Chem 64(10):1782–1806

    Article  CAS  Google Scholar 

  • Salnikow K, Su W, Blagosklonny MV, Costa M (2000) Carcinogenic metals induce hypoxiainducible factor-stimulated transcription by reactive oxygen species-independent mechanism. Cancer Res 60:3375–3388

    CAS  PubMed  Google Scholar 

  • Saluja B, Sharma V (2014) Cadmium resistance mechanism in acidophilic and alkalophilic bacterial isolates and their application in bioremediation of metal-contaminated soil. Soil Sedim Contamin 23:1–17

    Article  CAS  Google Scholar 

  • Saluja B, Gupta A, Goel R (2011) Mechanism of arsenic resistance prevalent in Bacillus species isolated from soil and groundwater sources of India. Ekologija 57(4):155–161

    Article  CAS  Google Scholar 

  • Santos IR, Silva-Filho EV, Schaefer CE, Albuquerque-Filho MR, Campos LD (2005) Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island. Mar Pollut Bull 50(2):185–194

    Article  CAS  PubMed  Google Scholar 

  • Santra S, Subhas C, Samal A, Bhattacharya P, Banerjee S, Biswas A, Majumdar J (2013) Arsenic in foodchain and community health risk: a study in Gangetic West Bengal. Procedia Environ Sci 18:2–13

    Article  CAS  Google Scholar 

  • Sathawara NG, Parikh DJ, Agarwal YK (2004) Essential heavy metals in environmental samples from Western India. Bull Environ Contam Toxicol 73:756–761

    Article  CAS  PubMed  Google Scholar 

  • Sbihi K, Cherifi O, El-gharmali A, Oudra B, Aziz F (2012) Accumulation and toxicological effects of cadmium, copper, and zinc on the growth and photosynthesis of the freshwater diatom Planothidium lanceolatum (Brébisson) Lange-Bertalot: a laboratory study. JMES 3:497–506

    CAS  Google Scholar 

  • Scarano G, Morelli E (2003) Properties of phytochelatin-coated CdS nanocrystallites formed in a marine phytoplanktonic alga (Phaeodactylum tricornutum, Bohlin) in response to Cd. Plant Sci 165:803–810

    Article  CAS  Google Scholar 

  • Selvaraj K (2018) Effect of nickel chloride on the growth and biochemical characteristics of Phaseolus Mungo. JOJ Scin 1(1):1–6

    Google Scholar 

  • Sengor SS, Barua S, Gikas P, Ginn TR, Peyton B, Sani RK, Spycher N (2009) Influence of heavy metals on microbial growth kinetics including lag time: mathematical modelling and experimental verification. Environ Toxicol Chem 28(10):2020–2029

    Article  CAS  PubMed  Google Scholar 

  • Sethy SK, Ghosh S (2013) Heavy metal toxicity in seeds. JNSBM 4:272–275

    Google Scholar 

  • Shahid M, Khalid S, Abbas G, Shahid N, Nadeem M, Aslam M (2015) Heavy metal stress and crop productivity. In: Hakeem KR (ed) Crop production and global environmental issues. Springer, New York, pp 1–25

    Google Scholar 

  • Sharma RK, Agrawal M, Marshall FM (2007) Heavy metals contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicol Environ Saf 66:258–266

    Article  CAS  Google Scholar 

  • Sharma B, Singh S, Siddiqi NJ (2014) Biomedical implications of heavy metals induced imbalances in redox systems. Biomed Res Int 2014:1–26

    Google Scholar 

  • Sharp RM, Brabander DJ (2017) Lead (Pb) bioaccessibility and mobility assessment of urban soils and composts: fingerprinting sources and refining risks to support urban agriculture. GeoHealth 1:333–345

    Article  PubMed  PubMed Central  Google Scholar 

  • Shukla GS, Singhal R (1984) The present status of biological effects of toxic metals in the environment: lead, cadmium, and manganese. Can J Physiol Pharmacol 62(8):1015–1031

    Article  CAS  PubMed  Google Scholar 

  • Sidhu GPS (2016) Heavy metal toxicity in soils: sources, remediation technologies and challenges. Adv Plants Agric Res 5(1):1–2

    Google Scholar 

  • Signes PA, Mitra K, Sarkhel S, Hobbes M, Burló F, de Groot W, Carbonell-Barrachina A (2008) Arsenic speciation in food and estimation of the dietary intake of inorganic arsenic in a Rural Village of West Bengal, India. J Agric Food Chem 56:9469–9474

    Article  CAS  Google Scholar 

  • Silva ALO, Barrocas PRG, Jacob SC, Moreira JC (2005) Dietary intake and health effects of selected toxic elements. Braz J Plant Physiol 17:79–93

    Article  Google Scholar 

  • Singh J, Kalamdhad AS (2011) Effects of heavy metals on soil, plants, human health and aquatic life. Int J Res Chem Environ 1:15–21

    Google Scholar 

  • Singh N, Deepak K, Sahu A (2007) Arsenic in the environment: effects on human health and possible prevention. J Environ Biol 28:359–365

    CAS  PubMed  Google Scholar 

  • Singh S, Shrivastava A, Barla A, Bose S (2015) Isolation of arsenic-resistant bacteria from Bengal delta sediments and their efficacy in arsenic removal from soil in association with Pteris vittata. Geomicrobiol J 32(8):712–723

    Article  CAS  Google Scholar 

  • Sinha B, Bhattacharyya K (2014) Arsenic accumulation and speciation in transplanted autumn rice as influenced by source of irrigation and organic manures. Int J Bioresour Environ Agric Sci 5(3):336–368

    Google Scholar 

  • Sinha S, Mukherjee SK (2008) Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr Microbiol 56:55–60

    Article  CAS  PubMed  Google Scholar 

  • Smith AH, Lingas EO, Rahman MM (2000) Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ 78(9):1093–1103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smolders A, Lock ACR, Van der VG, Medina HIR, Roelofs J (2003) Effects of mining activities on heavy metal concentrations in water, sediment, and macroinvertebrates in different reaches of the Pilcomayo River, South America. Arch Environ Contam Toxicol 44:314–323

    Article  CAS  PubMed  Google Scholar 

  • Sobariu DL, Tudorache Fertu DL, Diaconu M, Pavel LV, Hlihor RM, Dragoi EN, Curteanu S, Lenz M, Corvini PF, Gavrilescu M (2017) Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation. New Biotechnol 39:125–134

    Article  CAS  Google Scholar 

  • de Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N (1999) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119(2):565–574

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava NK, Majumder CB (2008) Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J Hazard Mater 151:1–8

    Article  CAS  PubMed  Google Scholar 

  • Su C, Jiang L, Zhang W (2014) A review of heavy metal contamination in the soil worldwide: situation, impact, and remediation techniques. Environ Skept Crit 3:24–38

    Google Scholar 

  • Sugita M, Izuno T, Tatemichi M, Otahara Y (2001) Cadmium absorption from smoking cigarettes: calculation using recent findings from Japan. Environ Health Prev Med 6(3):154–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tchounwou PB, Patlolla AK, Centeno JA (2003) Carcinogenic and systemic health effects associated with arsenic exposure – a critical review. Toxicol Pathol 31(6):575–588

    CAS  PubMed  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. EXS 101:133–164

    PubMed  PubMed Central  Google Scholar 

  • Teitzel GM, Parsek MR (2003) Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69:2313–2320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Titah H, Abdullah S, Idris M, Anuar N, Basri H, Mukhlisin M (2014) Identification of rhizobacteria from Ludwigia octovalvis grown in arsenic. Aust J Basic Appl Sci 8(8):134–139

    Google Scholar 

  • Toth G, Hermann T, Da Silva MR, Montanarella L (2016) Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Int 88:299–309

    Article  CAS  PubMed  Google Scholar 

  • Tripathi M, Munot HP, Shouche YS, Meyer JM, Goel R (2004) Isolation and functional characterization of siderophore-producing lead- and cadmium-resistant Pseudomonas putida KNP9. Curr Microbiol 50:233–237

    Article  CAS  Google Scholar 

  • Trivedi P, Pandey A, Sa T (2007) Chromate reducing and plant growth promoting activities of psychrotrophic Rhodococcus erythropolis MtCC 7905. J Basic Microbiol 47:513–517

    Article  CAS  PubMed  Google Scholar 

  • Tunegova M, Toman R, Tancin V (2016) Heavy metals–environmental contaminants and their occurrence in different types of milk. Slovak J Anim Sci 49(3):122–131

    Google Scholar 

  • Turer D, Maynard JB, Sansalone JJ (2001) Heavy metal contamination in soils of urban highways: comparison between runoff and soil concentration at Cincinnati, Ohio. Wat Air Soil Pollut 132:293–314

    Article  CAS  Google Scholar 

  • UNEP (2013) Global mercury assessment 2013: sources, emissions, releases and environmental transport. UNEP Chemicals Branch, Geneva

    Google Scholar 

  • UNICEF (2008) Arsenic primer: guidance for Unicef country offices on the investigation and mitigation of arsenic contamination. Programme Division UNICEF, New York

    Google Scholar 

  • Upadhyay N, Vishwakarma K, Singh J, Mishra M, Kumar V, Rani R, Sharma S (2017) Tolerance and reduction of chromium (VI) by Bacillus sp. MNU16 isolated from contaminated coal mining soil. Front Plant Sci 8(778):1–13

    Google Scholar 

  • Van TN, Ozaki A, Tho HN, Duc AN, Thi YT, Kurosawa K (2016) Arsenic and heavy metal contamination in soils under different land use in an estuary in Northern Vietnam. Int J Environ Res Public Health 13(11):1091

    Article  CAS  Google Scholar 

  • Venkatesh T (2009) Global perspective of lead poisoning. AJMS 2(2):1–4

    Google Scholar 

  • Vijayadeep C, Sastry PS (2014) Effect of heavy metal uptake by E. coli and Bacillus steps. J Bioremed Biodegr 5(5):1–3

    Article  CAS  Google Scholar 

  • Wang S, Shi X (2001) Molecular mechanisms of metal toxicity and carcinogenesis. Mol Cell Biochem 222(1–2):3–9

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Xiong D, Zhao P, Yu X, Tu B, Wang G (2011) Effect of applying an arsenic-resistant and plant growth–promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoidesLH0517. J Appl Microbiol 111:1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Welbaum G, Sturz AV, Dong Z, Nowak J (2004) Fertilizing soil microorganisms to improve productivity of agroecosystems. Crit Rev Plant Sci 23:175–193

    Article  CAS  Google Scholar 

  • Whiting SN, de Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35(15):3144–3150

    Article  CAS  PubMed  Google Scholar 

  • WHO (2017) Guidelines for drinking-water quality: fourth edition incorporating the first addendum. World Health Organization, Geneva

    Google Scholar 

  • WHO-FAO (1995) General standard for contaminants and toxins in food and feed. CODEX Alimentarius, International Food Standards; Jointly published by FAO and WHO

    Google Scholar 

  • Wu B, Wang G, Wu J, Fu Q, Liu C (2014) Sources of heavy metals in surface sediments and an ecological risk assessment from two adjacent plateau reservoirs. PLoS One 9(7):1–14

    Google Scholar 

  • Wu H, Liao Q, Chillrud SN, Yang Q, Huang L, Bi J, Yan B (2016a) Environmental exposure to cadmium: health risk assessment and its associations with hypertension and impaired kidney function. Sci Rep 6(29989):1–9

    Google Scholar 

  • Wu X, Cobbina SJ, Mao G, Xu H, Zhang Z, Yang L (2016b) A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ Sci Pollut Res Int 23(9):8244–8259

    Article  CAS  PubMed  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 11:1–20

    Google Scholar 

  • Xiao T, Yang F, Li S, Zheng B, Ning Z (2012) Thallium pollution in China: a geo-environmental perspective. Sci Total Environ 421–422:51–58

    Article  PubMed  CAS  Google Scholar 

  • Xie Y, Fan J, Zhu W, Amombo E, Lou Y, Chen L, Fu J (2016) Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation. Front Plant Sci 7:755

    PubMed  PubMed Central  Google Scholar 

  • Xu X, Huang Q, Huang Q, Chen W (2012) Soil microbial augmentation by an EGFP-tagged Pseudomonas putida X4 to reduce phyto available cadmium. Int Biodeterior Biodegrad 71:55–60

    Article  CAS  Google Scholar 

  • Xu Y, Sun Q, Yi L, Yin X, Wang A, Li Y, Chen J (2014) The source of natural and anthropogenic heavy metals in the sediments of the Minjiang River Estuary (SE China): implications for historical pollution. Sci Total Environ 493:729–736

    Article  CAS  PubMed  Google Scholar 

  • Yabe J, Ishizuka M, Umemura T (2010) Current levels of heavy metal pollution in Africa. J Vet Med Sci 72:1257–1263

    Article  CAS  PubMed  Google Scholar 

  • Yadav P, Singh B, Garg VK, Mor S, Pulhani V (2017) Bioaccumulation and health risks of heavy metals associated with consumption of rice grains from croplands in Northern India. Hum Ecol Risk Assess 23(1):14–27

    Article  CAS  Google Scholar 

  • Yamaji K, Watanabe Y, Masuya H, Shigeto A, Yui H, Haruma T (2016) Root fungal endophytes enhance heavy-metal stress tolerance of Clethra barbinervis growing naturally at mining sites via growth enhancement, promotion of nutrient uptake and decrease of heavy-metal concentration. PLoS One 11(12):1–15

    Article  CAS  Google Scholar 

  • Yao XF, Zhang JM, Tian L, Guob JH (2017) The effect of heavy metal contamination on the bacterial community structure at Jiaozhou Bay, China. Braz J Microbiol 48:71–78

    Article  CAS  PubMed  Google Scholar 

  • Yeo B, Langley-Turnbaugh S (2010) Trace element deposition on Mount Everest. Soil Horiz 51:72–78

    Article  Google Scholar 

  • Zaharescu DG, Hooda PS, Soler AP, Fernandez J, Burghelea CI (2009) Trace metals and their source in the catchment of the high altitude Lake Respomuso, Central Pyrenees. Sci Total Environ 407:3546–3553

    Article  CAS  PubMed  Google Scholar 

  • Zaltauskaite J, Sliumpaite I (2013) Single and combined toxicity of copper and cadmium to H. vulgare growth and heavy metal bioaccumulation. E3S Web Conf 1:15013

    Article  CAS  Google Scholar 

  • Zeitoun MM, Mehana ES (2014) Impact of water pollution with heavy metals on fish health: overview and updates. Glob Vet 12(2):219–231

    Google Scholar 

  • Zengin F, Munzuroglu O (2005) Effect of some heavy metals on the content of chlorophyll, proline and some antioxidant chemicals in bean (Phaseolus vulgaris L.) seedlings. Acta Biol Cracov 47(2):157–164

    Google Scholar 

  • Zhang X, Zhong T, Liu L, Ouyang X (2015) Impact of soil heavy metal pollution on food safety in China. PLoS One 10(8):1–14

    Google Scholar 

  • Zurek G, Rybka K, Pogrzeba M, Krzyżak J, Prokopiuk K (2014) Chlorophyll a fluorescence in evaluation of the effect of heavy metal soil contamination on perennial grasses. PLoS One 9(3):1–10

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dash, B., Soni, R., Goel, R. (2019). Rhizobacteria for Reducing Heavy Metal Stress in Plant and Soil. In: Sayyed, R., Arora, N., Reddy, M. (eds) Plant Growth Promoting Rhizobacteria for Sustainable Stress Management . Microorganisms for Sustainability, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-13-6536-2_10

Download citation

Publish with us

Policies and ethics