Skip to main content

Advertisement

Log in

Heavy metals toxicity: effect of cadmium ions on amyloid beta protein 1–42. Possible implications for Alzheimer’s disease

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Cadmium (Cd) is an environmental contaminant, highly toxic to humans. This biologically non-essential element accumulates in the body, especially in the kidney, liver, lung and brain and can induce several toxic effects, depending on the concentration and the exposure time. Cd has been linked to Alzheimer’s disease (AD) as a probable risk factor, as it shows higher concentrations in brain tissues of AD patients than in healthy people, its implication in the formation of neurofibrillary tangles and in the aggregation process of amyloid beta peptides (AβPs). AβPs seem to have toxic properties, particularly in their aggregated state; insoluble AβP forms, such as small and large aggregates, protofibrils and fibrils, appear to be implicated in the pathogenesis of AD. In our study, we have evaluated the effect of Cd, at different concentrations, both on the AβP1–42 ion channel incorporated in a planar lipid membrane made up of phosphatidylcholine containing 30 % cholesterol and on the secondary structure of AβP1–42 in aqueous environment. Cadmium is able to interact with the AβP1–42 peptide by acting on the channel incorporated into the membrane as well as on the peptide in solution, both decreasing AβP1–42 channel frequency and in solution forming large and amorphous aggregates prone to precipitate. These experimental observations suggesting a toxic role for Cd strengthen the hypothesis that Cd may interact directly with AβPs and may be a risk factor in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abramov AY, Ionov M, Pavlov E, Duchen MR (2011) Membrane cholesterol content plays a key role in the neurotoxicity of β-amyloid: implications for Alzheimer’s disease. Aging Cell 10:595–603

    CAS  PubMed  Google Scholar 

  • Alberdi E, Sánchez-Gómez MV, Cavaliere F, Pérez-Samartín A, Zugaza JL, Trullas R, Domercq M, Matute C (2010) Amyloid beta oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium 47:264–272

    CAS  PubMed  Google Scholar 

  • Arispe N, Pollard H, Rojas E (1993a) Giant multilevel cation channels formed by Alzheimer disease amyloid beta-protein [A beta P-(1-40)] in bilayer membranes. Proc Natl Acad Sci USA 90:10573–10577

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arispe N, Rojas E, Pollard H (1993b) Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proc Natl Acad Sci USA 90:567–571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arispe N, Pollard H, Rojas E (1996) Zn2+ interaction with Alzheimer amyloid beta protein calcium channels. Proc Natl Acad Sci USA 93:1710–1715

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ashley R, Harroun T, Hauss T, Breen K, Bradshaw J (2006) Autoinsertion of soluble oligomers of Alzheimer’s Abeta(1-42) peptide into cholesterol-containing membranes is accompanied by relocation of the sterol towards the bilayer surface. BMC Struct Biol 6:21

    PubMed Central  PubMed  Google Scholar 

  • Basun H, Forssell L, Wetterberg L, Winblad B (1991) Metals and trace elements in plasma and cerebrospinal fluid in normal aging and Alzheimer’s disease. J Neural Transm Park Dis Dement Sect 3:231–258

    CAS  PubMed  Google Scholar 

  • Bitan G, Fradinger EA, Spring SM, Teplow DB (2005) Neurotoxic protein oligomers—what you see is not always what you get. Amyloid 12:88–95

    PubMed  Google Scholar 

  • Bocharova OV, Breydo L, Salnikov VV, Baskakov IV (2005) Copper(II) inhibits in vitro conversion of prion protein into amyloid fibrils. Biochemistry 44:6776–6787

    CAS  PubMed  Google Scholar 

  • Bolognin S, Messori L, Drago D, Gabbiani C, Cendron L, Zatta P (2011) Aluminum, copper, iron and zinc differentially alter amyloid-Aβ(1-42) aggregation and toxicity. Int J Biochem Cell Biol 43:877–885

    CAS  PubMed  Google Scholar 

  • Bravard A, Vacher M, Gouget B, Coutant A, de Boisferon FH, Marsin S, Chevillard S, Radicella JP (2006) Redox regulation of human OGG1 activity in response to cellular oxidative stress. Mol Cell Biol 26:7430–7436

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bush A (2000) Metals and neuroscience. Curr Opin Chem Biol 4:184–191

    CAS  PubMed  Google Scholar 

  • Bush A (2003) The metallobiology of Alzheimer’s disease. Trends Neurosci 26:207–214

    CAS  PubMed  Google Scholar 

  • Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298

    CAS  PubMed  Google Scholar 

  • Chauhan V, Chauhan A (2006) Oxidative stress in Alzheimer’s disease. Pathophysiology 13:195–208

    CAS  PubMed  Google Scholar 

  • Chen WT, Liao YH, Yu HM, Cheng IH, Chen YR (2011) Distinct effects of Zn2+, Cu2+, Fe3+, and Al3+ on amyloid-beta stability, oligomerization, and aggregation: amyloid-beta destabilization promotes annular protofibril formation. J Biol Chem 286:9646–9656

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davis CH, Berkowitz ML (2010) A molecular dynamics study of the early stages of amyloid-beta(1-42) oligomerization: the role of lipid membranes. Proteins 78:2533–2545

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, Klein WL (2007) Abeta oligomers induce neuronal oxidative stress through an N-methyl-d-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem 282:11590–11601

    PubMed  Google Scholar 

  • Di Carlo M (2010) Beta amyloid peptide: from different aggregation forms to the activation of different biochemical pathways. Eur Biophys J 39:877–888

    PubMed  Google Scholar 

  • Di Paolo G, Kim TW (2011) Linking lipids to Alzheimer’s disease: cholesterol and beyond. Nat Rev Neurosci 12:284–296

    PubMed Central  PubMed  Google Scholar 

  • Drago D, Bettella M, Bolognin S, Cendron L, Scancar J, Milacic R, Ricchelli F, Casini A, Messori L, Tognon G et al (2008) Potential pathogenic role of beta-amyloid(1-42)-aluminum complex in Alzheimer’s disease. Int J Biochem Cell Biol 40:731–746

    CAS  PubMed  Google Scholar 

  • Durell S, Guy H, Arispe N, Rojas E, Pollard H (1994) Theoretical models of the ion channel structure of amyloid beta-protein. Biophys J 67:2137–2145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fahim MA, Nemmar A, Dhanasekaran S, Singh S, Shafiullah M, Yasin J, Zia S, Hasan MY (2012) Acute cadmium exposure causes systemic and thromboembolic events in mice. Physiol Res 61:73–80

    CAS  PubMed  Google Scholar 

  • Gallucci E, Meleleo D, Micelli S, Picciarelli V (2003) Magainin 2 channel formation in planar lipid membranes: the role of lipid polar groups and ergosterol. Eur Biophys J 32:22–32

    CAS  PubMed  Google Scholar 

  • Gennis RB (1989) Biomembranes: molecular structure and function. Springer, New York

    Google Scholar 

  • Glabe CG (2006) Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging 27:570–575

    CAS  PubMed  Google Scholar 

  • Gonçalves JF, Fiorenza AM, Spanevello RM, Mazzanti CM, Bochi GV, Antes FG, Stefanello N, Rubin MA, Dressler VL, Morsch VM et al (2010) N-acetylcysteine prevents memory deficits, the decrease in acetylcholinesterase activity and oxidative stress in rats exposed to cadmium. Chem Biol Interact 186:53–60

    PubMed  Google Scholar 

  • Gonçalves JF, Nicoloso FT, da Costa P, Farias JG, Carvalho FB, da Rosa MM, Gutierres JM, Abdalla FH, Pereira JS, Dias GR et al (2012) Behavior and brain enzymatic changes after long-term intoxication with cadmium salt or contaminated potatoes. Food Chem Toxicol 50:3709–3718

    PubMed  Google Scholar 

  • Ha C, Ryu J, Park CB (2007) Metal ions differentially influence the aggregation and deposition of Alzheimer’s beta-amyloid on a solid template. Biochemistry 46:6118–6125

    CAS  PubMed  Google Scholar 

  • Haass C, Selkoe DJ (1993) Cellular processing of beta-amyloid precursor protein and the genesis of amyloid beta-peptide. Cell 75:1039–1042

    CAS  PubMed  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    CAS  PubMed  Google Scholar 

  • Hertel C, Terzi E, Hauser N, Jakob-Rotne R, Seelig J, Kemp JA (1997) Inhibition of the electrostatic interaction between beta-amyloid peptide and membranes prevents beta-amyloid-induced toxicity. Proc Natl Acad Sci USA 94:9412–9416

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirakura Y, Lin M, Kagan B (1999) Alzheimer amyloid abeta1-42 channels: effects of solvent, pH, and Congo Red. J Neurosci Res 57:458–466

    CAS  PubMed  Google Scholar 

  • Hotz P, Buchet JP, Bernard A, Lison D, Lauwerys R (1999) Renal effects of low-level environmental cadmium exposure: 5-year follow-up of a subcohort from the Cadmibel study. Lancet 354:1508–1513

    CAS  PubMed  Google Scholar 

  • Im JY, Paik SG, Han PL (2006) Cadmium-induced astroglial death proceeds via glutathione depletion. J Neurosci Res 83:301–308

    CAS  PubMed  Google Scholar 

  • Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y (1994) Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron 13:45–53

    CAS  PubMed  Google Scholar 

  • Jarrett JT, Berger EP, Lansbury PT (1993) The C-terminus of the beta protein is critical in amyloidogenesis. Ann N Y Acad Sci 695:144–148

    CAS  PubMed  Google Scholar 

  • Jiang LF, Yao TM, Zhu ZL, Wang C, Ji LN (2007) Impacts of Cd(II) on the conformation and self-aggregation of Alzheimer’s tau fragment corresponding to the third repeat of microtubule-binding domain. Biochim Biophys Acta 1774:1414–1421

    CAS  PubMed  Google Scholar 

  • Jin T, Lu J, Nordberg M (1998) Toxicokinetics and biochemistry of cadmium with special emphasis on the role of metallothionein. Neurotoxicology 19:529–535

    CAS  PubMed  Google Scholar 

  • Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283:65–87

    CAS  PubMed  Google Scholar 

  • Jones MM, Cherian MG (1990) The search for chelate antagonists for chronic cadmium intoxication. Toxicology 62:1–25

    CAS  PubMed  Google Scholar 

  • Kakio A, Nishimoto S, Kozutsumi Y, Matsuzaki K (2003) Formation of a membrane-active form of amyloid beta-protein in raft-like model membranes. Biochem Biophys Res Commun 303:514–518

    CAS  PubMed  Google Scholar 

  • Kataranovski M, Janković S, Kataranovski D, Stosić J, Bogojević D (2009) Gender differences in acute cadmium-induced systemic inflammation in rats. Biomed Environ Sci 22:1–7

    CAS  PubMed  Google Scholar 

  • Karimi MM, Jafari Sani M, Mahmudabadi AZ, Jafari Sani A, and Kathibi, RS (2012) Effect of acute toxicity of cadmium in mice kidney cells. Iran J Toxicol 6

  • Kayed R, Head E, Thompson J, McIntire T, Milton S, Cotman C, Glabe C (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    CAS  PubMed  Google Scholar 

  • Kayed R, Sokolov Y, Edmonds B, McIntire T, Milton S, Hall J, Glabe C (2004) Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. J Biol Chem 279:46363–46366

    CAS  PubMed  Google Scholar 

  • Kirkitadze MD, Condron MM, Teplow DB (2001) Identification and characterization of key kinetic intermediates in amyloid beta-protein fibrillogenesis. J Mol Biol 312:1103–1119

    CAS  PubMed  Google Scholar 

  • Klement K, Wieligmann K, Meinhardt J, Hortschansky P, Richter W, Fändrich M (2007) Effect of different salt ions on the propensity of aggregation and on the structure of Alzheimer’s abeta(1-40) amyloid fibrils. J Mol Biol 373:1321–1333

    CAS  PubMed  Google Scholar 

  • Kuperstein I, Broersen K, Benilova I, Rozenski J, Jonckheere W, Debulpaep M, Vandersteen A, Segers-Nolten I, Van Der Werf K, Subramaniam V et al (2010) Neurotoxicity of Alzheimer’s disease Aβ peptides is induced by small changes in the Aβ42 to Aβ40 ratio. EMBO J 29:3408–3420

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lafuente A, Esquifino AI (1999) Cadmium effects on hypothalamic activity and pituitary hormone secretion in the male. Toxicol Lett 110:209–218

    CAS  PubMed  Google Scholar 

  • Lesné S, Koh M, Kotilinek L, Kayed R, Glabe C, Yang A, Gallagher M, Ashe K (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440:352–357

    PubMed  Google Scholar 

  • Lesné S, Kotilinek L, Ashe KH (2008) Plaque-bearing mice with reduced levels of oligomeric amyloid-beta assemblies have intact memory function. Neuroscience 151:745–749

    PubMed Central  PubMed  Google Scholar 

  • Li X, Lv Y, Yu S, Zhao H, Yao L (2012) The effect of cadmium on Aβ levels in APP/PS1 transgenic mice. Exp Ther Med 4:125–130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin H, Bhatia R, Lal R (2001) Amyloid beta protein forms ion channels: implications for Alzheimer’s disease pathophysiology. FASEB J 15:2433–2444

    CAS  PubMed  Google Scholar 

  • López E, Arce C, Oset-Gasque MJ, Cañadas S, González MP (2006) Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Radic Biol Med 40:940–951

    PubMed  Google Scholar 

  • Lovell M, Robertson J, Teesdale W, Campbell J, Markesbery W (1998) Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 158:47–52

    CAS  PubMed  Google Scholar 

  • Lue L, Kuo Y, Roher A, Brachova L, Shen Y, Sue L, Beach T, Kurth J, Rydel R, Rogers J (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 155:853–862

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lui E, Fisman M, Wong C, Diaz F (1990) Metals and the liver in Alzheimer’s disease. An investigation of hepatic zinc, copper, cadmium, and metallothionein. J Am Geriatr Soc 38:633–639

    CAS  PubMed  Google Scholar 

  • Lukawski K, Nieradko B, Sieklucka-Dziuba M (2005) Effects of cadmium on memory processes in mice exposed to transient cerebral oligemia. Neurotoxicol Teratol 27:575–584

    CAS  PubMed  Google Scholar 

  • Mason RP, Jacob RF, Walter MF, Mason PE, Avdulov NA, Chochina SV, Igbavboa U, Wood WG (1999) Distribution and fluidizing action of soluble and aggregated amyloid beta-peptide in rat synaptic plasma membranes. J Biol Chem 274:18801–18807

    CAS  PubMed  Google Scholar 

  • McLean C, Cherny R, Fraser F, Fuller S, Smith M, Beyreuther K, Bush A, Masters C (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46:860–866

    CAS  PubMed  Google Scholar 

  • Meleleo D, Galliani A, Notarachille G (2013) AβP1-42 incorporation and channel formation in planar lipid membranes: the role of cholesterol and its oxidation products. J Bioenerg Biomembr 45:369–381

    CAS  PubMed  Google Scholar 

  • Micelli S, Gallucci E, Meleleo D, Stipani V, Picciarelli V (2002) Mitochondrial porin incorporation into black lipid membranes: ionic and gating contribution to the total current. Bioelectrochemistry 57:97–106

    CAS  PubMed  Google Scholar 

  • Micelli S, Meleleo D, Picciarelli V, Gallucci E (2004) Effect of sterols on beta-amyloid peptide (AbetaP 1-40) channel formation and their properties in planar lipid membranes. Biophys J 86:2231–2237

    CAS  PubMed Central  PubMed  Google Scholar 

  • Minami A, Takeda A, Nishibaba D, Takefuta S, Oku N (2001) Cadmium toxicity in synaptic neurotransmission in the brain. Brain Res 894:336–339

    CAS  PubMed  Google Scholar 

  • Miyashita N, Straub JE, Thirumalai D (2009) Structures of beta-amyloid peptide 1-40, 1-42, and 1-55-the 672-726 fragment of APP-in a membrane environment with implications for interactions with gamma-secretase. J Am Chem Soc 131:17843–17852

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moschou M, Papaefthimiou C, Kagiava A, Antonopoulou E, Theophilidis G (2008) In vitro assessment of the effects of cadmium and zinc on mammalian nerve fibres. Chemosphere 71:1996–2002

    CAS  PubMed  Google Scholar 

  • Müller P, Rudin D, Tien T, Weacott W (1962) Reconstitution of cell membrane structure in vitro and its trasformation into an excitable system. Nature 194:979–980

    Google Scholar 

  • Nishimura Y, Yamaguchi JY, Kanada A, Horimoto K, Kanemaru K, Satoh M, Oyama Y (2006) Increase in intracellular Cd(2 +) concentration of rat cerebellar granule neurons incubated with cadmium chloride: cadmium cytotoxicity under external Ca(2 +)-free condition. Toxicol In Vitro 20:211–216

    CAS  PubMed  Google Scholar 

  • Panayi A, Spyrou N, Iversen B, White M, Part P (2002) Determination of cadmium and zinc in Alzheimer’s brain tissue using inductively coupled plasma mass spectrometry. J Neurol Sci 195:1–10

    CAS  PubMed  Google Scholar 

  • Pollard HB, Rojas E, Arispe N (1993) A new hypothesis for the mechanism of amyloid toxicity, based on the calcium channel activity of amyloid beta protein (A beta P) in phospholipid bilayer membranes. Ann N Y Acad Sci 695:165–168

    CAS  PubMed  Google Scholar 

  • Quist A, Doudevski I, Lin H, Azimova R, Ng D, Frangione B, Kagan B, Ghiso J, Lal R (2005) Amyloid ion channels: a common structural link for protein-misfolding disease. Proc Natl Acad Sci USA 102:10427–10432

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raghunathan G, Seetharamulu P, Brooks BR, Guy HR (1990) Models of delta-hemolysin membrane channels and crystal structures. Proteins 8:213–225

    CAS  PubMed  Google Scholar 

  • Ragunathan N, Dairou J, Sanfins E, Busi F, Noll C, Janel N, Dupret JM, Rodrigues-Lima F (2010) Cadmium alters the biotransformation of carcinogenic aromatic amines by arylamine N-acetyltransferase xenobiotic-metabolizing enzymes: molecular, cellular, and in vivo studies. Environ Health Perspect 118:1685–1691

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ricchelli F, Drago D, Filippi B, Tognon G, Zatta P (2005) Aluminum-triggered structural modifications and aggregation of beta-amyloids. Cell Mol Life Sci 62:1724–1733

    CAS  PubMed  Google Scholar 

  • Roychaudhuri R, Yang M, Hoshi MM, Teplow DB (2009) Amyloid beta-protein assembly and Alzheimer disease. J Biol Chem 284:4749–4753

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanderson KL, Butler L, Ingram VM (1997) Aggregates of a beta-amyloid peptide are required to induce calcium currents in neuron-like human teratocarcinoma cells: relation to Alzheimer’s disease. Brain Res 744:7–14

    CAS  PubMed  Google Scholar 

  • Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, Bird TD, Hardy J, Hutton M, Kukull W et al (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2:864–870

    CAS  PubMed  Google Scholar 

  • Selkoe D (2001a) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    CAS  PubMed  Google Scholar 

  • Selkoe D (2001b) Clearing the brain’s amyloid cobwebs. Neuron 32:177–180

    CAS  PubMed  Google Scholar 

  • Selkoe D (2004) Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nat Cell Biol 6:1054–1061

    CAS  PubMed  Google Scholar 

  • Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, Sinha S, Schlossmacher M, Whaley J, Swindlehurst C (1992) Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids. Nature 359:325–327

    CAS  PubMed  Google Scholar 

  • Shafrir Y, Durell S, Arispe N, Guy HR (2010) Models of membrane-bound Alzheimer’s Abeta peptide assemblies. Proteins 78:3473–3487

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shirwany NA, Payette D, Xie J, Guo Q (2007) The amyloid beta ion channel hypothesis of Alzheimer’s disease. Neuropsychiatr Dis Treat 3:597–612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simmons MA, Schneider CR (1993) Amyloid beta peptides act directly on single neurons. Neurosci Lett 150:133–136

    CAS  PubMed  Google Scholar 

  • Smart OS, Breed J, Smith GR, Sansom MS (1997) A novel method for structure-based prediction of ion channel conductance properties. Biophys J 72:1109–1126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith DG, Cappai R, Barnham KJ (2007) The redox chemistry of the Alzheimer’s disease amyloid beta peptide. Biochim Biophys Acta 1768:1976–1990

    CAS  PubMed  Google Scholar 

  • Sokolov Y, Kozak J, Kayed R, Chanturiya A, Glabe C, Hall J (2006) Soluble amyloid oligomers increase bilayer conductance by altering dielectric structure. J Gen Physiol 128:637–647

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sowa B, Steibert E (1985) Effect of oral cadmium administration to female rats during pregnancy on zinc, copper, and iron content in placenta, foetal liver, kidney, intestine, and brain. Arch Toxicol 56:256–262

    CAS  PubMed  Google Scholar 

  • Stellato F, Menestrina G, Serra MD, Potrich C, Tomazzolli R, Meyer-Klaucke W, Morante S (2006) Metal binding in amyloid beta-peptides shows intra- and inter-peptide coordination modes. Eur Biophys J 35:340–351

    CAS  PubMed  Google Scholar 

  • Stipani V, Gallucci E, Micelli S, Picciarelli V, Benz R (2001) Channel formation by salmon and human calcitonin in black lipid membranes. Biophys J 81:3332–3338

    CAS  PubMed Central  PubMed  Google Scholar 

  • Syme CD, Viles JH (2006) Solution 1H NMR investigation of Zn2+ and Cd22+ binding to amyloid-beta peptide (Abeta) of Alzheimer’s disease. Biochim Biophys Acta 1764:246–256

    CAS  PubMed  Google Scholar 

  • Tien TH (1974) Bilayer Lipid Membrane: theory and practice. Marcel Dekker, New York

    Google Scholar 

  • Tien TH, Mountz JD, and Martinosi AN (1977) Protein-lipid interaction in bilayer lipid membranes (BLM). In: The enzyme of biological membranes, vol 1. Plenum, NY, pp 139–170

  • Valincius G, Heinrich F, Budvytyte R, Vanderah D, McGillivray D, Sokolov Y, Hall J, Lösche M (2008) Soluble amyloid beta-oligomers affect dielectric membrane properties by bilayer insertion and domain formation: implications for cell toxicity. Biophys J 95:4845–4861

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vargas J, Alarcón J, Rojas E (2000) Displacement currents associated with the insertion of Alzheimer disease amyloid beta-peptide into planar bilayer membranes. Biophys J 79:934–944

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walsh D, Klyubin I, Fadeeva J, Cullen W, Anwyl R, Wolfe M, Rowan M, Selkoe D (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539

    CAS  PubMed  Google Scholar 

  • Walsh DM, Townsend M, Podlisny MB, Shankar GM, Fadeeva JV, El Agnaf O, Hartley DM, Selkoe DJ (2005) Certain inhibitors of synthetic amyloid beta-peptide (Abeta) fibrillogenesis block oligomerization of natural Abeta and thereby rescue long-term potentiation. J Neurosci 25:2455–2462

    CAS  PubMed  Google Scholar 

  • Wang B, Du Y (2013) Cadmium and its neurotoxic effects. Oxid Med Cell Longev 2013:898034

    PubMed Central  PubMed  Google Scholar 

  • Wang HY, Lee DH, Davis CB, Shank RP (2000) Amyloid peptide Abeta(1-42) binds selectively and with picomolar affinity to alpha7 nicotinic acetylcholine receptors. J Neurochem 75:1155–1161

    CAS  PubMed  Google Scholar 

  • Weiner H, Frenkel D (2006) Immunology and immunotherapy of Alzheimer’s disease. Nat Rev Immunol 6:404–416

    CAS  PubMed  Google Scholar 

  • Yano K, Hirosawa N, Sakamoto Y, Katayama H, Moriguchi T (2003) Aggregations of amyloid beta-proteins in the presence of metal ions. Toxicol Lett 144:s134

    Google Scholar 

  • Yuan Y, Bian JC, Liu XZ, Zhang Y, Sun Y, Liu ZP (2012) Oxidative stress and apoptotic changes of rat cerebral cortical neurons exposed to cadmium in vitro. Biomed Environ Sci 25:172–181

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Fondazione Cassa di Risparmio di Puglia. The authors acknowledge Anthony Green for proofreading and providing linguistic advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Meleleo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Notarachille, G., Arnesano, F., Calò, V. et al. Heavy metals toxicity: effect of cadmium ions on amyloid beta protein 1–42. Possible implications for Alzheimer’s disease. Biometals 27, 371–388 (2014). https://doi.org/10.1007/s10534-014-9719-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-014-9719-6

Keywords

Navigation