Skip to main content

In Vitro Production of Some Important Secondary Metabolites from Zingiber Species

  • Chapter
  • First Online:
Biotechnological Approaches for Medicinal and Aromatic Plants

Abstract

Many higher plants are major sources of natural products which are used as pharmaceuticals, flavor and fragrances, dye and pigments, pesticides, and food additives. The search for new plant-derived chemicals has become a priority in current and future efforts toward sustainable conservation and rational utilization of biodiversity. In the recent years, the evolving commercial importance of secondary metabolites has led to a great interest in the production and enhancement of bioactive plant metabolites by means of tissue culture technologies. Plant cell culture systems represent a potential renewable source of valuable medicinal compounds which are not limited by the low yields associated with natural harvest or the high cost associated with complex chemical synthesis as well as provide more resistance to pathogens and adverse environmental and climatic conditions. Different strategies, using an in vitro system such as undifferentiated cell cultures and hairy root culture, have been extensively studied to improve the production of plant chemicals as they are more genetically stable. Among the medicinal plants, Zingiber is also considered as an important genus comprising many plant species that has received much attention in food and medicinal industry due to the presence of different secondary metabolites that contribute to its diverse biological activities. Based on this limelight, the present chapter focusses on several studies of in vitro production of important secondary metabolites from different Zingiber species. Moreover, the applications and strategies for the enhancement of these valuable metabolites by using in vitro technology are also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alemdar, S., Hartwig, S., Frister, T., et al. (2016). Heterologous expression, purification, and biochemical characterization of α-humulene synthase from Zingiber zerumbet smith. Applied Biochemistry and Biotechnology, 178(3), 474–489.

    Article  CAS  PubMed  Google Scholar 

  • Aly, U. I., Abbas, M. S., Taha, H. S., et al. (2013). Characterization of 6-gingerol for in vivo and in vitro ginger (Zingiber officinale) using high performance liquid chromatography. Global Journal of Botanical Science, 1, 9–17.

    Article  Google Scholar 

  • Ammon, H. P. T. (1991). Pharmacology of Curcuma longa. Planta Medica, 57, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Anasori, P., & Asghari, G. (2008). Effects of light and differentiation on gingerol and zingiberene production in callus culture of Zingiber officinale Rosc. Research in Pharmaceutical Sciences, 3, 59–63.

    CAS  Google Scholar 

  • Baranowski, J. D. (1985). Storage stability of processed ginger paste. Journal of Food Science, 50, 932–933.

    Article  CAS  Google Scholar 

  • Bhattarai, S., Tran, V. H., & Duke, C. C. (2001). The stability of gingerol and shogaol in aqueous solutions. Journal of Pharmaceutical Sciences, 90(10), 1658–1664.

    Article  CAS  PubMed  Google Scholar 

  • Bua-in, S., Paisooksantivatana, Y., Weimer, B. C., et al. (2014). Molecular cloning and expression levels of the monoterpene synthase gene (ZMM1) in Cassumunar ginger (Zingiber montanum (Koenig) Link Ex Dietr.). Archives of Biological Sciences Belgrade, 66(4), 1321–1331.

    Article  Google Scholar 

  • Cafino, E. J. V., Lirazan, M. B., & Marfori, E. C. (2016). A simple HPLC method for the analysis of [6]-gingerol produced by multiple shoot culture of ginger (Zingiber officinale). International Journal of Pharmacognosy and Phytochemical Research, 8(1), 38–42.

    Google Scholar 

  • Chamratpan, S., & Homchuen, S. (2012). Ethnobotany in upper northeastern Thailand. Cha-Am Petchaburi: Bali Lau Ent Media Hawaii, USA.

    Google Scholar 

  • Chari, K. L. N., Manasa, D., Srinivas, P., et al. (2013). Enzyme-assisted extraction of bioactive compounds from ginger (Zingiber officinale Roscoe). Food Chemistry, 139, 509–514.

    Article  CAS  Google Scholar 

  • Chinnici, F., Bendini, A., Gaiani, A., et al. (2004). Radical scavenging activity of peels and pulps from cv. Golden delicious apples as related to their phenolic composition. Journal of Agricultural and Food Chemistry, 52, 4684–4689.

    Article  CAS  PubMed  Google Scholar 

  • Croteau, R. (1987). Biosynthesis and catabolism of monoterpenoids. Chemical Reviews, 87, 929–954.

    Article  CAS  Google Scholar 

  • da Silva, M. F., Pescador, R., Rebelo, R. A., et al. (2008). The effect of arbuscular mycorrhizal fungal isolates on the development and oleoresin production of micropropagated Zingiber officinale. Brazilian Journal of Plant Physiology, 20(2), 119–130.

    Article  Google Scholar 

  • Dehghani, I., Mostajerana, A., & Asgharib, G. (2011). In vitro and in vivo production of gingerols and zingiberene in ginger plant (Zingiber officinale Roscoe). Iranian Journal of Pharmaceutical Sciences, 7(2), 117–121.

    Google Scholar 

  • Denyer, C. V., Jackson, P., Loakes, D. M., et al. (1994). Isolation of antirhinoviral sesquiterpenes from ginger (Zingiber officinale). Journal of Natural Products, 57(5), 658–662.

    Article  CAS  PubMed  Google Scholar 

  • Devi, N. B., Singh, P. K., & Das, A. K. (2014). Ethnomedicinal utilization of Zingiberaceae in the valley districts of Manipur. Journal of Environmental Science, Toxicology and Food Technology, 8(2), 21–23.

    Article  Google Scholar 

  • Dicosmo, F., & Misawa, M. (1995). Plant cell and tissue culture: Alternatives for metabolite production. Biotechnology Advances, 13(3), 425–453.

    Article  CAS  PubMed  Google Scholar 

  • Doran, P. M. (2000). Foreign protein production in plant tissue cultures. Current Opinion in Biotechnology, 11, 199–204.

    Article  CAS  PubMed  Google Scholar 

  • Dugasani, S., Pichika, M. R., Nadarajah, V. D., et al. (2010). Comparative antioxidant and anti-inflammatory effects of [6]- gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. Journal of Ethnopharmacology, 127(2), 515–520.

    Article  CAS  PubMed  Google Scholar 

  • El-Nabarawy, M. A., El-Kafafi, S. H., Hamza, M. A., et al. (2015). The effect of some factors on stimulating the growth and production of active substances in Zingiber officinale callus cultures. Annals of Agricultural Science, 60(1), 1–9.

    Article  Google Scholar 

  • El-Tamer, M. K., Smeets, M., Holthuysen, N., et al. (2003). The influence of monoterpene synthase transformation on the odour of tobacco. Journal of Biotechnology, 106, 15–21.

    Article  CAS  PubMed  Google Scholar 

  • Farhath, S., Vijaya, P. P., & Vimal, M. (2013). Immunomodulatory activity of geranial, geranial acetate, gingerol, and eugenol essential oils: Evidence for humoral and cell-mediated responses. Avicenna Journal of Phytomedicine, 3(3), 224–230.

    PubMed Central  PubMed  Google Scholar 

  • Fernandes, E. S., Passos, G. F., Medeiros, R., et al. (2007). Anti-inflammatory effects of compounds alpha humulene and (−) trans-caryophyllene isolated from the essential oil of Cordia verbenaceae. European Journal of Pharmacology, 569(3), 228–236.

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo, A. C., Barroso, J. G., Pedro, L. G., et al. (2008). Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour and Fragrance Journal, 23(4), 213–226.

    Article  CAS  Google Scholar 

  • Fujisawa, M., Harada, H., & Kenmoku, H. (2010). Cloning and characterization of a novel gene that encodes (S)-beta-bisabolene synthase from ginger, Zingiber officinale. Planta, 232, 121–130.

    Article  CAS  PubMed  Google Scholar 

  • Gagaoua, M., Hoggas, N., & Hafid, K. (2015). Three phase partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes. International Journal of Biological Macromolecules, 73, 245–252.

    Article  CAS  PubMed  Google Scholar 

  • Gagaoua, M., Hoggas, N., & Hafid, K. (2016). Data in support of three phase partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes. Data in Brief, 6, 634–639.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ghasemzadeh, A., & Jaafar, H. Z. E. (2011). Effect of CO2 enrichment on synthesis of some primary and secondary metabolites in ginger (Zingiber officinale Roscoe). International Journal of Molecular Sciences, 12, 1101–1114.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ghasemzadeh, A., Jaafar, H. Z. E., Rahmat, A., et al. (2010). Effect of different light intensities on total phenolics and flavonoids synthesis and anti-oxidant activities in young ginger varieties (Zingiber officinale Roscoe). International Journal of Molecular Sciences, 11, 3885–3897.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ghasemzadeh, A., Jaafar, H. Z. E., Karimi, E., et al. (2012). Combined effect of CO2 enrichment and foliar application of salicylic acid on the production and antioxidant activities of anthocyanin, flavonoids and isoflavonoids from ginger. BMC Complementary and Alternative Medicine, 12, 229.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ghosh, S., & Sen-Mandi, S. (2015). SNP in chalcone synthase gene is associated with variation of 6-gingerol content in contrasting landraces of Zingiber officinale Roscoe. Gene, 566, 184–188.

    Article  CAS  PubMed  Google Scholar 

  • Gong, F., Fung, Y. S., & Liang, Y. Z. (2004). Determination of volatile components in ginger using gas chromatography-mass spectrometry with resolution improved by data processing techniques. Journal of Agricultural and Food Chemistry, 52, 6378–6383.

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan, V. S. (1982). Ginger-chemistry, technology and quality evaluation: Part 1. Critical Reviews in Food Science and Nutrition, 17, 1–96.

    CAS  PubMed  Google Scholar 

  • Govindarajan, V. S., & Connell, D. W. (1983). Ginger-chemistry, technology, and quality evaluation: Part 1. Critical Reviews in Food Science and Nutrition, 17, 1–96.

    Article  Google Scholar 

  • Gruenwald, J. (2004). PDR for herbal medicine (3rd ed.). Montvale: Thomson PDR.

    Google Scholar 

  • Hansen, G., & Wright, M. S. (1999). Recent advances in the transformation of plants. Trends in Plant Science, 4, 226–231.

    Article  CAS  PubMed  Google Scholar 

  • Harold, M. (2004). On food and cooking: The science and lore of the kitchen (2nd ed.). New York: Scribner.

    Google Scholar 

  • Hikino, H., Kiso, Y., Kato, N., et al. (1985). Antihepatotoxic action of gingerols and diarylheptanoids. Journal of Ethnopharmacology, 14, 31–39.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Z., Wang, B., & Eaves, D. H. (2009). Total phenolics and antioxidant capacity of indigenous vegetables in the southeast unites states: Alabama collaboration for cardiovascular equity project. International Journal of Food Sciences and Nutrition, 60(2), 100–108.

    Article  CAS  PubMed  Google Scholar 

  • Idris, E. D., Khalid, N., Ibrahim, H., et al. (2007). Production of zerumbone from in vitro derived rhizome of Zingiber zerumbet for pharmaceutical and cosmeceutical industry. In: 12th biological sciences graduate congress, University of Malaya, 17–19 December 2007.

    Google Scholar 

  • Iijima, Y., Koeduka, T., Suzuki, H., et al. (2014). Biosynthesis of geranial, a potent aroma compound in ginger rhizome (Zingiber officinale): Molecular cloning and characterization of geraniol dehydrogenase. Plant Biotechnology, 31, 525–534.

    Article  CAS  Google Scholar 

  • Iwasaki, Y., Morita, A., Iwasawa, T., et al. (2006). A non-pungent component of steamed ginger-[10]-shogaol-increases adrenaline secretion via the activation of TRPV1. Nutritional Neuroscience, 9, 169–178.

    CAS  PubMed  Google Scholar 

  • Jalil, M., Annuar, M. S. M., Tan, B. C., et al. (2015). Effects of selected physicochemical parameters on zerumbone production of Zingiber zerumbet Smith cell suspension culture. Evid Based Complement Altern Med, 2015, 1–7.

    Article  Google Scholar 

  • Jansen, P. C. M. (1999). Minor species. In C. C. de Guzman & J. S. Siemonsma (Eds.), Plant resources of South East Asia. Spices (Vol. 13, pp. 245–272). Prosnea Foundation: Bogor.

    Google Scholar 

  • Jegannathan, S. D., Arul, S., & Dayalan, H. (2016). Zerumbone, a sesquiterpene, controls proliferation and induces cell cycle arrest in human laryngeal carcinoma cell line hep2. Nutrition and Cancer, 68(5), 865–872.

    Article  CAS  PubMed  Google Scholar 

  • Karnchanatat, A., Tiengburanatam, N., Boonmee, A., et al. (2011). Zingipain, a cysteine protease from Zingiber ottensii valeton rhizomes with antiproliferative activities against fungi and human malignant cell lines. Preparative Biochemistry and Biotechnology, 41, 138–153.

    Article  CAS  PubMed  Google Scholar 

  • Karuppusamy, S. (2009). A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. Journal of Medicinal Plant Research, 3(13), 1222–1239.

    CAS  Google Scholar 

  • Keerthi, D., Geethu, C., Nair, R. A., et al. (2014). Metabolic profiling of Zingiber zerumbet following Pythium myriotylum infection: Investigations on the defensive role of the principal secondary metabolite, zerumbone. Applied Biochemistry and Biotechnology, 172(5), 2593–2603.

    Article  CAS  PubMed  Google Scholar 

  • Khrimian, A., Shirali, S., & Guzman, F. (2015). Absolute configurations of zingiberenols isolated from ginger (Zingiber officinale) rhizomes. Journal of Natural Products, 78, 3071–3074.

    Article  CAS  PubMed  Google Scholar 

  • Kinney, A. J. (1998). Manipulating flux through plant metabolic pathways. Current Opinion in Plant Biology, 1, 173–178.

    Article  CAS  PubMed  Google Scholar 

  • Kishore, N., & Dwivedi, R. S. (1992). Zerumbone: A potential fungi toxic agent isolated from Zingiber cassumunar Roxb. Mycopathologia, 120(3), 155–159.

    Article  CAS  Google Scholar 

  • Kiuchi, F., Shibuya, M., & Sankawa, U. (1982). Inhibitors of prostaglandin biosynthesis from ginger. Chemical & Pharmaceutical Bulletin, 30, 754–757.

    Article  CAS  Google Scholar 

  • Koo, H. J., & Gang, D. R. (2012). Suites of terpene synthases explain differential terpenoid production in ginger and turmeric tissues. PLoS One, 7, 7.

    Google Scholar 

  • Lai, Y. S., Lee, W. C., Lin, Y. E., et al. (2016). Ginger essential oil ameliorates hepatic injury and lipid accumulation in high fat diet-induced nonalcoholic fatty liver disease. Journal of Agricultural and Food Chemistry, 64, 2062–2071.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y. (2016). Cytotoxicity evaluation of essential oil and its component from Zingiber officinale Roscoe. Toxicology Research, 32(3), 225–230.

    Article  CAS  Google Scholar 

  • Lessard, P. (1996). Metabolic engineering, the concept coalesces. Nature Biotechnology, 14, 1654–1655.

    Article  CAS  PubMed  Google Scholar 

  • Ma, X., & Gang, D. R. (2006). Metabolic profiling of in vitro micropropagated and conventionally greenhouse grown ginger (Zingiber officinale). Phytochemistry, 67, 2239–2255.

    Article  CAS  PubMed  Google Scholar 

  • Mabberley, D. J. (1990). A portable dictionary of the higher plants. In The plant-book. Cambridge: University Press.

    Google Scholar 

  • Marden, M. C., Dieryck, W., Pagnier, J., et al. (1997). Human hemoglobin from transgenic tobacco. Nature, 342, 29–30.

    Google Scholar 

  • Matsuda, H., Nakamura, S., Iwami, J., et al. (2011). Invasion inhibitors of human fibrosarcoma HT1080 cells from the rhizomes of Zingiber cassumunar: Structures of phenylbutanoids, cassumunols. Chemical and Pharmaceutical Bulletin, 59(3), 365–370.

    Article  CAS  PubMed  Google Scholar 

  • Millar, J. G. (1998). Rapid and simple isolation of zingiberene from ginger essential oil. Journal of Natural Products, 61, 1025–1026.

    Article  CAS  PubMed  Google Scholar 

  • Min, B. R., Marsh, L. E., Brathwaite, K., et al. (2017). Effects of tissue culture and mycorrhiza applications in organic farming on concentrations of phytochemicals and antioxidant capacities in ginger (Zingiber officinale Roscoe) rhizomes and leaves. Journal of Food Science, 82(4), 873–881.

    Article  CAS  PubMed  Google Scholar 

  • Moirangthem, M. D., Paonam, P. S., Khoirom, R. D., et al. (2016). In vitro free radical scavenging activity and radioprotective property of Zingiber kangleipakense (Kishor & Škorničk). International Journal of Pharmacognosy and Phytochemical Research, 8(1), 135–142.

    Google Scholar 

  • Muhammad, A. M. S. (2009). A study on microwave-assisted extraction of Zingiber aromaticum (pp. 1–56). Kuantan: Faculty of Chemical & Natural Resources Engineering, UMP.

    Google Scholar 

  • Murakami, A., Takahashi, M., Jiwajinda, S., et al. (1999). Identification of zerumbone in Zingiber zerumbet Smith as a potent inhibitor of 12-O-tetradecanoylphorbol-13-acetate-induced Epstein- Barr virus activation. Bioscience, Biotechnology, and Biochemistry, 63(10), 1811–1812.

    Article  CAS  PubMed  Google Scholar 

  • Murthy, H. N., Lee, E. J., & Paek, K. Y. (2014). Production of secondary metabolites from cell and organ cultures: Strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell, Tissue and Organ Culture, 118, 1–16.

    Article  CAS  Google Scholar 

  • Mustafa, T., Srivastava, K. C., & Jensen, K. B. (1993). Drug development report (9): Pharmacology of ginger, Zingiber officinale. Journal of Drug Development, 6, 24–39.

    Google Scholar 

  • Namdeo, A. G. (2007). Plant cell elicitation for production of secondary metabolites: A review. Pharmacognosy Reviews, 1, 69–79.

    CAS  Google Scholar 

  • Nandagopal, K., Halder, M., Dash, B., et al. (2017). Biotechnological approaches for production of anti-cancerous compounds resveratrol, podophyllotoxin and zerumbone. Current Medicinal Chemistry, 7(1), 4108.

    Google Scholar 

  • Nishimura, O. (1995). Identification of the characteristic odorants in fresh rhizomes of ginger (Zingiber officinale roscoe) using aroma extract dilution analysis and modified multidimensional gas-chromatography mass-spectroscopy. Journal of Agricultural and Food Chemistry, 43, 2941–2945.

    Article  CAS  Google Scholar 

  • Ogawa, K., Miyoshi, T., Kitayama, T., et al. (2014). Locomotor-reducing effects and structural characteristics of inhaled zerumbone and tetrahydrozerumbone derivatives. Biological and Pharmaceutical Bulletin, 37(9), 1559–1563.

    Article  CAS  PubMed  Google Scholar 

  • Okonogi, S., & Chaiyana, W. (2012). Enhancement of anticholinesterase activity of Zingiber cassumunar essential oil using a microemulsion technique. Drug Discoveries & Therapeutics, 6(5), 249–255.

    CAS  Google Scholar 

  • Pan, M. H., Hsieh, M. C., Hsu, P. C., et al. (2008). 6-Shogaol suppressed lipopolysaccharide-induced up-expression of iNOS and COX-2 in murine macrophages. Molecular Nutrition & Food Research, 52(12), 1467–1477.

    Article  CAS  Google Scholar 

  • Park, G., Kim, H. G., Ju, M. S., et al. (2013). 6-Shogaol, an active compound of ginger, protects dopaminergic neurons in Parkinson’s disease models via anti-neuroinflammation. Acta Pharmacologica Sinica, 34, 1131–1139.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Passosa, G. F., Fernandesa, E. S., da Cunha, F. M., et al. (2007). Anti-inflammatory and anti-allergic properties of the essential oil and active compounds from Cordia verbenacea. Journal of Ethnopharmacology, 110(2), 323–333.

    Article  CAS  Google Scholar 

  • Pawar, N. V., Rai, S. R., Nimbalkar, M. S., et al. (2015). RP-HPLC analysis of phenolic antioxidant compound 6-gingerol from in vitro cultures of Zingiber officinale roscoe. Plant Science Today, 2(1), 24–28.

    Article  CAS  Google Scholar 

  • Philipson, J. D. (1990). Plants as source of valuable products. In B. V. Chalwood & M. J. Rhodes (Eds.), Secondary products from plant tissue culture (pp. 1–21). Oxford: Clarendon Press.

    Google Scholar 

  • Picaud, S., Olsson, M. E., Brodelius, M., et al. (2006). Cloning, expression, purification and characterization of recombinant (+)-germacrene D synthase from Zingiber officinale. Archives of Biochemistry and Biophysics, 452, 17–28.

    Article  CAS  PubMed  Google Scholar 

  • Priprem, A., Janpim, K., Nualkaew, S., et al. (2016). Topical niosome gel of Zingiber cassumunar Roxb. Extract for anti-inflammatory activity enhanced skin permeation and stability of compound D. AAPS PharmSci Tech, 17(3), 631–639.

    Article  Google Scholar 

  • Ramachandra, S. R., & Ravishankar, G. A. (2002). Plant cell cultures: Chemical factories of secondary metabolites. Biotechnology Advances, 20, 1001–1153.

    Google Scholar 

  • Rice-Evans, C. A., Miller, N. J., & Bolwell, P. G. (1995). The relative antioxidant activities of plant derived polyphenolic flavonoids. Free Radical Research, 22, 375–383.

    Article  CAS  PubMed  Google Scholar 

  • Riyanto, S. (2003). Phytochemical studies and bioactivity tests of Murraya paniculata Jack, Aegle marmelos Correa and Zingiber amaricans Blume. Dissertation, Universiti Putra Malaysia.

    Google Scholar 

  • Riyanto, S. (2007). Identification of the isolated compounds from Zingiber amaricans BL. Rhizome. Indian Journal of Chemistry, 7(1), 93–96.

    Google Scholar 

  • Saifudin, A., Kadota, S., & Tezuka, Y. (2013). Protein tyrosine phosphatase 1B inhibitory activity of Indonesian herbal medicines and constituents of Cinnamomum burmannii and Zingiber aromaticum. Journal of Natural Medicines, 67(2), 264–270.

    Article  CAS  PubMed  Google Scholar 

  • Sajc, L., Grubisic, D., & Vunjak-Novakovic, G. (2000). Bioreactors for plant engineering: An outlook for further research. Biochemical Engineering Journal, 4, 89–99.

    Article  Google Scholar 

  • Sakamura, F., Ogiharat, K., Suga, T., et al. (1986). Volatile constituents of Zingiber officinale rhizomes produced by in vitro shoot tip culture. Phytochemistry, 25(6), 1333–1335.

    Article  CAS  Google Scholar 

  • Sanwal, S. K., Rai, N., & Singh, J. (2010). Antioxidant phytochemicals and gingerol content in diploid and tetraploid clones of ginger (Zingiber officinale roscoe). Scientia Horticulturae, 124, 280–285.

    Article  CAS  Google Scholar 

  • Schwab, W., Williams, D. C., Davis, E. M., et al. (2001). Mechanism of monoterpene cyclization: Stereochemical aspects of the transformation of noncyclizable substrate analogs by recombinant (−)-limonene synthase, (+)-bornyl diphosphate synthase and (−)-pinene synthase. Archives of Biochemistry and Biophysics, 392, 123–136.

    Article  CAS  PubMed  Google Scholar 

  • Shinija, K., Preethi, T. P., Rakhi, K. P., et al. (2009). Micropropagation and chemical profiling of Zingiber zerumbet. Journal of Tropical Medicinal Plants, 10(1), 55–59.

    Google Scholar 

  • Shoji, N., Iwasa, A., Takemoto, T., et al. (1982). Cardiotonic principle of ginger (Zingiber officinale roscoe). Journal of Pharmaceutical Sciences, 71, 1174–1175.

    Article  CAS  PubMed  Google Scholar 

  • Sirat, H. M., & Nordin, A. B. (1994). Essential oil of Zingiber ottensii valeton. Journal of Essential Oil Research, 6(6), 635–636.

    Article  CAS  Google Scholar 

  • Sivasothy, Y., Hamid, A., Hadi, A., et al. (2012). Spectaflavoside A, a new potent iron chelating dimeric flavonol glycoside from the rhizomes of Zingiber spectabile Griff. Bioorganic & Medicinal Chemistry Letters, 22, 3831–3836.

    Article  CAS  Google Scholar 

  • Sivasothy, Y., Sulaiman, S. F., Ooi, K. L., et al. (2013). Antioxidant and antibacterial activities of flavonoids and curcuminoids from Zingiber spectabile Griff. Food Control, 30, 714–720.

    Article  CAS  Google Scholar 

  • Stanly, C., Bhatt, A., Ali, H. M. D., et al. (2011). Evaluation of free radical scavenging activity and total phenolic content in the petiole-derived callus cultures of Zingiber zerumbet smith. Journal of Medicinal Plant Research, 5(11), 2210–2217.

    CAS  Google Scholar 

  • Suekawa, M., Ishige, A., Yuasa, K., et al. (1984). Pharmacological studies on ginger. I. Pharmacological action of pungent constituents, [6]-gingerol and [6]-shogaol. Journal of Pharmaceutics and Biopharmaceutics, 7, 836–848.

    CAS  Google Scholar 

  • Togar, B., Turkez, H., Tatar, A., et al. (2015). Cytotoxicity and genotoxicity of zingiberene on different neuron cell lines in vitro. Cytotechnology, 67(6), 939–946.

    Article  CAS  PubMed  Google Scholar 

  • Varakumar, S., Umesh, K. V., & Singhal, R. S. (2017). Enhanced extraction of oleoresin from ginger (Zingiber officinale) rhizome powder using enzyme-assisted three phase partitioning. Food Chemistry, 216, 27–36.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J. W., & Wu, J. Y. (2013). Effective elicitors and process strategies for enhancement of secondary metabolite production in hairy root cultures. Biotechnology of Hairy Root Systems, 134, 55–89.

    Article  CAS  Google Scholar 

  • Whitmer, S., Van der Heijden, R., & Verpoorte, R. (2002). Plant biotechnology and transgenic plants. In K. M. Oksman-Caldentey & W. H. Barz (Eds.), Marcel & Dekker (pp. 373–405). New York: Basel.

    Google Scholar 

  • Wiart, C. (2012). Medicinal plants of China, Korea and Japan: Bioresources for tomorrow’s drugs and cosmetics (p. 454). Boca Raton: CRC Press.

    Book  Google Scholar 

  • Wongsamuth, R., & Doran, M. P. (1997). Production of monoclonal antibodies by tobacco hairy roots. Biotechnology and Bioengineering, 54(5), 401–415.

    Article  CAS  PubMed  Google Scholar 

  • Wyk, B. E. V., & Wink, M. (2004). Medicinal plants of the world (pp. 355–356). Pretoria: Briza.

    Google Scholar 

  • Yu, F., Harada, H., Yamasaki, K., et al. (2008). Isolation and functional characterization of a β-eudesmol synthase, a new sesquiterpene synthase from Zingiber zerumbet smith. FEBS Letters, 582(5), 565–572.

    Article  CAS  PubMed  Google Scholar 

  • Yu, F., Okamoto, S., Harada, H., et al. (2011). Zingiber zerumbet CYP71BA1 catalyzes the conversion of α-humulene to 8-hydroxy-α-humulene in zerumbone biosynthesis. Cellular and Molecular Life Sciences, 68(6), 1033–1040.

    Article  CAS  PubMed  Google Scholar 

  • Zarate, R., & Yeoman, M. M. (1994). Studies of the cellular localization of the phenolic pungent principle of ginger, Z. officinale Roscoe. New Phytologist, 126(295), 300.

    Google Scholar 

  • Zarate, R., & Yeoman, M. M. (1996). Changes in the amounts of [6]-gingerol and derivatives during a culture cycle of ginger, Zingiber officinale. Plant Science, 121, 115–122.

    Article  CAS  Google Scholar 

  • Zheng, W., & Wang, S. Y. (2003). Oxygen radical absorption capacity of phenolics in blueberries, cranberries, chokeberries and lingonberries. Journal of Agricultural and Food Chemistry, 51, 502–509.

    Article  CAS  PubMed  Google Scholar 

  • Zick, S. M., Djuric, Z., Ruffin, M. T., et al. (2008). Pharmacokinetics of 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol and conjugate metabolites in healthy human subjects. Cancer Epidemiology, Biomarkers & Prevention, 17(8), 1930–1936.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajkumari, S., Sanatombi, K. (2018). In Vitro Production of Some Important Secondary Metabolites from Zingiber Species. In: Kumar, N. (eds) Biotechnological Approaches for Medicinal and Aromatic Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-0535-1_9

Download citation

Publish with us

Policies and ethics