Skip to main content
Log in

Cloning and characterization of a novel gene that encodes (S)-β-bisabolene synthase from ginger, Zingiber officinale

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

An Erratum to this article was published on 07 April 2010

Abstract

Ginger, Zingiber officinale Roscoe, contains a fragrant oil mainly composed of sesquiterpenes and monoterpenes. We isolated a cDNA that codes for a sesquiterpene synthase from young rhizomes of ginger, Z. officinale Roscoe, Japanese cultivar “Kintoki”. The cDNA, designated ZoTps1, potentially encoded a protein that comprised 550 amino acid residues and exhibited 49–53% identity with those of the sesquiterpene synthases already isolated from the genus Zingiber. Recombinant Escherichia coli cells, in which ZoTps1 was coexpressed along with genes for d-mevalonate utilization, resulted in the production of a sesquiterpene (S)-β-bisabolene exclusively with a d-mevalonolactone supplement. This result indicated that ZoTps1 was the (S)-β-bisabolene synthase gene in ginger. ZoTPS1 was suggested to catalyze (S)-β-bisabolene formation with the conversion of farnesyl diphosphate to nerolidyl diphosphate followed by the cyclization between position 1 and 6 carbons. The ZoTps1 transcript was detected in young rhizomes, but not in leaves, roots and mature rhizomes of the ginger “Kintoki”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

FPP:

Farnesyl diphosphate

MVA:

Mevalonate

OPP:

Diphosphate moiety

ORF:

Open reading frame

RACE:

Rapid amplification of cDNA ends

References

  • Abel C, Clauss M, Schaub A, Gershenzon J, Tholl D (2009) Floral and insect-induced volatile formation in Arabidopsis lyrata ssp. petraea, a perennial, outcrossing relative of A. thaliana. Planta 230:1–11

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Asselbergh B, De Vleesschauwer D, Höfte M (2008) Global switches and fine-tuning-ABA modulates plant pathogen defense. Mol Plant Microbe Interact 21:709–719

    Article  PubMed  CAS  Google Scholar 

  • Aubourg S, Lecharny A, Bohlmann J (2002) Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Mol Genet Genomics 267:730–745

    Article  PubMed  CAS  Google Scholar 

  • Back K, Chappell J (1996) Identifying functional domains within terpene cyclases using a domain-swapping strategy. Proc Natl Acad Sci USA 93:6841–6845

    Article  PubMed  CAS  Google Scholar 

  • Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S (2002) Extensive feature detection of N-terminal protein sorting signals. Bioinformatics 18:298–305

    Article  PubMed  CAS  Google Scholar 

  • Benedict CR, Lu JL, Pettigrew DW, Liu J, Stipanovic RD, Williams HJ (2001) The cyclization of farnesyl diphosphate and nerolidyl diphosphate by a purified recombinant δ-cadinene synthase. Plant Physiol 125:1754–1765

    Article  PubMed  CAS  Google Scholar 

  • Besser K, Harper A, Welsby N, Schauvinhold I, Slocombe S, Li Y, Dixon RA, Broun P (2009) Divergent regulation of terpenoid metabolism in the trichomes of wild and cultivated tomato species. Plant Physiol 149:499–514

    Article  PubMed  CAS  Google Scholar 

  • Bohlmann J, Meyer-Gauen G, Croteau R (1998a) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci USA 95:4126–4133

    Article  PubMed  CAS  Google Scholar 

  • Bohlmann J, Crock J, Jetter R, Croteau R (1998b) Terpenoid-based defenses in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)-α-bisabolene synthase from grand fir (Abies grandis). Proc Natl Acad Sci USA 95:6756–6761

    Article  PubMed  CAS  Google Scholar 

  • Byun-McKay A, Godard KA, Toudefallah M, Martin DM, Alfaro R, King J, Bohlmann J, Plant AL (2006) Wound-induced terpene synthase gene expression in Sitka spruce that exhibit resistance or susceptibility to attack by the white pine weevil. Plant Physiol 140:1009–1021

    Article  PubMed  CAS  Google Scholar 

  • Chen XY, Chen Y, Heinstein P, Davisson VJ (1995) Cloning, expression, and characterization of (+)-δ-cadinene synthase: a catalyst for cotton phytoalexin biosynthesis. Arch Biochem Biophys 324:255–266

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Tholl D, D’Auria JC, Farooq A, Pichersky E, Gershenzon J (2003) Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell 15:481–494

    Article  PubMed  CAS  Google Scholar 

  • Cheng AX, Xiang CY, Li JX, Yang CQ, Hu WL, Wang LJ, Lou YG, Chen XY (2007) The rice (E)-β-caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes. Phytochemistry 68:1632–1641

    Article  PubMed  CAS  Google Scholar 

  • Davidovich-Rikanati R, Lewinsohn E, Bar E, Iijima Y, Pichersky E, Sitrit Y (2008) Overexpression of the lemon basil α-zingiberene synthase gene increases both mono- and sesquiterpene contents in tomato fruit. Plant J 56:228–238

    Article  PubMed  CAS  Google Scholar 

  • El Tamer MK, Lücker J, Bosch D, Verhoeven HA, Verstappen FW, Schwab W, van Tunen AJ, Voragen AG, de Maagd RA, Bouwmeester HJ (2003) Domain swapping of citrus lemon monoterpene synthases: impact on enzymatic activity and product specificity. Arch Biochem Biophys 411:196–203

    Article  PubMed  CAS  Google Scholar 

  • Harada H, Misawa N (2009) Novel approaches and achievements in biosynthesis of functional isoprenoids in Escherichia coli. Appl Microbiol Biotechnol 84:1021–1031

    Article  PubMed  CAS  Google Scholar 

  • Harada H, Yu F, Okamoto S, Kuzuyama T, Utsumi R, Misawa N (2009) Efficient synthesis of functional isoprenoids from acetoacetate through metabolic pathway-engineered Escherichia coli. Appl Microbiol Biotechnol 81:915–925

    Article  PubMed  CAS  Google Scholar 

  • Huber DP, Philippe RN, Godard KA, Sturrock RN, Bohlmann J (2005) Characterization of four terpene synthase cDNAs from methyl jasmonate-induced Douglas-fir, Pseudotsuga menziesii. Phytochemistry 66:1427–1439

    Article  PubMed  CAS  Google Scholar 

  • Iijima Y, Davidovich-Rikanati R, Fridman E, Gang DR, Bar E, Lewinsohn E, Pichersky E (2004) The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil. Plant Physiol 136:3724–3736

    Article  PubMed  CAS  Google Scholar 

  • Ishitani M, Xiong L, Stevenson B, Zhu JK (1997) Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid dependent and abscisic acid-independent pathways. Plant Cell 9:1935–1949

    Article  PubMed  CAS  Google Scholar 

  • Köllner TG, Schnee C, Gershenzon J, Degenhardt J (2004a) The variability of sesquiterpenes emitted from two Zea mays cultivars is controlled by allelic variation of two terpene synthase genes encoding stereoselective multiple product enzymes. Plant Cell 16:1115–1131

    Article  PubMed  Google Scholar 

  • Köllner TG, Schnee C, Gershenzon J, Degenhardt J (2004b) The sesquiterpene hydrocarbons of maize (Zea mays) form five groups with distinct developmental and organ-specific distributions. Phytochemistry 65:1895–1902

    Article  PubMed  Google Scholar 

  • Köllner TG, Schnee C, Li S, Svatos A, Schneider B, Gershenzon J, Degenhardt J (2008a) Protonation of a neutral (S)-β-bisabolene intermediate is involved in (S)-β-macrocarpene formation by the maize sesquiterpene synthases TPS6 and TPS11. J Biol Chem 283:20779–20788

    Article  PubMed  Google Scholar 

  • Köllner TG, Held M, Lenk C, Hiltpold I, Turlings TC, Gershenzon J, Degenhardt J (2008b) A maize (E)-β-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20:482–494

    Article  PubMed  Google Scholar 

  • König WA, Rieck A, Hardt I, Gehrcke B, Kubeczka K-H, Muhle H (1994) Enantiomeric composition of the chital constituents of essential oils Part 2: Sesquiterpene hydrocarbons. Journal of High Resolution Chromatography 17:315–320

    Article  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Chappell J (2008) Biochemical and genomic characterization of terpene synthases in Magnolia grandiflora. Plant Physiol 147:1017–1033

    Article  PubMed  CAS  Google Scholar 

  • Lesburg CA, Zhai G, Cane DE, Christianson DW (1997) Crystal structure of pentalenene synthase: mechanistic insights on terpenoid cyclization reactions in biology. Science 277:1820–1824

    Article  PubMed  CAS  Google Scholar 

  • Little DB, Croteau RB (2002) Alteration of product formation by directed mutagenesis and truncation of the multiple-product sesquiterpene synthases delta-selinene synthase and γ-humulene synthase. Arch Biochem Biophys 402:120–135

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Bryant SH (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32:327–331

    Article  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Tasneem A, Thanki N, Yamashita RA, Zhang D, Zhang N, Bryant SH (2009) CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 37(Database issue):D205–D210

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenhuizen NJ, Wang MY, Matich AJ, Green SA, Chen X, Yauk YK, Beuning LL, Nagegowda DA, Dudareva N, Atkinson RG (2009) Two terpene synthases are responsible for the major sesquiterpenes emitted from the flowers of kiwifruit (Actinidia deliciosa). J Exp Bot 60:3203–3219

    Article  PubMed  CAS  Google Scholar 

  • Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Picaud S, Olsson ME, Brodelius M, Brodelius PE (2006) Cloning, expression, purification and characterization of recombinant (+)-germacrene D synthase from Zingiber officinale. Arch Biochem Biophys 452:17–28

    Article  PubMed  CAS  Google Scholar 

  • Portnoy V, Benyamini Y, Bar E, Harel-Beja R, Gepstein S, Giovannoni JJ, Schaffer AA, Burger J, Tadmor Y, Lewinsohn E, Katzir N (2008) The molecular and biochemical basis for varietal variation in sesquiterpene content in melon (Cucumis melo L.) rinds. Plant Mol Biol 66:647–661

    Article  PubMed  CAS  Google Scholar 

  • Ro DK, Ehlting J, Keeling CI, Lin R, Mattheus N, Bohlmann J (2006) Microarray expression profiling and functional characterization of AtTPS genes: duplicated Arabidopsis thaliana sesquiterpene synthase genes At4g13280 and At4g13300 encode root-specific and wound-inducible (Z)-γ-bisabolene synthases. Arch Biochem Biophys 448:104–116

    Article  PubMed  CAS  Google Scholar 

  • Sacchettini JC, Poulter CD (1997) Creating isoprenoid diversity. Science 277:1788–1789

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei N (1987) A neighbor-joining method: a new method for constructing phylogenetic tree. Mol Biol Evol 44:406–425

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schachtman DP, Goodger JQ (2008) Chemical root to shoot signaling under drought. Trends Plant Sci 13:281–287

    Article  PubMed  CAS  Google Scholar 

  • Schnee C, Köllner TG, Gershenzon J, Degenhardt J (2002) The maize gene terpene synthase 1 encodes a sesquiterpene synthase catalyzing the formation of (E)-β-farnesene, (E)-nerolidol, and (E, E)-farnesol after herbivore damage. Plant Physiol 130:2049–2060

    Article  PubMed  CAS  Google Scholar 

  • Schnee C, Köllner TG, Held M, Turlings TC, Gershenzon J, Degenhardt J (2006) The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc Natl Acad Sci USA 103:1129–1134

    Article  PubMed  CAS  Google Scholar 

  • Shen B, Zheng Z, Dooner HK (2000) A maize sesquiterpene cyclase gene induced by insect herbivory and volicitin: characterization of wild-type and mutant alleles. Proc Natl Acad Sci USA 97:14807–14812

    Article  PubMed  CAS  Google Scholar 

  • Starks CM, Back K, Chappell J, Noel JP (1997) Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 277:1815–1820

    Article  PubMed  CAS  Google Scholar 

  • Steele CL, Crock J, Bohlmann J, Croteau R (1998a) Sesquiterpene synthases from grand fir (Abies grandis). Comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of δ-selinene synthase and γ-humulene synthase. J Biol Chem 273:2078–2089

    Article  PubMed  CAS  Google Scholar 

  • Steele CL, Katoh S, Bohlmann J, Croteau R (1998b) Regulation of oleoresinosis in grand fir (Abies grandis). Differential transcriptional control of monoterpene, sesquiterpene, and diterpene synthase genes in response to wounding. Plant Physiol 116:1497–1504

    Article  PubMed  CAS  Google Scholar 

  • Takagi M, Kuzuyama T, Takahashi S, Seto H (2000) A gene cluster for the mevalonate pathway from Streptomyces sp. strain CL190. J Bacteriol 182:4153–4157

    Article  PubMed  CAS  Google Scholar 

  • Tarshis LC, Yan M, Poulter CD, Sacchettini JC (1994) Crystal structure of recombinant farnesyl diphosphate synthase at 2.6-Å resolution. Biochemistry 33:10871–10877

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) ClustalW. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Townsend BJ, Poole A, Blake CJ, Llewellyn DJ (2005) Antisense suppression of a (+)-δ-cadinene synthase gene in cotton prevents the induction of this defense response gene during bacterial blight infection but not its constitutive expression. Plant Physiol 138:516–528

    Article  PubMed  CAS  Google Scholar 

  • Vedula LS, Jiang J, Zakharian T, Cane DE, Christianson DW (2008) Structural and mechanistic analysis of trichodiene synthase using site-directed mutagenesis: probing the catalytic function of tyrosine-295 and the asparagine-225/serine-229/glutamate-233-Mg2+B motif. Arch Biochem Biophys 469:184–194

    Article  PubMed  CAS  Google Scholar 

  • Venin G, Parkanyi C (2004) Chemistry of ginger. In: Raindrain PN, Nirmal Babu K (eds) Ginger: the genus Zingiber. CRC Press, New York, pp 87–180

    Google Scholar 

  • Williams DC, McGarvey DJ, Katahira EJ, Croteau R (1998) Truncation of limonene synthase preprotein provides a fully active ‘pseudomature’ form of this monoterpene cyclase and reveals the function of the amino-terminal arginine pair. Biochemistry 37:12213–12220

    Article  PubMed  CAS  Google Scholar 

  • Yoshikuni Y, Ferrin TE, Keasling JD (2006) Designed divergent evolution of enzyme function. Nature 440:1078–1082

    Article  PubMed  CAS  Google Scholar 

  • Yu F, Harada H, Yamasaki K, Okamoto S, Hirase S, Tanaka Y, Misawa N, Utsumi R (2008a) Isolation and functional characterization of a β-eudesmol synthase, a new sesquiterpene synthase from Zingiber zerumbet Smith. FEBS Lett 582:565–572

    Article  PubMed  CAS  Google Scholar 

  • Yu F, Okamto S, Nakasone K, Adachi K, Matsuda S, Harada H, Misawa N, Utsumi R (2008b) Molecular cloning and functional characterization of α-humulene synthase, a possible key enzyme of zerumbone biosynthesis in shampoo ginger (Zingiber zerumbet Smith). Planta 227:1291–1299

    Article  PubMed  CAS  Google Scholar 

  • Zhou K, Peters RJ (2009) Investigating the conservation pattern of a putative second terpene synthase divalent metal binding motif in plants. Phytochemistry 70:366–369

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their sincere thanks to Mr. Hirofumi Kiyotou, Sakata Co. Ltd. (Kochi, Japan) for kindly providing seed rhizomes of the ginger “Kintoki” and for advice about plant cultivation. The authors are grateful to Dr. Yasuo Tanaka and Mr. Souta Hirase, Taiyo Corporation (Osaka, Japan) for giving advice on the identification of products. This work was supported in part by the Research and Development Program for New Bio-industry Initiatives (2006–2010) from the Bio-oriented Technology Research Advancement Institution (BRAIN) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihiko Misawa.

Additional information

Accession number of the nucleotide sequence of ZoTps1 cDNA in this study is AB511914.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00425-010-1161-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujisawa, M., Harada, H., Kenmoku, H. et al. Cloning and characterization of a novel gene that encodes (S)-β-bisabolene synthase from ginger, Zingiber officinale . Planta 232, 121–130 (2010). https://doi.org/10.1007/s00425-010-1137-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1137-6

Keywords

Navigation