Skip to main content

Recent Advances and Industrial Applications of Microbial Xylanases: A Review

  • Chapter
  • First Online:
Fungi and their Role in Sustainable Development: Current Perspectives

Abstract

Xylanase being a hydrolytic enzyme catalyses the hydrolytic breakdown of 1,4-β-D-xylosidic linkages in xylan which is an important constituent of hemicellulose. Xylanases are hemicellulases required for depolymerization of xylans which are the second most bountiful polysaccharide occurring in nature after cellulose having plant origin. A broad range of organisms have been reported to produce xylanases that include several fungi, bacteria, protozoans, crustaceans, marine algae, insects, snails, gastropods, arthropods, several seeds and plants. Filamentous fungi have been documented to be the useful producers of xylanase because of ease of cultivation, extracellular secretion of enzymes, higher yield and industrial aspect. Fungal xylanases from Aspergillus species and Trichoderma species have been widely studied and characterized and are commercially utilized in bakery and food processing industries. Microbial xylanases have been reported to be single-chain glycoproteins having molecular masses usually 8–145 kDa and exhibit maximum activity in temperature range 40–60 °C. Thermostable xylanases are ideally suited for use in industrial applications because of numerous advantages over thermolabile xylanase such as ability to work in broad temperature range, better substrate utilization and ability to tolerate high temperature in processes as well as better shelf life. Xylanases have widespread utilization in diverse industries such as food industry, textile industry and in pulp and paper industry. Xylanases have emerged to be extremely beneficial in terms of enhancing the production of numerous fruitful products. Over the years the advancements in molecular tools and techniques have enabled the better understanding of regulatory mechanisms heading xylanase production, underlying mechanism of action of xylanases as well as more precise knowledge of xylanase gene. Such advancements have paved the way for better utilization of enzymes in a much broader sense in commercial sector. Xylanases have tremendous industrial applications in commercial sector either on their own or by associating with different enzymes in numerous processes like processing of pulp and fibres; saccharification of agricultural, industrial and municipal wastes; flour improvement for bakery products; pretreatment of forage crops and lignocellulosic biomass; as well as an alternate to treating the textile-cellulosic waste with sulphuric acid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Absul MG, Ghule JE, Shaikh H et al (2005) Enzymatic hydrolysis of delignified bagasse polysaccharides. Carbohydr Polym 62:6–10

    Article  CAS  Google Scholar 

  • Ahmed S, Imdad SS, Jamil A (2012) Comparative study for the kinetics of extracellular xylanases from Trichoderma harzianum and Chaetomium thermophilum. Electron J Biotechnol 15:3

    Article  CAS  Google Scholar 

  • Ahring BK, Licht D, Schimd AS et al (1999) Production of ethanol from wet oxidised wheat straw by Thermoanaerobacter mathranii. Bioresour Technol 68:3

    Article  CAS  Google Scholar 

  • Andrade CMMC, Pereira N, Antranikian G (1999) Extremely thermophilic microorganisms and their polymer-hydrolytic enzymes. Rev Microbiol 30:287–298

    Article  CAS  Google Scholar 

  • Andrade SV, Polizeli MLTM, Terenzi HF et al (2004) Effect of carbon source on the biochemical properties of the β-xylosidase produced by Aspergillus versicolor. Process Biochem 39:1931–1938

    Article  CAS  Google Scholar 

  • Azeri C, Tamer AU, Oskay M (2010) Thermoactive cellulase-free xylanase production from alkaliphilic Bacillus strains using various agro-residues and their potential in biobleaching of kraft pulp. Afr J Biotechnol 9:63–72

    CAS  Google Scholar 

  • Bahri DO, Coskun A, Ozcan N et al (2011) Some properties of a new thermostable xylanase from alkaliphilic and thermophilic Bacillus sp. J Anim Vet Adv 10:138–143

    Article  Google Scholar 

  • Bajpai P (2012) Biotechnology for pulp and paper processing. Springer 3:42–45

    Google Scholar 

  • Bastawde KB (1992) Xylan structure microbial xylanases, and their mode of action. World J Microbiol Biotechnol 8:353–368

    Article  PubMed  CAS  Google Scholar 

  • Battan B, Sharma J, Dhiman SS et al (2007) Enhanced production of cellulase-free thermostable xylanase by Bacillus pumilus ASH and its potential application in paper industry. Enzym Microbiol Technol 41:733–739

    Article  CAS  Google Scholar 

  • Belancic A, Scarpa J, Peirano A et al (1995) Purification and properties of two of the enzymes. J Biotechnol 41:71

    Article  PubMed  CAS  Google Scholar 

  • Bibi Z, Ansari A, Zohra RR et al (2014) Production of xylan degrading endo-1, 4-b-xylanase from thermophilic Geobacillus stearothermophilus KIBGEIB29. J Radiat Res Appl Sci 7:478–485

    Article  Google Scholar 

  • Bocchini DA, Oliveira OMM, Gomes E et al (2005) Use of sugarcane bagasse and grass hydrolysates as carbon sources for xylanase production by Bacillus circulans D1 in submerged fermentation. Process Biochem 40:3653–3659

    Article  CAS  Google Scholar 

  • Butt MS, Nadeem MT, Ahmad Z et al (2008) Xylanases and their applications in baking industry. Food Technol Biotechnol 46:22–31

    CAS  Google Scholar 

  • Cady SG, Bauer MW, Callen W et al (2001) Beta-endoglucanase from Pyrococcus furiosus. Methods Enzymol 330:346–354

    Article  PubMed  CAS  Google Scholar 

  • Camacho NA, Aguilar OG (2003) Production, purification and characterization of a low molecular mass xylanase from Aspergillus sp. and its application in bakery. Appl Biochem Biotechnol 104:159–172

    Article  PubMed  CAS  Google Scholar 

  • Cannio R, Di Prizito N, Rossi M et al (2004) A xylan-degrading strain of Sulfolobus solfataricus: isolation & characterization of the xylanase activity. Extremophiles 8:117–124

    Article  PubMed  CAS  Google Scholar 

  • Chidi SB, Godana B, Ncube I et al (2008) Production, purification and characterization of cellulase free xylanase from Aspergillus terreus UL 4209. Afr J Biotechnol 7:3939–3948

    CAS  Google Scholar 

  • Clarke AJ, Bray MR, Strating H. (1993) Xylanases mechanism of action. In: ACS symposium American Chemical Society, vol 27

    Google Scholar 

  • Coelho GD, Carmona EC (2003) Xylanolytic complex from Aspergillus giganteus: production and characterization. J Basic Microbiol 43:269–277

    Article  PubMed  CAS  Google Scholar 

  • Coman G, Bahrim G (2011) Optimization of xylanase production by Streptomyces sp. P12–137 using response surface methodology and central composite design. Ann Microbiol 61:773–779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coughlan M, Hazlewood G (1993) β-1,4-D-xylan-degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol Appl Biochem 17:259–289

    PubMed  CAS  Google Scholar 

  • Csiszar E, Urbánszki K, Szakas G (2001) Biotreatment of desized cotton fabric by commercial cellulase and xylanase enzymes. J Mol Catal 11:1065–1072

    Article  CAS  Google Scholar 

  • Dean JFD, Gross KC, Anderson JD (1991) Ethylene biosynthesis inducing xylanase III: product characterisation. Plant Physiol 96:571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dervilly G, Leclercq C, Zimmerman D et al (2002) Isolation and characterization of high molecular mass water-soluble arabinoxylans from barley malt. Carbohydr Polym 47:143

    Article  CAS  Google Scholar 

  • Dhillon A, Khanna S (2000) Production of a thermostable alkali tolerant xylanase from Bacillus circulans AB16 grown on wheat straw. World J Microbiol Biotechnol 27:325–327

    Article  Google Scholar 

  • Dhiman SS, Sharma J, Battan B (2008) Pretreatment processing of fabrics by alkalothermophilic xylanase from Bacillus stearothermophilus. Enzym Microbial Technol 43:262–269

    Article  CAS  Google Scholar 

  • Duarte MCT, Silva DA, Gomes EC et al (2003) Xylan-hydrolyzing enzyme system from Bacillus pumilus CBMAI 0008 and its effects on Eucalyptus grandis kraft pulp for pulp bleaching improvement. Bioresour Technol 88:9–15

    Article  PubMed  Google Scholar 

  • Ducros V, Charnock SJ, Derwenda U et al (2000) Substrate specificity in glycoside hydrolase family10 structure and kinetic analysis of S. lividans xylanase. J Biol Chem 275:230–236

    Article  Google Scholar 

  • Ebrahimi M (2010) Engineering thermostable xylanase enzyme mutant from Bacillus halodurans. Afr J Biotechnol 9:8110–8117

    CAS  Google Scholar 

  • Ellis JT, Magnuson TS (2012) Thermostable and alkali stable xylanases produced by the thermophilic bacterium Anoxybacillus flavithermus TWXYL3. Int Sch Res Netw ISRN Microbiol 2012:1–8

    Google Scholar 

  • Ellouze O, Fattouch S, Mestiri F et al (2008) Optimization of extracellular xylanase production by Sclerotinia sclerotiorum S2 using factorial design. Indian J Biochem Biophys 45:404–405

    PubMed  CAS  Google Scholar 

  • Ferraz A, De Souza-Cruz PB, Freer J, Siika-Aho M (2004) Extraction and determination of enzymes produced by Ceriporiopsis subvermispora during biopulping of Pinus taeda wood chips. Enzym Microbial Technol 34:228–234

    Article  CAS  Google Scholar 

  • Gabriela PMA, Mariana BO, Ronaldo APN et al (2016) Characterization and biotechnological application of recombinant xylanases from Aspergillus nidulans. Int J Biol Macromol 91:60–67

    Article  CAS  Google Scholar 

  • Ghoshal G, Kamble A, Shivhare US et al (2011) Optimization of culture conditions for the production of xylanase in submerge fermentation by Penicillium citrinum using response surface methodology. Int J Res Rev Appl Sci 6:132–137

    CAS  Google Scholar 

  • Gilbert HJ, Hazelwood GP (1993) Bacterial cellulases and xylanases. J Gen Microbiol 139:187–194

    Article  CAS  Google Scholar 

  • Gouda MK (2000) Purification and partial characterization of cellulose free xylanase produced in solid state and submerged fermentation by Aspergillus tamarii. Adv Food Sci 22:31–37

    CAS  Google Scholar 

  • Goulart AJ, Carmona EC, Monti R (2005) Partial purification and properties of cellulose free alkaline xylanase produced by Rhizopus stolonifer in solid state fermentation. Braz Arch Biol Technol 48:327–333

    Article  CAS  Google Scholar 

  • Gray JA, Bemiller (2003) Bread staling: molecular basis and control. Rev Food Sci Food Saf 2:1–21

    Article  CAS  Google Scholar 

  • Gupta VK, Gaur R, Yadava SK, Darmwal NS (2009) Optimization of xylanase production from free and immobilized cells of Fusarium solani F7. Bioresources 4:932945

    Google Scholar 

  • Hakulinen N, Turunen O, Janis J et al (2003) Three-dimensional structures of thermophilic beta-1,4-xylanases from Chaetomium thermophilum and Nonomuraea flexuosa. Eur J Biochem 270:1399–1412

    Article  PubMed  CAS  Google Scholar 

  • Haltrich D, Nidetzky B, Kulbe KD et al (1996) Production of fungal xylanases. Bioresour Technol 58:137–161

    Article  CAS  Google Scholar 

  • Haq I, Khan A, Butt WA et al (2002) Effect of carbon and nitrogen sources on xylanase production by mutant strain of Aspergillus niger GCBMX-45. J Biol Technol 2:143–144

    Google Scholar 

  • Harbak L, Thygesen HV (2002) Safety evaluation of a xylanase expressed in Bacillus subtilis. Food Chem Toxicol 40(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Herbers K, Wilke I, Sonnewald U (1995) A thermostable xylanase from Clostridium thermocellum expressed at high levels in the apoplast of transgenic tobacco has no detrimental effects and is easily purified. Nat Biotechnol 13:63–66

    Article  CAS  Google Scholar 

  • Hong Q, Shin NH, Chang H (1989) Effect of oxygen extraction on organic chlorine contents in bleach plant effluents. TAPPI J 72:157–161

    CAS  Google Scholar 

  • Huang XL, Penner MH (1991) Apparent substrate inhibition of the Trichoderma reesei cellulase system. J Agri Food Chem 39:2096–2100

    Article  CAS  Google Scholar 

  • Ito K, Ogasawara H, Sugimoto T et al (2000) Purification and properties of acid stable xylanases from Aspergillus kawachii. Biosci Biotechnol Biochem 56:547–550

    Article  Google Scholar 

  • Jain KK, Dey TB, Kumar S, Kuhad RC (2014) Production of thermostable hydrolases (cellulases and xylanase) from Thermoascus aurantiacus R C K K: a potential fungus. Bioproc Biosyst Eng 38:1–10

    Google Scholar 

  • Javier PFI, Oscar G, Sanz-Aparicio J and Diaz P (2007). Xylanases: molecular properties and applications. In: Industrial enzymes: structure, function and applications . Polaina, J., A. P. MacCabe (Eds.), Springer, Dordrecht. pp. 65– 82

    Google Scholar 

  • Kamble RD, Anandrao RJ (2012) Isolation, purification, and characterization of xylanase produced by a new species of Bacillus in solid state fermentation. Int J Microbiol 2:2–8

    Google Scholar 

  • Kansoh AL, Nagieb ZA (2004) Xylanase and mannanase enzymes from Streptomyces galbus and their use in biobleaching of softwood kraft pulp. J Microbiol 85:103–114

    CAS  Google Scholar 

  • Kansoh AL, Ali MA, El-Gammal AA (2001) Xylanolytic activities of Streptomyces sp. 1, taxonomy, production, partial purification and utilization agricultural wastes. Acta Microbiol Immunol 48:39–52

    Article  CAS  Google Scholar 

  • Kar S, Mandal A, Mohapatra PKD et al (2006) Production of cellulose free xylanase by Trichoderma reesei SAF3. Braz J Microbiol 37:462–464

    Article  CAS  Google Scholar 

  • Karlsson EN, Hachem MA, Ramchuran S et al (2004) The modular xylanase Xyn10A from Rhodothermus marinus is cell-attached, and its C-terminal domain has several putative homologues among cell-attached proteins within the phylum Bacteroidetes. FEMS Microbiol Lett 241:233–242

    Article  PubMed  CAS  Google Scholar 

  • Kaur A, Chopra C, Joshi A et al (2015) Bioprocessing, biochemical characterisation and optimization of solid state fermentation of a new thermostable xylanase producing strain belonging to Bacillus genus. J Chem Pharm Res 7:266–276

    CAS  Google Scholar 

  • Kenealy RW, Jeffries TW (2003) Enzyme processes for pulp and paper: a review of recent developmenst. In: Goodell B, Nicholas DD, Schultz TB (eds) Wood deterioration and preservation: Advances in our changing world, Chapter 12. ACS symposium series 845 American Chemical Society, Washington, DC, pp 210–239

    Google Scholar 

  • Khasin A, Alchanati I, Shoham Y (1993) Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl Environ Microbiol 59:1725–1730

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. Fed Eur Microbiol Soc 23:411–456

    CAS  Google Scholar 

  • Kumar PR, Eswaramoorthy S, Vithayathil PJ, Viswamitra MA (2000) The tertiary structure at 1.59 Å resolution and the proposed amino acid sequence of a family-11 xylanase from the thermophilic fungus Paecilomyces varioti Bainier. J Mol Biol 295:581–593

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Guleria A, Kumar D et al (2014) Isolation, immobilization and characterization of xylanase from a new isolate Bacillus atrophaeus E8. Internat jour of scientific resear 3:33–35

    Article  Google Scholar 

  • Li Y, Hardin JR (1998) Enzymatic scouring of cotton surfactants, agitation and selection of enzyme. Textile Colour Chem 30:23–28

    CAS  Google Scholar 

  • Li K, Azadi P, Collins R et al (2000) Relationships between activities of xylanases and xylan structures. Enzym Microbiol Biotechnol 27:89–94

    Article  Google Scholar 

  • Madlala A, Bissoon S, Singh S et al (2001) Xylanase-induced reduction of chlorine dioxide consumption during elemental chlorine-free bleaching of different pulp types. Biotechnol Lett 23:345–351

    Article  CAS  Google Scholar 

  • Maheswari U, Chandra TS (2000) Production and potential applications of xylanase from a new strain of a Streptomyces cuspidosporus. World J Microbiol Biotechnol 16:257–263

    Article  CAS  Google Scholar 

  • Malathi V, Devegowda G (2001) In vitro evaluation of nonstarch polysaccharide digestibility of feed ingredients by enzymes. Poult Sci 80:302

    Article  PubMed  CAS  Google Scholar 

  • McCarthy AA, Morris DD, Bergquist PL et al (2000) Structure of XynB, a highly thermostable β-1,4-xylanase from Dictyoglomus thermophilum Rt46B.1, at 1.8 Å resolution. Acta Crystallogr 56:1367–1375

    Article  CAS  Google Scholar 

  • Meng DD, Ying Y, Chen XH et al (2015) Distinct roles for carbohydrate-binding modules of GH10 and GH11 xylanases from Caldicellulosiruptor sp. F32 in thermostability and catalytic efficiency. Appl Environ Microbiol 81:2006–2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Monisha R, Uma MV, Krishna Murthy V (2009) Partial purification and characterization of Bacillus pumilus xylanase from soil source. Kathmandu Univ J Sci Eng Technol 5:137–148

    Google Scholar 

  • Motta FL, Andrade CCP, Santana MHA (2013) A review of xylanase production by the fermentation of xylan: classification, characterization and applications. In: Chandel AK, da Silva SS (eds) Sustainable degradation of lignocellulosic biomass – techniques, applications and commercialization. INTECH, Croatia, pp 251–275

    Google Scholar 

  • Mushimiyimana I, Padmavathi T (2015) Xylanase enzyme production by Penicillium crustosum using sugar beet peel substrate by response surface methodology. Res J Pharm, Biol Chem Sci 6:1145–1149

    Google Scholar 

  • Nakamura S (2003) Structure and function of a multiplidomain alkaline xylanase from alkaliphilic Bacillus sp. strain 41M-1. Catal Surv Jpn 7:157164

    Google Scholar 

  • Nigam P, Singh D (1995) Processes for fermentative production of xylitol a sugar substitute. Process Biochem 30:117–124

    CAS  Google Scholar 

  • Norazlina I, Meenalosani N, KuHalim KH (2013) Production of xylanase by Trichoderma sp. via solid state culture using sugarcane bagasse. Int J Energy Sci 3:99–103

    Google Scholar 

  • Octavio L, Corral, Francisco VO (2006) Xylanases overview. Adv Agric Food Biotechnol:305–322

    Google Scholar 

  • Omar AW, Khataibeh MJ, Abu-Alruz K (2008) The use of xylanases from different microbial origin in bread making and their effects on bread quality. J Appl Sci 8:672–676

    Article  Google Scholar 

  • Pandey AK, Edgard G, Negi S (2016) Optimization of concomitant production of cellulase and xylanase from Rhizopus oryzae SN5 through EVOP-factorial design technique and application in Sorghum Stover based bioethanol production. Renew Energy 98:51–56

    Article  CAS  Google Scholar 

  • Parajo JC, Domingues H, Domingues JM (1998) Biotechnological production of xylitol and fundamentals of its biosynthesis. Bioresour Technol 65:191–201

    Article  CAS  Google Scholar 

  • Park S, Rancour DM, Bednarek SY (2007) Protein domain-domain interactions and requirements for the negative regulation of Arabidopsis CDC48/p97 by the plant ubiquitin regulatory X (UBX) domain-containing protein, PUX1. J Biol Chem 282:5217–5224

    Article  PubMed  CAS  Google Scholar 

  • Patel K, Prajapati K (2014) Xylanase production by Cladosporium sp. from agricultural waste. Int J Curr Res Acad Rev 2:84–90

    CAS  Google Scholar 

  • Polizeli MLT, Rizzatti M, Monti R et al (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  PubMed  CAS  Google Scholar 

  • Qinnhe C, Xiaoyu Y, Tiangui N et al (2004) The screening of culture condition and properties of xylanase by white-rot fungus Pleurotus ostreatus. Process Biochem 39:1561–1566

    Article  CAS  Google Scholar 

  • Raj A, Sharad K, Sudheer KS (2013) A highly thermostablexylanase from stenotrophomonas maltophilia: purification and partial characterization. Enzym Res:2–8

    Google Scholar 

  • Ratanachomsri U, Sriprang R, Sornlek W et al (2006) Thermostable xylanase from Marasmius sp.: purification and characterization. J Biochem Mol Biol 39:105

    PubMed  CAS  Google Scholar 

  • Roy N, Habib MR (2009) Isolation and characterization of xylanase producing strain of Bacillus cereus from soil. Iran J Microbiol 1:49–53

    Google Scholar 

  • Saha BC (2000) A-L-arabinofuranosidases biochemistry, molecular biology and application in biotechnology. Biotechnol Adv 18:403–423

    Article  PubMed  CAS  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  PubMed  CAS  Google Scholar 

  • Sandrim VC, Rizzatti ACS, Terenzi HF et al (2005) Purification and biochemical characterization of two xylanases produced by Aspergillus caespitosus and their potential for kraft pulp bleaching. Process Biochem 40:1823–1828

    Article  CAS  Google Scholar 

  • Sanghvi GV, Koyani RD, Rajput KS (2010) Thermostable xylanase production and partial purification by solid-state fermentation using agricultural waste wheat straw. Mycology 2:106–112

    Article  CAS  Google Scholar 

  • Sardar M, Roy I, Gupta MN (2000) Simultaneous purification and immobilization of Aspergillus niger xylanase on the reversibly soluble polymer. Enzym Microb Technol 27:672–679

    Article  CAS  Google Scholar 

  • Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228

    Article  PubMed  CAS  Google Scholar 

  • Sharma PK, Chand D (2012) Production of cellulase free thermostable xylanase from Pseudomonas sp. XPB-6. Res J Biol Sci 1:31–41

    Google Scholar 

  • Sharma M, Kumar A (2013) Xylanases overview. British Biotechnol J 3:1–28

    Article  Google Scholar 

  • Shi H, Zhang Y, Li X et al (2013) A novel highly thermostable xylanase stimulated by Ca2+ from Thermotoga thermarum: cloning, expression and characterization. Biotechnol Biofuels 6:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi P, Du Y, Yang H et al (2015) Molecular characterization of a new alkaline-tolerant xylanase from Humicola insolens Y1. Biomed Res Int 2015:1–7

    Google Scholar 

  • Singh S, Madlala AM, Prior BA (2003) Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiol Rev 27:3–16

    Article  PubMed  CAS  Google Scholar 

  • Subbulakshmi S, Priya R (2014) Production and purification of enzyme xylanase by Aspergillus niger. Int J Curr Microbiol App Sci 3:664–668

    CAS  Google Scholar 

  • Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology and application. World Appl Sci J 4:277–283

    Google Scholar 

  • Subramaniyan S, Sandhia GS, Prema P (2001) Control of xylanase production without protease activity in Bacillus sp. by the selected nitrogen source. Biotechnol Lett 23:369–371

    Article  CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production. Bioresour Technol 83:1–11

    Article  PubMed  CAS  Google Scholar 

  • Sunna A, Antranikian G (1997) Xylanolytic enzymes from fungi and bacteria. Crit Rev Biotechnol 17(1):39–67

    Article  PubMed  CAS  Google Scholar 

  • Sunna A, Bergquist PL (2003) A gene encoding a novel extremely thermostable 1,4beta-xylanase isolated directly from an environmental DNA sample. Extremophiles 7(1):63–70

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Kawabata H, MurakamIi S (2013) Analysis of functional xylanases in xylan degradation by Aspergillus niger E-1 and characterization of the GH family 10 xylanase XynVII. Springer Plus 2:447

    Article  PubMed  CAS  Google Scholar 

  • Teixeira RSS, Siqueira FGA, de Souza MV et al (2010) Purification and characterization studies of a thermostable β-xylanase from Aspergillus awamori. J Ind Microbiol Biotechnol 37:1041–1051

    Article  PubMed  CAS  Google Scholar 

  • Thomas L, Parmeswaran B, Pandey A (2016) Hydrolysis of pretreated rice straw by an enzyme cocktail comprising acidic xylanase from Aspergillus sp. for bioethanol production. Renew Energy 98:9–15

    Article  CAS  Google Scholar 

  • Twomey LN, Pluske JR, Rowe JB et al (2003) The effects of increasing levels of soluble non-starch polysaccharides and inclusion of feed enzymes in dog diets on faecal quality and digestibility. Anim Feed Sci Technol 108:71–82

    Article  CAS  Google Scholar 

  • Van Paridon PA, Booman JCP, Selten GCM et al (1992) Application of fungal endoxylanase in poultry diets. Elsevier:371–378

    Google Scholar 

  • Velkova ZI, Gochev VK, Kostov G, Atev A (2007) Optimization of nutritive media composition for xylanase production by Aspergillus awamori. Bulg J Agri Sci 13:651–656

    Google Scholar 

  • Verma D, Satyanarayana T (2012) Molecular approaches for ameliorating microbial xylanases. Bioresour Technol 17:360–367

    Article  CAS  Google Scholar 

  • Wang X, Huang H, Xie X et al (2016) Improvement of the catalytic performance of a hyperthermostable GH10 xylanase from Talaromyces leycettanus JCM12802. Bioresour Technol 222:277–284

    Article  PubMed  CAS  Google Scholar 

  • Whistler R, Masek E (1955) Enzymatic hydrolysis of xylan. J Am Chem Soc 77:1241–1243

    Article  CAS  Google Scholar 

  • Whistler RL, Richards EL (1970) Hemicelluloses. The carbohydrates. Academic, New York, pp 447–469

    Google Scholar 

  • Widjaja A, Lestari E, Tanjung A, Alfian W et al (2009) Optimized production of xylanase from fungal strains and its purification strategies. J Appl Sci Environ Sanitation 4:219–232

    Google Scholar 

  • Wong KKY, Tan LUL, Saddler JN (1998) Multiplicity of β-1,4-xylanase in microorganisms. Funct Appl Microbiol Rev 52:305

    Google Scholar 

  • Woodward J (1984) Xylanases: functions, properties and applications. Top Enzym Ferment Biotechnol 8:9–30

    CAS  Google Scholar 

  • Yasinok AE, Biran S, Kocabas A et al (2010) Xylanase from a soil isolate, Bacillus pumilus: gene isolation, enzyme production, purification, characterization and one-step separation by aqueous-two-phase system. World J Microbiol Biotechnol 26:1641–1652

    Article  CAS  Google Scholar 

  • Yegin S (2016) Single-step purification and characterization of an extreme halophilic, ethanol tolerant and acidophilic xylanase from Aureobasidium pullulans NRRL Y-2311-1 with application potential in the food industry. Food Chem 221:67–75

    Article  PubMed  CAS  Google Scholar 

  • Yin LJ, Lin HH, Chiang YI et al (2010) Bioproperties and purification of xylanase from Bacillus sp. YJ6. J Agri Food Chem 58:557–562

    Article  CAS  Google Scholar 

  • Yoon H, Han NS, Kim CH (2004) Expression of Thermotoga maritime endo-β 1,4-xylanase gene in E. coli and characterisation of the recombinant enzyme. Agric Chem Biotechnol 47:157–160

    CAS  Google Scholar 

  • Zhou C, Wang Y, Liu Z et al (2011) Acidic xylanase II from Aspergillus usamii: efficient expression in Pichia pastoris and mutational analysis. Afr J Biotechnol 10:11631–11639

    Article  CAS  Google Scholar 

  • Zimbardi S, Cesar S, Luana P et al (2013) Optimization of β-Glucosidase, β-Xylosidase and xylanase production by Colletotrichum graminicola under solid-state fermentation and application in raw sugarcane trash saccharification. Int J Mol Sci 14:2875–2902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhiman, S., Mukherjee, G. (2018). Recent Advances and Industrial Applications of Microbial Xylanases: A Review. In: Gehlot, P., Singh, J. (eds) Fungi and their Role in Sustainable Development: Current Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-13-0393-7_19

Download citation

Publish with us

Policies and ethics