Skip to main content

Biofuels from Microbial Lipids

  • Chapter
  • First Online:
Bioreactors for Microbial Biomass and Energy Conversion

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Various alternatives have been exploited to produce biofuels economically and to reduce the environmental impacts with sustainable biowaste management . Lipids are valuable energy rich compounds that has the potential to replace conventional fossil fuels through the production of biofuels . Oleaginous microorganisms contain significant amount of microbial lipids consisting of special fatty acids with varied applications as food additives and nutraceuticals . Biofuels produced from microbial lipids as a third generation feedstock are a promising substitute for fossil fuels and animal fats or vegetable oils . However, the development and scalable production of biofuels from microbial lipids is yet to be commercialized and intensive research is required to evaluate the lipid extraction approaches for optimum biofuel production. In this chapter, we describe the sources of microbial lipids, factors that affect the microbial lipids production, technologies for microbial lipids conversion into biofuels . Alternative and innovative techniques for biofuel production and the life cycle impact of biofuel production from microbial lipids are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khan SA, Rashmi Hussain MZ, Prasad S, Banerjee UC (2009) Prospects of biodiesel production from microalgae in India. Renew Sustain Energy Rev 13(9):2361–2372

    Article  Google Scholar 

  2. Dong T, Knoshaug EP, Pienkos PT, Laurens LML (2016) Lipid recovery from wet oleaginous microbial biomass for biofuel production: a critical review. Appl Energy 177:879–895

    Article  Google Scholar 

  3. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577

    Article  Google Scholar 

  4. Srivastava PK, Verma M (2008) Methyl ester of karanja oil as an alternative renewable source energy. Fuel 87(8):1673–1677

    Article  Google Scholar 

  5. Sarin R, Sharma M, Sinharay S, Malhotra RK (2007) Jatropha-Palm biodiesel blends: an optimum mix for Asia. Fuel 86(10):1365–1371

    Article  Google Scholar 

  6. Pinto AC, Guarieiro LLN, Rezende MJC, Ribeiro NM, Torres EA, Lopes WA, De Pereira PAP, De Andrade JB (2005) Biodiesel: an overview. J Braz Chem Soc 16(6B):1313–1330

    Article  Google Scholar 

  7. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    Article  Google Scholar 

  8. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  Google Scholar 

  9. Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80(5):749–756

    Article  Google Scholar 

  10. Wu X, Ruan R, Du Z, Liu Y (2012) Current status and prospects of biodiesel production from microalgae. Energies 5(8):2667–2682

    Article  Google Scholar 

  11. Chojnacka K, Noworyta A (2004) Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme Microb Technol 34(5):461–465

    Article  Google Scholar 

  12. Papanikolaou S, Chevalot I, Komaitis M, Marc I, Aggelis G (2002) Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl Microbiol Biotechnol 58(3):308–312

    Article  Google Scholar 

  13. Chang YH, Chang KS, Lee CF, Hsu CL, Huang CW, Der Jang H (2015) Microbial lipid production by oleaginous yeast Cryptococcus sp. in the batch cultures using corncob hydrolysate as carbon source. Biomass Bioenergy 72:95–103

    Article  Google Scholar 

  14. Rittmann BE (2008) Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng 100(2):203–212

    Article  Google Scholar 

  15. Muniraj IK, Uthandi SK, Hu Z, Xiao L, Zhan X (2015) Microbial lipid production from renewable and waste materials for second-generation biodiesel feedstock. Environ Technol Rev 2515:1–16

    Article  Google Scholar 

  16. Wackett LP (2011) Engineering microbes to produce biofuels. Curr Opin Biotechnol 22:388–393

    Article  Google Scholar 

  17. Wackett LP (2008) Microbial-based motor fuels: science and technology. Microb Biotechnol 1(3):211–225

    Article  Google Scholar 

  18. Zhang F, Rodriguez S, Keasling JD (2011) Metabolic engineering of microbial pathways for advanced biofuels production. Curr Opin Biotechnol 22(6):775–783

    Article  Google Scholar 

  19. Peralta-Yahya PP, Keasling JD (2010) Advanced biofuel production in microbes. Biotechnol J 5(2):147–162

    Article  Google Scholar 

  20. Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77(1):23–35

    Article  Google Scholar 

  21. Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86(11):807–815

    Article  Google Scholar 

  22. Ochsenreither K, Glück C, Stressler T, Fischer L, Syldatk C (2016) Production strategies and applications of microbial single cell oils. Front Microbiol 7:1539

    Article  Google Scholar 

  23. Ratledge C, Wynn J (2005) Microbial production of oils and fats. Food Biotechnol Second. https://doi.org/10.1201/9781420027976.ch1.17

    Article  Google Scholar 

  24. Wältermann M, Steinbüchel A (2005) Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol 187(11):3607–3619

    Article  Google Scholar 

  25. Kosa M, Ragauskas AJ (2011) Lipids from heterotrophic microbes: advances in metabolism research. Trends Biotechnol 29(2):53–61

    Article  Google Scholar 

  26. Alvarez HM, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60(4):367–376

    Article  Google Scholar 

  27. Ratledge C, Cohen Z (2008) Microbial and algal oils: Do they have a future for biodiesel or as commodity oils? Lipid Technol 20(7):155–160

    Article  Google Scholar 

  28. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    Article  Google Scholar 

  29. Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34(1):1–5

    Article  Google Scholar 

  30. Subramaniam R, Dufreche S, Zappi M, Bajpai R (2010) Microbial lipids from renewable resources: production and characterization. J Ind Microbiol Biotechnol 37(12):1271–1287

    Article  Google Scholar 

  31. Kavadia A, Komaitis M, Chevalot I, Blanchard F, Marc I, Aggelis G (2001) Lipid and γ-linolenic acid accumulation in strains of zygomycetes growing on glucose. J Am Oil Chem Soc 78(4):341–346

    Article  Google Scholar 

  32. Vicente G, Bautista LF, Rodríguez R, Gutiérrez FJ, Sádaba I, Ruiz-Vázquez RM, Torres-Martínez S, Garre V (2009) Biodiesel production from biomass of an oleaginous fungus. Biochem Eng J 48(1):22–27

    Article  Google Scholar 

  33. Zheng Y, Li T, Yu X, Bates PD, Dong T, Chen S (2013) High-density fed-batch culture of a thermotolerant microalga chlorella sorokiniana for biofuel production. Appl Energy 108:281–287

    Article  Google Scholar 

  34. Yang F, Long L, Sun X, Wu H, Li T, Xiang W (2014) Optimization of medium using response surface methodology for lipid production by Scenedesmus sp. Mar Drugs 12(3):1245–1257

    Article  Google Scholar 

  35. Chen GQ, Jiang Y, Chen F (2007) Fatty acid and lipid class composition of the eicosapentaenoic acid-producing microalga, Nitzschia laevis. Food Chem 104(4):1580–1585

    Article  Google Scholar 

  36. Yao L, Gerde JA, Lee S-L, Wang T, Harrata KA (2015) Microalgae lipid characterization. J Agric Food Chem 63(6):1773–1787

    Article  Google Scholar 

  37. Fakas S, Galiotou-Panayotou M, Papanikolaou S, Komaitis M, Aggelis G (2007) Compositional shifts in lipid fractions during lipid turnover in Cunninghamella echinulata. Enzyme Microb Technol 40(5):1321–1327

    Article  Google Scholar 

  38. Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165(6):377–386

    Article  Google Scholar 

  39. Wu S, Hu C, Jin G, Zhao X, Zhao ZK (2010) Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresour Technol 101(15):6124–6129

    Article  Google Scholar 

  40. Huang X, Shen Y, Luo H, Liu J, Liu J (2018) Enhancement of extracellular lipid production by oleaginous yeast through preculture and sequencing batch culture strategy with acetic acid. Bioresour Technol 247:395–401

    Article  Google Scholar 

  41. Yang X, Jin G, Gong Z, Shen H, Bai F, Zhao ZK (2015) Recycling microbial lipid production wastes to cultivate oleaginous yeasts. Bioresour Technol 175:91–96

    Article  Google Scholar 

  42. Zeng Y, Bian D, Xie Y, Jiang X, Li X, Li P, Zhang Y, Xie T (2016) Utilization of food waste hydrolysate for microbial lipid and protein production by Rhodosporidium toruloides Y2. J Chem Technol Biotechnol

    Article  Google Scholar 

  43. Martínez EJ, Raghavan V, González-Andrés F, Gómez X (2015) New biofuel alternatives: integrating waste management and single cell oil production. Int J Mol Sci 16(5):9385–9405

    Article  Google Scholar 

  44. Cheirsilp B, Louhasakul Y (2013) Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of the lipid into biodiesel. Bioresour Technol 142:329–337

    Article  Google Scholar 

  45. Poli JS, da Silva MAN, Siqueira EP, Pasa VMD, Rosa CA, Valente P (2014) Microbial lipid produced by Yarrowia lipolytica QU21 using industrial waste: A potential feedstock for biodiesel production. Bioresour Technol 161:320–326

    Article  Google Scholar 

  46. Kao C-Y, Chen T-Y, Chang Y-B, Chiu T-W, Lin H-Y, Chen C-D, Chang J-S, Lin C-S (2014) Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Bioresour Technol 166:485–493

    Article  Google Scholar 

  47. Ji M-K, Yun H-S, Hwang J-H, Salama E-S, Jeon B-H, Choi J (2017) Effect of flue gas CO2 on the growth, carbohydrate and fatty acid composition of a green microalga Scenedesmus obliquus for biofuel production. Environ Technol 38(16):2085–2092

    Article  Google Scholar 

  48. Mu J, Li S, Chen D, Xu H, Han F, Feng B, Li Y (2015) Enhanced biomass and oil production from sugarcane bagasse hydrolysate (SBH) by heterotrophic oleaginous microalga Chlorella protothecoides. Bioresour Technol 185:99–105

    Article  Google Scholar 

  49. Resdi R, Lim JS, Kamyab H, Lee CT, Hashim H, Mohamad N, Ho WS (2016) Review of microalgae growth in palm oil mill effluent for lipid production. Clean Technol Environ Policy 18(8):2347–2361

    Article  Google Scholar 

  50. Zuliani L, Frison N, Jelic A, Fatone F, Bolzonella D, Ballottari M (2016) Microalgae cultivation on anaerobic digestate of municipal wastewater, sewage sludge and agro-waste. Int J Mol Sci 17(10):1692

    Article  Google Scholar 

  51. Joe M-H, Kim J-Y, Lim S, Kim D-H, Bai S, Park H, Lee SG, Han SJ, Choi J (2015) Microalgal lipid production using the hydrolysates of rice straw pretreated with gamma irradiation and alkali solution. Biotechnol Biofuels 8:125

    Article  Google Scholar 

  52. Chen Y-H, Walker TH (2011) Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol. Biotechnol Lett 33 (10):1973

    Article  Google Scholar 

  53. Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21(5):493–507

    Article  Google Scholar 

  54. Wan M, Jin X, Xia J, Rosenberg JN, Yu G, Nie Z, Oyler GA, Betenbaugh MJ (2014) The effect of iron on growth, lipid accumulation, and gene expression profile of the freshwater microalga Chlorella sorokiniana. Appl Microbiol Biotechnol 98(22):9473–9481

    Article  Google Scholar 

  55. Lv JM, Cheng LH, Xu XH, Zhang L, Chen HL (2010) Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour Technol 101(17):6797–6804

    Article  Google Scholar 

  56. Luo HP, Al-Dahhan MH (2004) Analyzing and modeling of photobioreactors by combining first principles of physiology and hydrodynamics. Biotechnol Bioeng 85(4):382–393

    Article  Google Scholar 

  57. Khotimchenko SV, Yakovleva IM (2005) Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry 66(1):73–79

    Article  Google Scholar 

  58. Yoo Chan, Jun So-Young, Lee Jae-Yon, Chi-Yong Ahn H-MO (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Elsevier Ltd 101:S71–S74

    Google Scholar 

  59. Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100(2):833–838

    Article  Google Scholar 

  60. de Morais MG, Costa JAV (2007) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129(3):439–445

    Article  Google Scholar 

  61. Pahl SL, Lewis DM, King KD, Chen F (2012) Heterotrophic growth and nutritional aspects of the diatom Cyclotella cryptica (Bacillariophyceae): Effect of nitrogen source and concentration. J Appl Phycol 24(2):301–307

    Article  Google Scholar 

  62. Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process Process Intensif 48(6):1146–1151

    Article  Google Scholar 

  63. Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126(4):499–507

    Article  Google Scholar 

  64. Dean AP, Sigee DC, Estrada B, Pittman JK (2010) Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresour Technol 101(12):4499–4507

    Article  Google Scholar 

  65. Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48(6):375–387

    Article  Google Scholar 

  66. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Article  Google Scholar 

  67. Rasheva T, Kujumdzieva A, Hallet JN (1997) Lipid production by Monascus purpureus albino strain. J Biotechnol 56(3):217–224

    Article  Google Scholar 

  68. Wynn JP, Hamid AA, Li Y, Ratledge C (2001) Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiology 147(10):2857–2864

    Article  Google Scholar 

  69. Fakas S, Papanikolaou S, Batsos A, Galiotou-Panayotou M, Mallouchos A, Aggelis G (2009) Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy 33(4):573–580

    Article  Google Scholar 

  70. Papanikolaou S, Galiotou-Panayotou M, Chevalot I, Komaitis M, Marc I, Aggelis G (2006) Influence of glucose and saturated free-fatty acid mixtures on citric acid and lipid production by Yarrowia lipolytica. Curr Microbiol 52(2):134–142

    Article  Google Scholar 

  71. Angerbauer C, Siebenhofer M, Mittelbach M, Guebitz GM (2008) Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresour Technol 99(8):3051–3056

    Article  Google Scholar 

  72. Kalscheuer R, Stölting T, Steinbüchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152(9):2529–2536

    Article  Google Scholar 

  73. Zabeti N, Bonin P, Volkman JK, Guasco S, Rontani JF (2010) Fatty acid composition of bacterial strains associated with living cells of the haptophyte Emiliania huxleyi. Org Geochem 41(7):627–636

    Article  Google Scholar 

  74. Zhao X, Peng F, Du W, Liu C, Liu D (2012) Effects of some inhibitors on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides and preparation of biodiesel by enzymatic transesterification of the lipid. Bioprocess Biosyst Eng 35(6):993–1004

    Article  Google Scholar 

  75. Wahlen BD, Morgan MR, McCurdy AT, Willis RM, Morgan MD, Dye DJ, Bugbee B, Wood BD, Seefeldt LC (2013) Biodiesel from microalgae, yeast, and bacteria: engine performance and exhaust emissions. Energy Fuels 27(1):220–228

    Article  Google Scholar 

  76. Sawangkeaw R, Bunyakiat K, Ngamprasertsith S (2010) A review of laboratory-scale research on lipid conversion to biodiesel with supercritical methanol (2001–2009). J Supercrit Fluids 55(1):1–13

    Article  Google Scholar 

  77. Karatay SE, Dönmez G (2011) Microbial oil production from thermophile cyanobacteria for biodiesel production. Appl Energy 88(11):3632–3635

    Article  Google Scholar 

  78. Hidalgo P, Toro C, Ciudad G, Navia R (2013) Advances in direct transesterification of microalgal biomass for biodiesel production. Rev Environ Sci Biotechnol 12(2):179–199

    Article  Google Scholar 

  79. Thliveros P, Uçkun Kiran E, Webb C (2014) Microbial biodiesel production by direct methanolysis of oleaginous biomass. Bioresour Technol 157:181–187

    Article  Google Scholar 

  80. Leung DYC, Wu X, Leung MKH (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87(4):1083–1095

    Article  Google Scholar 

  81. Zhao L, Liu DXW (2007) Effect of several factors on peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis. J Chem Technol Biotechnol 82:1115–1121

    Article  Google Scholar 

  82. Dai C-C, Tao J, Xie F, Dai Y-J, Zhao M (2007) Biodiesel generation from oleaginous yeast Rhodotorula glutinis with xylose assimilating capacity. African J Biotechnol 6(18):2130–2134

    Article  Google Scholar 

  83. Awolu OO, Layokun SK (2013) Optimization of two-step transesterification production of biodiesel from neem (Azadirachta indica) oil. Int J Energy Environ Eng 4(1):39

    Article  Google Scholar 

  84. Liu G-Q, Lin Q-L, Jin X-C, Wang X-L, Zhao Y (2010) Screening and fermentation optimization of microbial lipid-producing molds from forest soils. African J Microbiol Res 4:1462–1468

    Google Scholar 

  85. Amirsadeghi M, Shields-menard S, French WT, Hernandez R (2015) Lipid production by Rhodotorula glutinis from pulp and paper wastewater for biodiesel production. J Sustain Bioenergy Syst 5:114–125

    Article  Google Scholar 

  86. Tran DT, Chen CL, Chang JS (2013) Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst. Bioresour Technol 135:213–221

    Article  Google Scholar 

  87. Revellame E, Hernandez R, French W, Holmes W, Alley E (2010) Biodiesel from activated sludge through in situ transesterification. J Chem Technol Biotechnol 85(5):614–620

    Article  Google Scholar 

  88. Montero-rodríguez D, Andrade RFS, Lima RA, Silva GKB, Rubio-ribeaux D, Silva TA, Hélvia WC (2016) Conversion of agro-industrial wastes by Serratia marcescens UCP/WFCC 1549 into lipids suitable for biodiesel. Production 49:307–312

    Google Scholar 

  89. Fjerbaek L, Christensen KV, Norddahl B (2009) A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 102(5):1298–1315

    Article  Google Scholar 

  90. Ghaly AE, Dave D, Brooks MS, Budge S (2010) Production of biodiesel by enzymatic transesterification: review. Am J Biochem Biotechnol 6(2):54–76

    Article  Google Scholar 

  91. Tran D-T, Yeh K-L, Chen C-L, Chang J-S (2012) Enzymatic transesterification of microalgal oil from Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized Burkholderia lipase. Bioresour Technol 108:119–127

    Article  Google Scholar 

  92. Teo CL, Jamaluddin H, Zain NAM, Idris A (2014) Biodiesel production via lipase catalysed transesterification of microalgae lipids from Tetraselmis sp. Renew Energy 68:1–5

    Article  Google Scholar 

  93. Patil PD, Gude VG, Mannarswamy A, Cooke P, Nirmalakhandan N, Lammers P, Deng S (2012) Comparison of direct transesterification of algal biomass under supercritical methanol and microwave irradiation conditions. Fuel 97:822–831

    Article  Google Scholar 

  94. Cui Y, Liang Y (2014) Direct transesterification of wet Cryptococcus curvatus cells to biodiesel through use of microwave irradiation. Appl Energy 119:438–444

    Article  Google Scholar 

  95. D’Oca MGM, Viêgas CV, Lemões JS, Miyasaki EK, Morón-Villarreyes JA, Primel EG, Abreu PC (2011) Production of FAMEs from several microalgal lipidic extracts and direct transesterification of the Chlorella pyrenoidosa. Biomass Bioenerg 35(4):1533–1538

    Article  Google Scholar 

  96. Johnson MB, Wen Z (2009) Production of Biodiesel Fuel from the Microalga Schizochytrium limacinum by Direct Transesterification of Algal Biomass. Energy Fuels 23(10):5179–5183

    Article  Google Scholar 

  97. Chen C-L, Huang C-C, Ho K-C, Hsiao P-X, Wu M-S, Chang J-S (2015) Biodiesel production from wet microalgae feedstock using sequential wet extraction/transesterification and direct transesterification processes. Bioresour Technol 194:179–186

    Article  Google Scholar 

  98. Chee Loong T, Idris A (2014) Rapid alkali catalyzed transesterification of microalgae lipids to biodiesel using simultaneous cooling and microwave heating and its optimization. Bioresour Technol 174:311–315

    Article  Google Scholar 

  99. Cheng J, Huang R, Li T, Zhou J, Cen K (2014) Biodiesel from wet microalgae: extraction with hexane after the microwave-assisted transesterification of lipids. Bioresour Technol 170:69–75

    Article  Google Scholar 

  100. Martinez-Guerra E, Gude VG, Mondala A, Holmes W, Hernandez R (2014) Extractive-transesterification of algal lipids under microwave irradiation with hexane as solvent. Bioresour Technol 156:240–247

    Article  Google Scholar 

  101. Velasquez-Orta SB, Lee JGM, Harvey A (2012) Alkaline in situ transesterification of Chlorella vulgaris. Fuel 94:544–550

    Article  Google Scholar 

  102. Dong T, Wang J, Miao C, Zheng Y, Chen S (2013) Two-step in situ biodiesel production from microalgae with high free fatty acid content. Bioresour Technol 136:8–15

    Article  Google Scholar 

  103. Liu J, Chu Y, Cao X, Zhao Y, Xie H, Xue S (2015) Rapid transesterification of micro-amount of lipids from microalgae via a micro-mixer reactor. Biotechnol Biofuels 8(1):229

    Article  Google Scholar 

  104. Levine RB, Bollas A, Savage PE (2013) Process improvements for the supercritical in situ transesterification of carbonized algal biomass. Bioresour Technol 136:556–564

    Article  Google Scholar 

  105. Kendall A, Yuan J (2013) Comparing life cycle assessments of different biofuel options. Curr Opin Chem Biol 17(3):439–443

    Article  Google Scholar 

  106. Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819

    Article  Google Scholar 

  107. Clarens AF, Nassau H, Resurreccion EP, White MA, Colosi LM (2011) Environmental impacts of algae-derived biodiesel and bioelectricity for transportation. Environ Sci Technol 45(17):7554–7560

    Article  Google Scholar 

  108. Jian H, Jing Y, Peidong Z (2015) Life cycle analysis on fossil energy ratio of algal biodiesel: Effects of nitrogen deficiency and oil extraction technology. Sci World J. https://doi.org/10.1155/2015/920968

    Article  Google Scholar 

  109. Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102(1):159–165

    Article  Google Scholar 

  110. Singh A, Olsen SI (2011) A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Energy 88(10):3548–3555

    Article  Google Scholar 

  111. Lardon L, Helias A, Sialve B, Steyer J-P, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43:6475–6481

    Article  Google Scholar 

  112. Campbell PK, Beer T, Batten D (2011) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol 102:50–56

    Article  Google Scholar 

  113. Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101(4):1406–1413

    Article  Google Scholar 

  114. Huang D, Zhou H, Lin L (2011) Biodiesel: an alternative to conventional fuel. Energy Procedia 16:1874–1885

    Article  Google Scholar 

  115. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14(1):217–232

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pau Loke Show .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chew, K.W., Chia, S.R., Show, P.L., Ling, T.C., Chang, Js. (2018). Biofuels from Microbial Lipids. In: Liao, Q., Chang, Js., Herrmann, C., Xia, A. (eds) Bioreactors for Microbial Biomass and Energy Conversion. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7677-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7677-0_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7676-3

  • Online ISBN: 978-981-10-7677-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics