Skip to main content

The Pretreatment Technologies for Deconstruction of Lignocellulosic Biomass

  • Chapter
  • First Online:
Waste to Wealth

Abstract

Owing to the finite supply of fossil fuels, greenhouse gasses emission, global warming, increasing price, and unexpected fluctuations, there is a need to pay attention for alternative energy resources and thus interest in ethanol which is renewable, environmentally sustainable, and economically viable fuel has been strengthened. Due to economic and environmental concerns cropped up with the use of the first-generation ethanol processes, second-generation ethanol processes which comprise the use of waste biomass, viz., agricultural crop residues, municipal solid waste, sludge, livestock manure, etc., has been contemplated to be the hot emerging field. However, due to many technological issues, development of an effective technology is still a challenge. This chapter, therefore, provides insight into the pretreatment technologies involved in the production of free sugars which can be fermented to ethanol along with discussion on the merits and demerits of each of the technologies and their future prospects. This chapter also deals with various biomass-related issues and the updated technology status along with commercial aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675–685

    Article  CAS  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros MJ, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861

    Article  CAS  Google Scholar 

  • Araque E, Parra C, Freer J, Contreras D, Rodríguez J, Mendonça R, Baeza J (2008) Evaluation of organosolv pretreatment for the conversion of Pinus radiata D. Don to ethanol. Enzyme Microb Technol 43(2):214–219

    Article  CAS  Google Scholar 

  • Bacovsky D, Dallos M, Wörgetter M, Task IB (2010) Status of 2nd generation biofuels demonstration facilities in June 2010. IEA bioenergy task 39: commercializing 1st and 2nd generation liquid biofuels from biomass 39:1–26

    Google Scholar 

  • Bajpai P (2016) Pretreatment of lignocellulosic biomass for biofuel production. Springer, Singapore

    Book  Google Scholar 

  • Balat M (2007) Global bio-fuel processing and production trends. Energ Explor Exploit 25:195–218

    Article  CAS  Google Scholar 

  • Bhutto AW, Qureshi K, Harijan K, Abro R, Abbas T, Bazmi AA, Karim S, Yu G (2017) Insight into progress in pre-treatment of lignocellulosic biomass. Energy 122:724–745

    Article  CAS  Google Scholar 

  • Brandt A, Gräsvik J, Hallett JP, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15(3):550–583

    Article  CAS  Google Scholar 

  • Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res 2011

    Google Scholar 

  • Castoldi R, Bracht A, de Morais GR, Baesso ML, Correa RCG, Peralta RA, Moreira RFPM, Polizeli MT, de Souz CGM, Peralta RM (2014) Biological pretreatment of Eucalyptus grandis sawdust with white-rot fungi: study of degradation patterns and saccharification kinetics. Chem Eng J 258:240–246

    Google Scholar 

  • Cheng YS, Zheng Y, Yu CW, Dooley TM, Jenkins BM, VanderGheynst JS (2010) Evaluation of high solids alkaline pretreatment of rice straw. Appl Biochem Biotechnol 162:1768–1784

    Article  CAS  Google Scholar 

  • Dadi AP, Varanasi S, Schall CA (2006) Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng 95(5):904–910

    Article  CAS  Google Scholar 

  • Dias De Oliveira ME, Vaughan BE, Rykiel EJ (2005) Ethanol as fuel: energy, carbon dioxide balances, and ecological footprint. AIBS Bulletin 55:593–602

    Google Scholar 

  • Du B, Sharma LN, Becker C et al (2010) Effect of varying feedstock-pretreatment chemistry combinations on the formation and accumulation of potentially inhibitory degradation products in biomass hydrolysates. Biotechnol Bioeng 107:430–440

    Article  CAS  Google Scholar 

  • Du W, Yu H, Song L, Zhang J, Weng C, Ma F, Zhang X (2011) The promising effects of by-products from Irpex lacteus on subsequent enzymatic hydrolysis of bio-pretreated corn stalks. Biotechnol Biofuels 4:37

    Article  CAS  Google Scholar 

  • Dutta S, De S, Saha B, Alam MI (2012) Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels. Catal Sci Technol 10:2025–2036

    Article  Google Scholar 

  • Eisenhuber K, Krennhuber K, Steinmüller V, Jäger A (2013) Comparison of different pre-treatment methods for separating hemicellulose from straw during lignocellulose bioethanol production. Energy Procedia 40:172–181

    Article  CAS  Google Scholar 

  • Foster BL, Dale BE, Peterson JBD (2001) Enzymatic hydrolysis of ammonia-treated sugar beet pulp. Appl Biochem Biotechnol 91–93:269–282

    Google Scholar 

  • Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. Biofuels 108:41–65

    Article  CAS  Google Scholar 

  • Garlock RJ, Balan V, Dale BE, Pallapolu VR, Lee YY, Kim Y, Mosier NS, Ladisch MR, Holtzapple MT, Falls M, Sierra-Ramirez R (2011) Comparative material balances around pretreatment technologies for the conversion of switchgrass to soluble sugars. Bioresour Technol 102(24):11063–11071

    Article  CAS  Google Scholar 

  • Gaur R, Semwal S, Raj T, Lamba BY, Ramu E, Gupta RP, Kumar R, Puri SK (2017) Intensification of steam explosion and structural intricacies impacting sugar recovery. Bioresour Technol 241:692–700

    Article  CAS  Google Scholar 

  • Gogate PR, Sutkar VS, Pandit AB (2011) Sonochemical reactors: important design and scale up considerations with a special emphasis on heterogeneous systems. Chem Eng J 166:1066–1082

    Article  CAS  Google Scholar 

  • Gray KA, Zhao L (2006) Emptage M. Bioethanol Curr Opin Chem Biol 10:141–146

    Article  CAS  Google Scholar 

  • Hamisan AF, Abd-Aziz S, Kamaruddin K, Md. Shah UK, Shahab N, Hassan MA (2009) Delignification of oil palm empty fruit bunch using chemical and microbial pretreatment methods. Int J Agric Res 4:250–256

    Google Scholar 

  • Himmel ME, Baker JO, Overend RP (1994) Enzymatic Conversion of Biomass for Fuels Production. American Chemical Society Washington, DC

    Book  Google Scholar 

  • Hu F, Jung S, Ragauskas A (2012) Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour Technol 117:7–12

    Article  CAS  Google Scholar 

  • Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112

    Article  Google Scholar 

  • Jönsson LJ, Alrikssonm B, Nilvebrant NO (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6(1):16

    Article  Google Scholar 

  • Kapoor M, Raj T, Vijayaraj M, Chopra A, Gupta RP, Tuli DK, Kumar R (2015) Structural features of dilute acid, steam exploded, and alkali pretreated mustard stalk and their impact on enzymatic hydrolysis. Carbohy Polym 124:265–273

    Article  CAS  Google Scholar 

  • Kapoor M, Soam S, Agrawal R, Gupta RP, Tuli DK, Kumar R (2017a) Pilot scale dilute acid pretreatment of rice straw and fermentable sugar recovery at high solid loadings. Bioresour Technol 224:688–693

    Article  CAS  Google Scholar 

  • Kapoor M, Soam S, Semwal S, Gupta RP, Kumar R, Tuli DK (2017b) Impact of conditioning prior to dilute acid deconstruction of biomass for the production of fermentable sugars. ACS Sustain Chem Eng 5(5):4285–4292

    Article  CAS  Google Scholar 

  • Karp EM, Resch MG, Donohoe BS, Ciesielski PN, O’Brien MH, Nill JE, Mittal A, Biddy MJ, Beckham GT (2015) Alkaline pretreatment of switchgrass. ACS Sustain Chem Eng 3(7):1479–1491

    Article  CAS  Google Scholar 

  • Karunanithy C, Muthukumarappan K, Gibbons WR (2012) Effect of extruder screw speed, temperature, and enzyme levels on sugar recovery from different biomasses. ISRN Biotechnology 2013

    Google Scholar 

  • Kim TH, Kim JS, Sunwoo C, Lee YY (2003) Pretreatment of corn stover by aqueous ammonia. Bioresour Technol 90:39–47

    Article  CAS  Google Scholar 

  • Kumar R, Wyman CE (2009) Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol Prog 25(2):302–314

    Article  CAS  Google Scholar 

  • Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4(1):7

    Article  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  • http://www.etipbioenergy.eu/?option=com_content&view=article&id=273. Last Accessed 15 June 2017

  • http://www.praj.net/ethanol-plant.html. Last Accessed 15 June 2017

  • Laursen W (2006) Students take a green initiative. Chem Eng 774:32–44

    Google Scholar 

  • Li DG, Zhen H, Xingcai L, Wu-gao Z, Jian-guang Y (2005) Physico-chemical properties of ethanol-diesel blend fuel and its effect on performance and emissions of diesel engines. Renew Energ 30:967–976

    Article  CAS  Google Scholar 

  • Malça J, Freire F (2006) Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): assessing the implications of allocation. Energy 31:3362–3380

    Article  Google Scholar 

  • Martin C, Klinke HB, Thomsen AB (2007) Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme Microb Technol 40:426–432

    Article  CAS  Google Scholar 

  • Mesa L, Gonzalez E, Cara C, González M, Castro E, Mussattoc SI (2011) The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chem Eng J 168:1157–1162

    Article  CAS  Google Scholar 

  • Millet MA, Baker AJ, Scatter LD (1976) Physical and chemical pretreatment for enhancing cellulose saccharification. Biotech Bioeng Symp 6:125–153

    Google Scholar 

  • Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 27:77–93

    Article  Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14(2):578–597

    Google Scholar 

  • Pedersen M, Meyer AS (2010) Lignocellulose pretreatment severity-relating pH to biomatrix opening. New Biotechnol 27:739–750

    Article  CAS  Google Scholar 

  • Perez JA, Ballesteros I, Ballesteros M, Saez F, Negro MJ, Manzanares P (2008) Optimization liquid hot water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel 87:3640–3647

    Article  CAS  Google Scholar 

  • Pierre JS, Duran L, Heiningen AV (2015) Fast pyrolysis of muconic acid and formic acid salt mixtures. J Anal Appl Pyrolysis 113:591–598

    Article  Google Scholar 

  • Raj T, Gaur R, Dixit P, Gupta RP, Kagdiyal V, Kumar R, Tuli DK (2016) Ionic liquid pretreatment of biomass for sugars production: driving factors with a plausible mechanism for higher enzymatic digestibility. Carbohy Polym 149:369–381

    Article  CAS  Google Scholar 

  • Ren H, Zong MH, Wu H, Li N (2016) Efficient pretreatment of wheat straw using novel renewable cholinium ionic liquids to improve enzymatic saccharification. Indu Eng Chem Res 55(6):1788–1795

    Article  CAS  Google Scholar 

  • Semwal S, Gaur R, Mukherjee S, Chopra A, Gupta RP, Kumar R, Tuli DK (2016) Structural features of dilute acid pretreated Acacia mangium and impact of sodium sulfite supplementation on enzymatic hydrolysis. ACS Sustain Chem Eng 4:4635–4644

    Article  CAS  Google Scholar 

  • Sharma R, Palled V, Sharma-Shivappa RR, Osborne J (2013) Potential of potassium hydroxide pretreatment of switchgrass for fermentable sugar production. Appl Biochem Biotechnol 169:761–772

    Article  CAS  Google Scholar 

  • Sharma S, Kumar R, Gaur R, Agrawal R, Gupta RP, Tuli DK, Das B (2015) Pilot scale study on steam explosion and mass balance for higher sugar recovery from rice straw. Bioresource Technol 175:50–57

    Article  Google Scholar 

  • Silveira MH, Morais AR, da Costa Lopes AM, Olekszyszen DN, Bogel-Łukasik R, Andreaus J, Pereira Ramos L (2015) Current pretreatment technologies for the development of cellulosic ethanol and biorefineries. ChemSusChem 8:3366–3390

    Article  CAS  Google Scholar 

  • Sindhu R, Kuttiraja M, Binod P, Sukumaran RK, Pandey A (2014) Physicochemical characterization of alkali pretreated sugarcane tops and optimization of enzymatic saccharification using response surface methodology. Renew Energy 62:362–368

    Article  CAS  Google Scholar 

  • Soam S, Kapoor M, Kumar R, Borjesson P, Gupta RP, Tuli DK (2016) Global warming potential and energy analysis of second generation ethanol production from rice straw in India. Appl Energy 184:353–364

    Article  CAS  Google Scholar 

  • Suhara H, Kodama S, Kamei I, Maekawa N, Meguro S (2012) Screening of selective lignin-degrading basidiomycetes and biological pretreatment for enzymatic hydrolysis of bamboo culms. Int Biodeter Biodegr 75:176–180

    Article  CAS  Google Scholar 

  • Sun N, Rahman M, Qin Y, Maxim ML, Rodríguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11(5):646–655

    Article  CAS  Google Scholar 

  • Taha M, Shahsavari E, Al-Hothaly K, Mouradov A, Smith AT, Ball AS, Adetutu EM (2015) Enhanced biological straw saccharification through co-culturing of lignocellulose degrading microorganisms. Appl Biochem Biotechnol 175:3709–3728

    Article  CAS  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    Article  CAS  Google Scholar 

  • Wan C, Li Y (2011) Effectiveness of microbial pretreatment by Ceriporiopsis subvermispora on different biomass feedstocks. Bioresour Technol 102(16):7507–7512

    Article  CAS  Google Scholar 

  • Wang M, Zhou D, Wang Y, Wei S, Yang W, Kuang M, Ma L, Fang D, Xu S, Du SK (2016) Bioethanol production from cotton stalk: a comparative study of various pretreatments. Fuel 184:527–532

    Article  CAS  Google Scholar 

  • Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959–1966

    Article  CAS  Google Scholar 

  • Xu J, Thomsen MH, Thomsen AB (2009) Pretreatment on corn stover with low concentration of formic acid. J Microbio Biotechnol 19:845–850

    CAS  Google Scholar 

  • Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Bioref 2(1):26–40

    Article  CAS  Google Scholar 

  • Yoo J, Alavi S, Vadlani P, Amanor-Boadu V (2011) Thermo-mechanical extrusion pretreatment for conversion of soybean hulls to fermentable sugars. Bioresour Technol 102:7583–7590

    Article  CAS  Google Scholar 

  • Zakaria MR, Fujimoto S, Hirata S, Hassan MA (2014) Ball milling pretreatment of oil palm biomass for enhancing enzymatic hydrolysis. Appl Biochem Biotechnol 173:1778–1789

    Article  CAS  Google Scholar 

  • Zhang D, Ong YL, Li Z, Wu JC (2012) Optimization of dilute acid-catalyzed hydrolysis of oil palm empty fruit bunch for high yield production of xylose. Chem Eng J 181–182:636–642

    Article  Google Scholar 

  • Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. App Microbiol Biotechnol 82(5):815

    Article  CAS  Google Scholar 

  • Zheng J, Rehmann L (2014) Extrusion pretreatment of lignocellulosic biomass: a review. Int J Mol Sci 15(10):18967–18984

    Article  CAS  Google Scholar 

  • Zhu S, Wu Y, Yu Z, Wang C, Yu F, Jin S, Ding Y, Chi R, Liao J, Zhang Y (2006) Comparison of three microwave/chemical pretreatment processes for enzymaric hydrolyisis of rice straw. Biosyst Eng 93:279–283

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Biotechnology (DBT) and Indian Oil Corporation for supporting the writing work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kapoor, M., Semwal, S., Gaur, R., Kumar, R., Gupta, R.P., Puri, S.K. (2018). The Pretreatment Technologies for Deconstruction of Lignocellulosic Biomass. In: Singhania, R., Agarwal, R., Kumar, R., Sukumaran, R. (eds) Waste to Wealth. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7431-8_17

Download citation

Publish with us

Policies and ethics