Skip to main content

Advertisement

Log in

Potential of Potassium Hydroxide Pretreatment of Switchgrass for Fermentable Sugar Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Chemical pretreatment of lignocellulosic biomass has been extensively investigated for sugar generation and subsequent fuel production. Alkaline pretreatment has emerged as one of the popular chemical pretreatment methods, but most attempts thus far have utilized NaOH for the pretreatment process. This study aimed at investigating the potential of potassium hydroxide (KOH) as a viable alternative alkaline reagent for lignocellulosic pretreatment based on its different reactivity patterns compared to NaOH. Performer switchgrass was pretreated at KOH concentrations of 0.5–2 % for varying treatment times of 6–48 h, 6–24 h, and 0.25–1 h at 21, 50, and 121 °C, respectively. The pretreatments resulted in the highest percent sugar retention of 99.26 % at 0.5 %, 21 °C, 12 h while delignification up to 55.4 % was observed with 2 % KOH, 121 °C, 1 h. Six pretreatment conditions were selected for subsequent enzymatic hydrolysis with Cellic CTec2® for sugar generation. The pretreatment condition of 0.5 % KOH, 24 h, 21 °C was determined to be the most effective as it utilized the least amount of KOH while generating 582.4 mg sugar/g raw biomass for a corresponding percent carbohydrate conversion of 91.8 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Carlo, N. H., Geertje, V. H., & Andre, P. C. (2005). Ethanol from lignocellulosic biomass: Techno-economic performance in short-middle and long term. Biomass and Bioenergy, 28, 384–410.

    Article  Google Scholar 

  2. Cortese, L. M., Honig, J., Miller, C., & Bonos, S. A. (2010). Genetic diversity of twelve switchgrass populations using molecular and morphological markers. Bioenergy Research, 3, 262–271. doi:10.1007/s12155-010-9078-2.

    Article  Google Scholar 

  3. Keshwani, D. R., & Cheng, J. J. (2009). Switchgrass for bioethanol and other value-added applications: A review. Bioresource Technology, 100, 1515–1523.

    Article  CAS  Google Scholar 

  4. Schmer, M. R., Vogel, K. P., Mitchel, R. B., & Perrin, R. K. (2008). Net energy of cellulosic ethanol from switchgrass. Proceedings of the National Academy of Science, 105, 464–469.

    Article  CAS  Google Scholar 

  5. Awolu, O. O., & Ibileke, I. O. (2011). Bioethanol production from brewer’s spent grain, bread wastes and corn fiber. African Journal of Food Science, 5(3), 148–155.

    CAS  Google Scholar 

  6. Belkacemi, K., Turcotte, G., de Halleux, D., & Savoie, P. (1998). Ethanol production from AFEX-treatedforages and agricultural residues. Applied Biochemistry and Biotechnology, 70–72, 441–462.

    Article  Google Scholar 

  7. Chang, V., & Holtzapple, M. T. (2000). Fundamental factors affecting biomass enzymatic reactivity. Applied Biochemistry and Biotechnology, 84–86, 5–37.

    Article  Google Scholar 

  8. Chen, Y., Sharma-Shivappa, R. R., Keshwani, D., & Chen, C. (2007). Potential of agricultural residues and hey for bioethanol production. Applied Biochemistry and Biotechnology, 142, 276–290.

    Article  CAS  Google Scholar 

  9. Xu, J., Cheng, J. J., Sharma-Shivappa, R. R., & Burns, J. C. (2010). Lime pretreatment of switchgrass at mild temperatures for ethanol production. Bioresource Technology, 101, 2900–2903.

    Article  CAS  Google Scholar 

  10. Silverstein, R. A., Chen, Y., Sharma-Shivappa, R. R., Boyette, M. D., & Osborne, J. (2007). A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresource Technology, 98, 3000–3011.

    Article  CAS  Google Scholar 

  11. Xu, J., Cheng, J. J., Sharma-Shivappa, R. R., & Burns, J. C. (2010). Sodium hydroxide pretreatment of switchgrass for ethanol production. Energy & Fuels, 24, 2113–2119.

    Article  CAS  Google Scholar 

  12. Kaar, W. E., & Holtzapple, M. T. (2000). Using lime pretreatment to facilitate the enzymatic hydrolysis of corn stover. Biomass and Bioenergy, 18, 189–199.

    Article  CAS  Google Scholar 

  13. Ong, L. G. A., Chuah, C., & Chew, A. L. (2010). Comparison of sodium hydroxide and potassium hydroxide followed by heat treatment on rice straw for cellulase production under solid state fermentation. Journal of Applied Sciences, 10, 2608–2612.

    Article  CAS  Google Scholar 

  14. Raymundo-Piñero, E., Azaïs, P., Cacciaguerra, T., Cazorla-Amorós, D., Linares-Solano, A., & Béguin, F. (2005). KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organization. Carbon, 43, 786–795.

    Article  Google Scholar 

  15. Kumar, R., & Wyman, C. E. (2009). Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments. Biotechnology and Bioengineering, 103, 252–267.

    Article  CAS  Google Scholar 

  16. Burns, J. C., Godshalk, E. B., & Timothy, D. H. (2008). Registration of “Performer” switchgrass. Journal of Plant Registrations, 2008(2), 29–30.

    Article  Google Scholar 

  17. Eckard, A. D., Muthukumarappan, K., & Gibbons, W. (2012). Pretreatment of extruded corn stover with polyethylene glycol to enhance enzymatic hydrolysis: optimization, kinetics, and mechanism of action. Bioenergy Research, 5, 424–438. doi:10.1007/s12155-011-9162-2.

    Article  CAS  Google Scholar 

  18. Kodaganti, B.P. (2011). Simultaneous saccharification and fermentation of Arundo donax—Comparison of feeding strategies. www.chemeng.lth.se/E655.pdf. Accessed 24 May 2012.

  19. Eylen, D. V., Femke, V. D., Kabel, M., & Bont, J. (2011). Corn fiber, cobs and stover: Enzyme-aided saccharification and co-fermentation after dilute acid pretreatment. Bioresource Technology, 102, 5995–6004.

    Article  Google Scholar 

  20. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., and Templeton, D. (2005a). Determination of ash in biomass. Laboratory Analytical Procedure (LAP). Golden: National Renewable Energy Laboratory.

  21. Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., and Wolfe, J. (2005b). Determination of total solids in biomass and total dissolved solids in liquid process samples. Laboratory Analytical Procedure (LAP). Golden: National Renewable Energy Laboratory.

  22. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., and Templeton, D. (2008). Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure (LAP). Golden: National Renewable Energy Laboratory.

  23. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analitical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  24. Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59, 257–268.

    Article  CAS  Google Scholar 

  25. McMillan, J. D. (1994). Pretreatment of lignocellulosic biomass. In M. E. Himmel, J. O. Baker, & R. P. Overend (Eds.), Enzymatic conversion of biomass for fuel production (pp. 292–324). Washington: American Chemical Society.

    Chapter  Google Scholar 

  26. Kuhad, R. C., & Singh, A. (1993). Lignocellulose biotechnology: Current and future prospectus. Critical Reviews in Biotechnology, 13, 151–172.

    Article  CAS  Google Scholar 

  27. Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2005). Determination of extractives in biomass. Laboratory Analytical Procedure (LAP). Golden: National Renewable Energy Laboratory.

  28. Fan, L. T., Gharpuray, M. M., & Lee, Y. H. (1987). Cellulose hydrolysis. In: S. Aiba, L. T. Fan, A. Fiechter, J. Klein, & K. de Schügerl (Eds.), Biotechnology monographs (p. 8). Berlin: Springer.

  29. Ohgren, K., Bura, R., Saddler, J., & Zacchi, G. (2007). Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresource Technology, 98, 2503–2510.

    Article  Google Scholar 

  30. Theoretical ethanol yield calculator. http://www1.eere.energy.gov/biomass/ethanol_yield_calculator.html.

Download references

Acknowledgments

The authors appreciate the input by Dr. Sanjeev Tyagi, Principal Scientist, Central Institute of Post Harvest Engineering and Technology (CIPHET), Ludhiana, Punjab, India, during the initiation of this study. They would like to acknowledge the partial financial support for this research provided by National Agricultural Innovation Project, Indian Council of Agricultural Research (ICAR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratna R. Sharma-Shivappa.

Additional information

R. Sharma and V. Palled made equal contributions to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, R., Palled, V., Sharma-Shivappa, R.R. et al. Potential of Potassium Hydroxide Pretreatment of Switchgrass for Fermentable Sugar Production. Appl Biochem Biotechnol 169, 761–772 (2013). https://doi.org/10.1007/s12010-012-0009-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-0009-x

Keywords

Navigation