Skip to main content

Role of Pathogenesis-Related (PR) Proteins in Plant Defense Mechanism

  • Chapter
  • First Online:
Molecular Aspects of Plant-Pathogen Interaction

Abstract

Plant growth and development is often challenged by several abiotic and biotic stresses, such as drought, cold, salinity, wounding, heavy metals, and pathogen attacks, respectively. A plant responds to these threats by activating a cascade of genes, encoding different effectors, receptors, and signaling and protective molecules. Among all, the induction and accumulation of pathogenesis-related (PR) proteins in plants in response to these adverse conditions is very important as PR proteins are an indispensible component of innate immune responses in plants under biotic or abiotic stress conditions. The PR proteins protect the plants from further infection by not only accumulating locally in the infected and surrounding tissues but also in remote uninfected tissues. Induction of PRs has been reported from many plant species belonging to different families suggesting a general role for these proteins in adaptation to biotic or abiotic stress conditions. PR proteins are also involved in hypersensitive response (HR) or systemic acquired resistance (SAR) against infection. Thus, PR proteins have been defined as “proteins encoded by the host plant but induced only in pathological or related situations,” the latter inferring situations of nonpathogenic origin. In this chapter, structure, biochemistry, source, regulation of gene expression, and role in defense mechanism of various pathogenesis-related proteins will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad LR et al (1996) Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization. Plant Sci 118(1):11–23

    Article  CAS  Google Scholar 

  • Abeles FB et al (1971) Preparation and purification of glucanase and chitinase from bean leaves. Plant Physiol 47(1):129–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150(7):2029–2035

    Article  CAS  PubMed  Google Scholar 

  • Akiyama T et al (2004) Cloning, characterization and expression of OsGLN2, a rice endo-1, 3-β-glucanase gene regulated developmentally in flowers and hormonally in germinating seeds. Planta 220(1):129–139

    Article  CAS  PubMed  Google Scholar 

  • Alexander D et al (1993) Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proc Natl Acad Sci 90(15):7327–7331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso E et al (1995) Differential in vitro DNA binding activity to a promoter element of the gn1β-1, 3-glucanase gene in hypersensitively reacting tobacco plants. Plant J 7(2):309–320

    Article  CAS  PubMed  Google Scholar 

  • Anand A et al (2004) Apoplastic extracts from a transgenic wheat line exhibiting lesion-mimic phenotype have multiple pathogenesis-related proteins that are antifungal. Mol Plant-Microbe Interact 17(12):1306–1317

    Article  CAS  PubMed  Google Scholar 

  • Anguelova-Merhar VS et al (2001) β-1, 3-Glucanase and Chitinase activities and the resistance response of wheat to leaf rust. J Phytopathol 149(7–8):381–384

    Article  CAS  Google Scholar 

  • Antoniw JF, Pierpoint WS (1978) Purification of a tobacco leaf protein associated with resistance to virus infection [proceedings]. Biochem Soc Trans 6(1):248–250

    Article  CAS  PubMed  Google Scholar 

  • Ashfield T et al (1994) Cf gene-dependent induction of a b-1, 3-glucanase promoter in tomato plants infected with Cladosporium fulvum. MPMI-Mol Plant Microbe Interact 7(5):645–656

    Article  CAS  Google Scholar 

  • Bachmann D et al (1998) Improvement of potato resistance to Phytophthora infestans by overexpressing antifungal hydrolases. 5th international workshop on pathogenesis-related proteins. Signaling pathways and biological activities. Aussois

    Google Scholar 

  • Bartnicki-Garcia S (1968) Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu Rev Microbiol 22(1):87–108

    Article  CAS  PubMed  Google Scholar 

  • Beerhues L, Kombrink E (1994) Primary structure and expression of mRNAs encoding basic chitinase and 1, 3-β-glucanase in potato. Plant Mol Biol 24(2):353–367

    Article  CAS  PubMed  Google Scholar 

  • Bernier F, Berna A (2001) Germins and germin-like proteins: plant do-all proteins. But what do they do exactly? Plant Physiol Biochem 39(7):545–554

    Article  CAS  Google Scholar 

  • Bohlmann H et al (1998) Wounding and chemicals induce expression of the Arabidopsis thaliana gene Thi2. 1, encoding a fungal defense thionin, via the octadecanoid pathway. FEBS Lett 437(3):281–286

    Article  CAS  PubMed  Google Scholar 

  • Boller T, Felix G (1996) Olfaction in plants: specific perception of common microbial molecules. In: Stacey G, Mullin B, Gresshoff PM (éds) Biology of plant-microbe interactions. International Society for Molecular Plant-Microbe Interactions, Knoxville, É.-U:1-8

    Google Scholar 

  • Brederode FT et al (1991) Differential induction of acquired resistance and PR gene expression in tobacco by virus infection, ethephon treatment, UV light and wounding. Plant Mol Biol 17(6):1117–1125

    Article  CAS  PubMed  Google Scholar 

  • Broekaert WF et al (1988) Comparison of some molecular, enzymatic and antifungal properties of chitinases from thorn-apple, tobacco and wheat. Physiol Mol Plant Pathol 33(3):319–331

    Article  CAS  Google Scholar 

  • Brogue K et al (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254(5035):1194–1197

    Article  CAS  PubMed  Google Scholar 

  • Bucciaglia PA, Smith AG (1994) Cloning and characterization of tag 1, a tobacco anther β-1, 3-glucanase expressed during tetrad dissolution. Plant Mol Biol 24(6):903–914

    Article  CAS  PubMed  Google Scholar 

  • Buchner P et al (2002) Characterization of a tissue-specific and developmentally regulated β-1, 3-glucanase gene in pea (Pisum sativum). Plant Mol Biol 49(2):171–186

    Article  CAS  PubMed  Google Scholar 

  • Caruso C et al (1996) Structural and antifungal properties of a pathogenesis-related protein from wheat kernel. J Protein Chem 15(1):35–44

    Article  CAS  PubMed  Google Scholar 

  • Castresana C et al (1990) Tissue-specific and pathogen-induced regulation of a Nicotiana plumbaginifolia beta-1, 3-glucanase gene. Plant Cell 2(12):1131–1143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chamnongpol S et al (1998) Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proc Natl Acad Sci 95(10):5818–5823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang M-M et al (1992) Molecular characterization of a pea β-1, 3-glucanase induced by Fusarium solani and chitosan challenge. Plant Mol Biol 20(4):609–618

    Article  CAS  PubMed  Google Scholar 

  • Cordero MJ et al (1994) Differential expression and induction of chitinases and β1- 3-glucanases in response to fungal infection during germination of maize seeds. Mol Plant Microbe Interact 7:23–31

    Article  CAS  Google Scholar 

  • Darvill AG, Albersheim P (1984) Phytoalexins and their elicitors-a defense against microbial infection in plants. Annu Rev Plant Physiol 35(1):243–275

    Article  CAS  Google Scholar 

  • Datta K et al (1999) Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theor Appl Genet 98(6–7):1138–1145

    Article  CAS  Google Scholar 

  • Datta K et al (2001) Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Sci 160(3):405–414

    Article  CAS  PubMed  Google Scholar 

  • Delaney TP (1997) Genetic dissection of acquired resistance to disease. Plant Physiol 113(1):5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donnell PJO et al (1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274(5294):1914

    Article  Google Scholar 

  • Edreva A (2005) Pathogenesis-related proteins: research progress in the last 15 years. Gen Appl Plant Physiol 31(1–2):105–124

    CAS  Google Scholar 

  • Epple P et al (1995) An Arabidopsis thaliana thionin gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins. Plant Physiol 109(3):813–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fagoaga C et al (2001) Increased tolerance to Phytophthora citrophthora in transgenic orange plants constitutively expressing a tomato pathogenesis related protein PR-5. Mol Breed 7(2):175–185

    Article  CAS  Google Scholar 

  • Fecht-Christoffers MM et al (2003) Effect of manganese toxicity on the proteome of the leaf apoplast in cowpea. Plant Physiol 133(4):1935–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulcher RG et al (1976) β-1, 3-glucans may be associated with cell plate formation during cytokinesis. Can J Bot 54(5–6):539–542

    Article  Google Scholar 

  • Gau AE et al (2004) Accumulation of pathogenesis-related proteins in the apoplast of a susceptible cultivar of apple (Malus domestica cv. Elstar) after infection by Venturia inaequalis and constitutive expression of PR genes in the resistant cultivar Remo. Eur J Plant Pathol 110(7):703–711

    Article  CAS  Google Scholar 

  • Goodman RN, Novacky AJ (1994) The hypersensitive reaction in plants to pathogens: a resistance phenomenon. Am Phytopathol Soc (APS)

    Google Scholar 

  • Hammond-Kosack KE, Jones JD (1996) Resistance gene-dependent plant defense responses. Plant Cell 8(10):1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanselle T, Barz W (2001) Purification and characterisation of the extracellular PR-2b β-1, 3-glucanase accumulating in different Ascochyta rabiei-infected chickpea (Cicer arietinum L.) cultivars. Plant Sci 161(4):773–781

    Article  CAS  Google Scholar 

  • Hart CM et al (1993) A 61 bp enhancer element of the tobacco β-1, 3-glucanase B gene interacts with one or more regulated nuclear proteins. Plant Mol Biol 21(1):121–131

    Article  CAS  PubMed  Google Scholar 

  • Helleboid S et al (2000) Cloning of β-1, 3-glucanases expressed during Cichorium somatic embryogenesis. Plant Mol Biol 42(2):377–386

    Article  CAS  PubMed  Google Scholar 

  • Horvath DM et al (1998) Four classes of salicylate-induced tobacco genes. Mol Plant-Microbe Interact 11(9):895–905

    Article  CAS  PubMed  Google Scholar 

  • Ignatius SMJ et al (1994) Effects of fungal infection and wounding on the expression of chitinases and β-1, 3 glucanases in near-isogenic lines of barley. Physiol Plant 90(3):584–592

    Article  CAS  Google Scholar 

  • Jach G et al (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J 8(1):97–109

    Article  CAS  PubMed  Google Scholar 

  • Jeun YC (2000) Immunolocalization of PR-protein P14 in leaves of tomato plants exhibiting systemic acquired resistance against Phytophthora infestans induced by pretreatment with 3-aminobutryic acid and preinoculation with tobacco necrosis virus. J Plant Dis Prot:352–367

    Google Scholar 

  • Jeun YCH, Buchenauer H (2001) Infection structures and localization of the pathogenesis-related protein AP 24 in leaves of tomato plants exhibiting systemic acquired resistance against Phytophthora infestans after pre-treatment with 3-aminobutyric acid or tobacco necrosis virus. J Phytopathol 149(3–4):141–154

    Article  CAS  Google Scholar 

  • Jongedijk E et al (1995) Synergistic activity of chitinases and β-1, 3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica 85(1–3):173–180

    Article  CAS  Google Scholar 

  • Jung HW, Hwang BK (2000) Pepper gene encoding a basic β-1, 3-glucanase is differentially expressed in pepper tissues upon pathogen infection and ethephon or methyl jasmonate treatment. Plant Sci 159(1):97–106

    Article  CAS  PubMed  Google Scholar 

  • Kaku H et al (1997) N-acetylchitooligosaccharides elicit expression of a single (1→ 3)-β-glucanase gene in suspension-cultured cells from barley (Hordeum vulgare). Physiol Plant 100(1):111–118

    Article  CAS  Google Scholar 

  • Kauffmann S et al (1987) Biological function of pathogenesis-related’ proteins: four PR proteins of tobacco have 1, 3-β-glucanase activity. EMBO J 6(11):3209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klarzynski O et al (2000) Linear β-1, 3 glucans are elicitors of defense responses in tobacco. Plant Physiol 124(3):1027–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence CB et al (2000) Constitutive hydrolytic enzymes are associated with polygenic resistance of tomato to Alternaria solani and may function as an elicitor release mechanism. Physiol Mol Plant Pathol 57(5):211–220

    Article  CAS  Google Scholar 

  • Legrand M et al (1987) Biological function of pathogenesis-related proteins: four tobacco pathogenesis-related proteins are chitinases. Proc Natl Acad Sci U S A 84(19):6750–6754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leubner-Metzger G, Meins Jr F (1999) 3 functions and regulation of plant β-(PR-2). Pathogenesis-related proteins in plants

    Google Scholar 

  • Li WL et al (2001) Isolation and characterization of novel cDNA clones of acidic chitinases and β-1, 3-glucanases from wheat spikes infected by Fusarium graminearum. Theor Appl Genet 102(2–3):353–362

    Article  CAS  Google Scholar 

  • Livne B et al (1997) TMV-induced expression of tobacco β-glucanase promoter activity is mediated by a single, inverted, GCC motif. Plant Sci 130(2):159–169

    Article  CAS  Google Scholar 

  • Lozovaya VV et al (1998) β-l, 3-glucanase and resistance to Aspergillus flavus infection in maize. Crop Sci 38(5):1255–1260

    Article  CAS  Google Scholar 

  • Lusso M, Kuc J (1995) Evidence for transcriptional regulation of β-1, 3-glucanase as it relates to induced systemic resistance of tobacco to blue mold. Mol Plant-Microbe Interact 8(3):473–475

    Google Scholar 

  • Martin GB et al (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Sci-New York Wash 262:1432–1432

    Article  CAS  Google Scholar 

  • Mauch F et al (1988a) Antifungal hydrolases in pea tissue I. Purification and characterization of two chitinases and two β-1, 3-glucanases differentially regulated during development and in response to fungal infection. Plant Physiol 87(2):325–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauch F et al (1988b) Antifungal hydrolases in pea tissue II. Inhibition of fungal growth by combinations of chitinase and β-1, 3-glucanase. Plant Physiol 88(3):936–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meikle PJ et al (1991) The location of (1→ 3)-β-glucans in the walls of pollen tubes of Nicotiana alata using a (1→ 3)-β-glucan-specific monoclonal antibody. Planta 185(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Meins F Jr et al (1992) The primary structure of plant pathogenesis-related glucanohydrolases and their genes. Springer, Berlin

    Book  Google Scholar 

  • Meins F et al (1994) Plant chitinase genes. Plant Mol Biol Report 12(2):S22–S28

    Article  CAS  Google Scholar 

  • Melchers LS et al (1998) The utility of PR genes to develop disease resistance in transgenic crops. 5th international workshop on pathogenesis-related proteins. Signalling pathways and biological activities

    Google Scholar 

  • Neuhaus JM (1999) Plant chitinases (pr-3, pr-4, pr-8, pr-11). Pathogenesis-related proteins in plants: 77–105

    Google Scholar 

  • Neuhaus JM et al (1996) A revised nomenclature for chitinase genes. Plant Mol Biol Report 14(2):102–104

    Article  CAS  Google Scholar 

  • Nielsen KK et al (1992) An acidic class III chitinase in sugar beet: induction by Cercospora beticola, characterization, and expression in transgenic tobacco plants. Mol Plant-Microbe Interact: MPMI 6(4):495–506

    Article  Google Scholar 

  • Niki T et al (1998) Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiol 39(5):500–507

    Article  CAS  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7(2):173–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ori N et al (1990) A major stylar matrix polypeptide (sp41) is a member of the pathogenesis-related proteins superclass. EMBO J 9(11):3429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pan S-Q et al (1989) Direct detection of β-1, 3-glucanase isozymes on polyacrylamide electrophoresis and isoelectrofocusing gels. Anal Biochem 182(1):136–140

    Article  CAS  PubMed  Google Scholar 

  • Park C-J et al (2004a) Molecular characterization of pepper germin-like protein as the novel PR-16 family of pathogenesis-related proteins isolated during the resistance response to viral and bacterial infection. Planta 219(5):797–806

    Article  CAS  PubMed  Google Scholar 

  • Park CJ et al (2004b) Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant J 37(2):186–198

    Article  CAS  PubMed  Google Scholar 

  • Penninckx IA et al (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8(12):2309–2323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CMJ, van Loon LC (1999) Salicylic acid-independent plant defence pathways. Trends Plant Sci 4(2):52–58

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CM et al (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8(8):1225–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poupard P et al (2003) A wound-and ethephon-inducible PR-10 gene subclass from apple is differentially expressed during infection with a compatible and an incompatible race of Venturia inaequalis. Physiol Mol Plant Pathol 62(1):3–12

    Article  CAS  Google Scholar 

  • Rauscher M et al (1999) PR-1 protein inhibits the differentiation of rust infection hyphae in leaves of acquired resistant broad bean. Plant J 19(6):625–633

    Article  CAS  PubMed  Google Scholar 

  • Raz V, Fluhr R (1993) Ethylene signal is transduced via protein phosphorylation events in plants. Plant Cell 5(5):523–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezzonico E et al (1998) Transcriptional down-regulation by abscisic acid of pathogenesis-related β-1, 3-glucanase genes in tobacco cell cultures. Plant Physiol 117(2):585–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert N et al (2001) Molecular characterization of the incompatible interaction of Vitis vinifera leaves with Pseudomonas syringae pv. pisi: expression of genes coding for stilbene synthase and class 10 PR protein. Eur J Plant Pathol 107(2):249–261

    Article  CAS  Google Scholar 

  • Rohe M et al (1995) The race-specific elicitor, NIP1, from the barley pathogen, Rhynchosporium secalis, determines avirulence on host plants of the Rrs1 resistance genotype. EMBO J 14(17):4168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rohini VK, Rao KS (2001) Transformation of peanut (Arachis hypogaea L.) with tobacco chitinase gene: variable response of transformants to leaf spot disease. Plant Sci 160(5):889–898

    Article  CAS  PubMed  Google Scholar 

  • Roulin S et al (1997) Expression of specific (1→ 3)-β-glucanase genes in leaves of near-isogenic resistant and susceptible barley lines infected with the leaf scald fungus (Rhynchosporium secalis). Physiol Mol Plant Pathol 50(4):245–261

    Article  CAS  Google Scholar 

  • Rushton PJ, Somssich IE (1998) Transcriptional control of plant genes responsive to pathogens. Curr Opin Plant Biol 1(4):311–315

    Article  CAS  PubMed  Google Scholar 

  • Rushton PJ et al (1996) Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J 15(20):5690

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryals JA et al (1996) Systemic acquired resistance. Plant Cell 8(10):1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlumbaum A et al (1986) Plant chitinases are potent inhibitors of fungal growth

    Google Scholar 

  • Scofield SR et al (1996) Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science 274(5295):2063

    Article  CAS  PubMed  Google Scholar 

  • Sela-Buurlage MB et al (1993) Only specific tobacco (Nicotiana tabacum) chitinases and β-1, 3-glucanases exhibit antifungal activity. Plant Physiol 101(3):857–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selitrennikoff CP (2001) Antifungal proteins. Appl Environ Microbiol 67(7):2883–2894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma V (2013) Pathogenesis related defence functions of plant Chitinases and β-1, 3-Glucanases. Vegetos-An Int J Plant Res 26(2s):205–218

    Article  Google Scholar 

  • Simmons CR (1994) The physiology and molecular biology of plant 1, 3-β-D-glucanases and 1, 3; 1, 4-β-D-glucanases. Crit Rev Plant Sci 13(4):325–387

    CAS  Google Scholar 

  • Sinha M et al (2014) Current overview of allergens of plant pathogenesis related protein families. Sci World J 2014:543195

    Google Scholar 

  • Suarez V et al (2001) Substrate specificity and antifungal activity of recombinant tobacco class I chitinases. Plant Mol Biol 45(5):609–618

    Article  CAS  PubMed  Google Scholar 

  • Tang X et al (1996) Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science 274:5295–2060

    Article  Google Scholar 

  • Thalmair M et al (1996) Ozone and ultraviolet B effects on the defense-related proteins ß-1, 3-glucanase and chitinase in tobacco. J Plant Physiol 148(1):222–228

    Article  CAS  Google Scholar 

  • Thomma BPHJ et al (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci 95(25):15107–15111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tonón C et al (2002) Isolation of a potato acidic 39 kDa β-1, 3-glucanase with antifungal activity against Phytophthora infestans and analysis of its expression in potato cultivars differing in their degrees of field resistance. J Phytopathol 150(4–5):189–195

    Article  Google Scholar 

  • Van Loon LC (1997) Induced resistance in plants and the role of pathogenesis-related proteins. Eur J Plant Pathol 103(9):753–765

    Article  Google Scholar 

  • Van Loon LC (1999) Occurrence and properties of plant pathogenesis-related proteins. In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plants, CRC press, Boca Raton, p 1–19

    Google Scholar 

  • Van Loon LC, van Kammen A (1970) Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. “Samsun” and “Samsun NN”. II. Changes in protein constitution after infection with tobacco mosaic virus. Virology 40(2):190–211

    PubMed  Google Scholar 

  • Van Loon LC, Van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55(2):85–97

    Article  Google Scholar 

  • Van Loon LC et al (1994) Recommendations for naming plant pathogenesis-related proteins. Plant Mol Biol Report 12(3):245–264

    Article  Google Scholar 

  • Van Loon LC et al (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36(1):453–483

    Article  PubMed  Google Scholar 

  • Vigers AJ et al (1992) Thaumatin-like pathogenesis-related proteins are antifungal. Plant Sci 83(2):155–161

    Article  CAS  Google Scholar 

  • Vleeshouwers VGAA et al (2000) Does basal PR gene expression in Solanum species contribute to non-specific resistance to Phytophthora infestans? Physiol Mol Plant Pathol 57(1):35–42

    Article  CAS  Google Scholar 

  • Vögeli-Lange R et al (1994) Developmental, hormonal, and pathogenesis-related regulation of the tobacco class I β-1, 3-glucanase B promoter. Plant Mol Biol 25(2):299–311

    Article  PubMed  Google Scholar 

  • Ward ER et al (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3(10):1085–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C-T, Bradford KJ (2003) Class I chitinase and β-1, 3-glucanase are differentially regulated by wounding, methyl jasmonate, ethylene, and gibberellin in tomato seeds and leaves. Plant Physiol 133(1):263–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wubben JP et al (1996) Differential induction of chitinase and 1, 3-β-glucanase gene expression in tomato by Cladosporium fulvum and its race-specific elicitors. Physiol Mol Plant Pathol 48(2):105–116

    Article  CAS  Google Scholar 

  • Wyatt SE et al (1991) β-1, 3-glucanase, chitinase, and peroxidase activities in tobacco tissues resistant and susceptible to blue mould as related to flowering, age and sucker development. Physiol Mol Plant Pathol 39(6):433–440

    Article  CAS  Google Scholar 

  • Xu YI et al (1994) Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6(8):1077–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yalpani N et al (1991) Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell 3(8):809–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto T et al (2000) Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep 19(7):639–646

    Article  CAS  Google Scholar 

  • Yang Y et al (1997) Signal perception and transduction in plant defense responses. Genes Dev 11(13):1621–1639

    Article  CAS  PubMed  Google Scholar 

  • Yeh S et al (2000) Chitinase genes responsive to cold encode antifreeze proteins in winter cereals. Plant Physiol 124(3):1251–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zemanek AB et al (2002) Changes in β-1, 3-glucanase mRNA levels in peach in response to treatment with pathogen culture filtrates, wounding, and other elicitors. J Plant Physiol 159(8):877–889

    Article  CAS  Google Scholar 

  • Zhou J et al (1997) The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J 16(11):3207–3218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Q et al (1994) Enhanced protection against fungal attack by constitutive Co-expression of Chitinase and glucanase genes in transgenic tobacco. Bio/Technology 12:807–812

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepti Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, D., Khurana, J.P. (2018). Role of Pathogenesis-Related (PR) Proteins in Plant Defense Mechanism. In: Singh, A., Singh, I. (eds) Molecular Aspects of Plant-Pathogen Interaction. Springer, Singapore. https://doi.org/10.1007/978-981-10-7371-7_12

Download citation

Publish with us

Policies and ethics