Skip to main content

Breeding for Aphid Resistance in Rapeseed Mustard

  • Chapter
  • First Online:
Breeding Insect Resistant Crops for Sustainable Agriculture

Abstract

The productivity of oilseed brassicas is severely affected by aphid pests. Among the different aphid species, turnip/mustard aphid, Lipaphis erysimi (Kaltenbach), is the key pest of oilseed brassicas in Indian subcontinent inflicting 35.4–91.3% losses under different agroclimatic conditions. The development of an aphid-resistant cultivar offers an effective, economic and eco-friendly method of its management which requires the availability of a crossable source of resistance. Brassica plants employ a plethora of biophysical and biochemical defence mechanisms against insects, which range from surface waxes and trichomes to production of toxic biochemicals such as glucosinolates, isothiocyanates, lectins, volatiles, alkaloids, etc. Such resistant plants can be identified by an effective screening protocol, and the gene(s) of interest can be transferred to the desirable agronomic background by conventional breeding or marker-assisted selection. Not much progress has been made in breeding for resistance in brassicas against aphids primarily due to non-availability of resistant source within the crossable germplasm as well as lack of knowledge on its trait genetics. Though some success has been achieved to introgress the gene of interest to a desirable agronomic background, it has complex and elaborate breeding requirements. An alternate strategy to conventional breeding is the use of insect-resistant transgenes through genetic engineering, but this strategy has its own associated issues. Thus, the development of aphid-resistant cultivars requires more research on aphid-plant interactions to identify either an effective aphid resistance gene or a phenomenon that can lead to a new mechanism of resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adamson JB, Soroka J, Holowachuk J (2008) Feeding and oviposition of diamondback moth (Plutella xylostella) on modified “Hairy” canola, Honours Undergraduate Dissertation, University of Saskatchewan, Saskatoon

    Google Scholar 

  • Agnihotri A, Gupta V, Lakshmikumaran MS, Shivanna KR, Prakash S, Jagannathan V (1990) Production of Eruca-Brassica hybrid by embryo rescue. Plant Breed 104:281–289

    Article  Google Scholar 

  • Agrawal AA (1999) Induced responses to herbivory in wild radish: effects on several herbivores and plant fitness. Ecology 80:1713–1723

    Article  Google Scholar 

  • Åhman I (1982) A comparison between high and low glucosinolate cultivars of summer oilseed rape (Brassica napus L.) with regard to their levels of infestation by the brassica pod midge (Dasineura brassicae Winn.). Z Angew Entomo l 94:103–109

    Google Scholar 

  • Åhman I (1990) Plant surface characteristics and movements of two Brassica-feeding aphids, Lipaphis erysimi and Brevicoryne Brassicae. In: Symposia Biologica Hungaria No. 39. Publishing house of Hungarian Academy of Sciences, Budapest, pp 119–125

    Google Scholar 

  • Ahuja I, Rohloff J, Bones AM (2009) Defence mechanisms of brassicaceae: implications for plant-insect interactions and potential for integrated pest management-A review. Agron Sustain Dev 30(2):311–348. doi:10.1051/agro/2009025

    Article  Google Scholar 

  • Amjad MD, Peters C (1992) Survival, development and reproduction of turnip aphids (Homoptera: Aphididae) on oilseeds Brassica. J Econ Entomol 85:2003–2007

    Article  Google Scholar 

  • Andreasson E, Jorgensen LB, Höglund AS, Rask L, Meijer J (2001) Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus. Plant Physiol 127:1750–1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badenes-Pérez FR, Reichelt M, Gershenzon J, Heckel DG (2010) Phylloplane location of glucosinolates in Barbarea spp., and misleading assessment of host suitability by a specialist herbivore. New Phytol 189(2):549–556. doi:10.1111/j.1469-8137.2010.03486.x

    Article  PubMed  CAS  Google Scholar 

  • Bailey JA, Mansfield JW (1982) Phytoalexins. Blackie and Son, Glasgow

    Google Scholar 

  • Bakhetia DRC, Bindra OS (1977) Screening techniques for aphid resistance in Brassica crops. SABRAO J 9:91–107

    Google Scholar 

  • Bakhetia DRC, Sandhu RS (1973) Differential response of Brassica species/varieties to the aphid, Lipaphis erysimi (Kalt.) infestation. J Res Punjab Agric Univ 10:272–279

    Google Scholar 

  • Bakhetia DRC, Sekhon BS (1989) Insect pests and their management in rapeseed-mustard. J Oilseeds Res 6:269–299

    Google Scholar 

  • Baldwin IT, Kessler A, Halitschke R (2002) Volatile signaling in plant-plant-herbivore interactions: what is real? Curr Opinion Plant Biol 5:351–354

    Article  CAS  Google Scholar 

  • Bandopadhyay L, Basu D, Sikdar SR (2013) Identification of genes involved in wild crucifer Rorippa indica resistance response on mustard aphid Lipaphis erysimi challenge. PLoS One 8(9), e73632. doi:10.1371/journal.pone.0073632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartlet E, Blight MM, Hick AJ, Williams IH (1993) The responses of the cabbage seed weevil (Ceutorhynchus assimilis) to the odour of oilseed rape (Brassica napus) and to some volatile isothiocyanates. Entomol Exp Appl 68:295–302

    Article  CAS  Google Scholar 

  • Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    Article  CAS  PubMed  Google Scholar 

  • Beale MH, Birkett MA, Bruce TJA, Chamberlain K, Field LM, Huttly AK, Martin JL, Parker R, Phillips AL, Pickett JA, Prosser IM, Shewry PR, Smart LE, Wadhams LJ, Woodcock CM, Zhang Y (2006) Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. P Natl Acad Sci USA 103:10509–10513

    Article  CAS  Google Scholar 

  • Bellostas N, Sorensen AD, Sorensen JC, Sorensen H, Sorensen MD, Gupta SK, Kader JC (2007) Genetic variation and metabolism of glucosinolates. Adv Bot Res 45:369–415

    Article  CAS  Google Scholar 

  • Berlinski K (1965) Studies on food intake and the effects of food plants on the beet aphid – Aphis fabae. Pol Pismo Entomol 34(1–2):163–168

    Google Scholar 

  • Bhadoria NS, Jakhmola SS, Dhamdhere SV (1995) Relative susceptibility of mustard cultivars to Lipaphis erysimi in North West Madhya Pradesh (India). J Entomol Res 19:143–146

    Google Scholar 

  • Bhatia V, Uniyal PL, Bhattacharya R (2011) Aphid resistance in Brassica crops: challenges, biotechnological progress and emerging possibilities. Biotech Adv 29:879–888

    Article  Google Scholar 

  • Birkett MA, Campbell CAM, Chamberlain K, Guerrieri E, Hick AJ, Martin JL, Matthes M, Napier JA, Pettersson J, Pickett JA, Poppy GM, Pow EM, Pye BJ, Smart LE, Wadhams GH, Wadhams LJ, Woodcock CM (2000) New roles for cis-jasmone as an insect semiochemical and in plant defense. P Natl Acad Sci USA 97:9329–9334

    Article  CAS  Google Scholar 

  • Bjorkman M, Klingen I, Birch ANE, Bones AM, Bruce TJA, Johansen TJ, Meadow R, Molmann J, Seljasen R, Smart LE, Stewart D (2011) Phytochemicals of Brassicaceae in plant protection and human health – influences of climate, environment and agronomic practice. Phytochemistry 72:538–556

    Article  PubMed  CAS  Google Scholar 

  • Blackman RL, Eastop VF (1984) Aphids on the World’s crops. Wiley, Chichester

    Google Scholar 

  • Blackman RL, Eastop VF (2000) Aphids on the World’s crops: an identification and information guide, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Blackman RL, Eastop VF (2007) Taxonomic issues. In: van Emden HF, Harrington R (eds) Aphids as crop pests. CABI, Wallingford, pp 1–29

    Google Scholar 

  • Blande J, Pickett J, Poppy G (2007) A comparison of semiochemically mediated interactions involving specialist and generalist Brassica feeding aphids and the braconid parasitoid Diaeretiella rapae. J Chem Ecol 33:767–779

    Article  CAS  PubMed  Google Scholar 

  • Bodnaryk RP (1992) Leaf epicuticular wax as an antixenotic factor in Brassicaceae that affects the rate and pattern of feeding of flea beetles Phyllotreta cruciferae (Goeze). Can J Plant Sci 72:1295–1303

    Article  Google Scholar 

  • Boman HG (1995) Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 13:61–92

    Article  CAS  PubMed  Google Scholar 

  • Bones AM, Rossiter JT (2006) The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry 67:1053–1067

    Article  CAS  PubMed  Google Scholar 

  • Bones AM, Thangstad OP, Haugen O, Espevik T (1991) Fate of myrosin cells - characterization of monoclonal antibodies against myrosinase. J Exp Bot 42:1541–1549

    Article  CAS  Google Scholar 

  • Borregaard N, Elsbach P, Ganz T, Garred P, Svejgaard A (2000) Innate immunity: from plants to humans. Immunol Today 21:68–70

    Article  CAS  PubMed  Google Scholar 

  • Bouchereau A, Clossais-Besnard N, Bensaoud A, Leport L, Renard M (1996) Water stress effects on rapeseed quality. Eur J Agron 5:19–30

    Article  Google Scholar 

  • Boulter D, Gatehouse AMR, Hilder V (1989) Use of cowpea trypsin inhibitor (CpTI) to protect plants against insect predation. Biotechnol Adv 7(4):489–497

    Article  CAS  PubMed  Google Scholar 

  • Brar KS, Sandhu GS (1978) Comparative resistance of different Brassica species/varieties to the mustard aphid, Lipaphis erysimi (Kalt.) under natural and artificial conditions. Indian J Agric Res 12:198–200

    Google Scholar 

  • Bridges M, Jones AME, Bones AM, Hodgson C, Cole R, Bartlet E, Wallsgrove R, Karapapa VK, Watts N, Rossiter JT (2002) Spatial organization of the glucosinolate-myrosinase system in Brassica specialist aphids is similar to that of the host plant. Proc Royal Soc London B 269:187–191

    Article  CAS  Google Scholar 

  • Broekgaarden C, Poelman EH, Steenhuis G, Voorrips RE, Dicke M, Vosman B (2008) Responses of Brassica oleracea cultivars to infestation by the aphid Brevicoryne brassicae: an ecological and molecular approach. Plant Cell Environ 31:1592–1605

    Article  CAS  PubMed  Google Scholar 

  • Buxdorf K, Yaffe H, Barda O, Levy M (2013) The effects of glucosinolates and their breakdown products on necrotrophic fungi. PLoS One. doi:10.1371/journal.pone.0070771

  • Bwye AM, Proudlove W, Berlandier FA, Jones RAC (1997) Effects of applying insecticides to control aphid vectors and cucumber mosaic virus in narrow leafed lupins (Lupinus angustifolius). Aust J Exp Agric 37:93–102

    Article  CAS  Google Scholar 

  • Carrillo L, Martinez M, Álvarez-Alfageme F, Castanera P, Smagghe G, Diaz I, Ortego F (2011) A barley cysteine-proteinase inhibitor reduces the performance of two aphid species in artificial diets and transgenic Arabidopsis plants. Transgenic Res 20:305–319

    Article  CAS  PubMed  Google Scholar 

  • Chen DQ, Purcell AH (1997) Occurrence and transmission of facultative endosymbionts in aphids. Curr Microbiol 34:220–225

    Article  CAS  PubMed  Google Scholar 

  • Chen DQ, Campbell BC, Purcell AH (1996) A new Rickettsia from a herbivorous insect, the pea aphid Acyrthosiphon pisum (Harris). Curr Microbiol 33:123–128

    Article  CAS  PubMed  Google Scholar 

  • Cherqui A, Tjallingii WF (2000) Salivary proteins of aphids, a pilot study on identification, separation and immunolocalisation. J Insect Physiol 46:1177–1186

    Article  CAS  PubMed  Google Scholar 

  • Clossais-Besnard N, Larher F (1991) Physiological role of glucosinolates in Brassica napus. Concentration and distribution pattern of glucosinolates among plant organs during a complete life cycle. J Sci Food Agr 56:25–38

    Article  CAS  Google Scholar 

  • Cole RA (1994a) Locating a resistance mechanism to the cabbage aphid in two wild Brassicas. Entomol Exp Appl 71:23–31

    Article  Google Scholar 

  • Cole RA (1994b) Isolation of a chitin binding lectin, with insecticidal activity in chemically defined synthetic diets, from two wild brassica species with resistance to cabbage aphid, Brevicoryne brassicae. Entomol Exp Appl 72:181–187

    Google Scholar 

  • Cole RA (1997) Comparison of feeding behaviour of two Brassica pests Brevicoryne brassicae and Myzus persicae on wild and cultivated Brassica species. Entomol Exp Appl 85:135–143

    Article  Google Scholar 

  • Dannenhoffer JM, Suhr RC, Thompson GA (2001) Phloem-specific expression of the pumpkin fruit trypsin inhibitor. Planta 212:155–162

    Article  CAS  PubMed  Google Scholar 

  • Darby AC, Birkle LM, Turner SL, Douglas AE (2001) An aphid-borne bacterium allied to the secondary symbionts of whitefly. FEMS Microbiol Ecol 36:43–50

    Article  CAS  PubMed  Google Scholar 

  • Dedryver CA, Le Ralec A, Fabre F (2010) The conflicting relationships between aphids and men: a review of aphid damages and of their control strategies. C R Biol 333:539–553

    Article  PubMed  Google Scholar 

  • Dicke M (1999) Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods. Entomol Exp Appl 91:131–142

    Article  CAS  Google Scholar 

  • Dixon AFG (2005) Insect herbivore-host dynamics: tree dwelling aphids. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Duffey SS (1986) Plant glandular trichomes: their partial role in defence against insects. In: Juniper B, Southwood SR (eds) Insects and the plant surface. Arnold, London, pp 151–172

    Google Scholar 

  • Duffey SS, Stout MJ (1996) Antinutritive and toxic components of plant defense against insects. Arch Insect Biochem Physiol 32:3–37

    Article  CAS  Google Scholar 

  • Dutta S (2007) Development and characterization of aphid tolerant Brassica juncea chromosome addition lines from Roripobrassica somatic hybrid (Roripa indica + Brassica juncea) through plant breeding approach. Ph.D. Dissertation, Jadhavpur University, Kolkata

    Google Scholar 

  • Eigenbrode SD, Espelie KE, Shelton AM (1991) Behaviour of neonate diamondback moth larvae [Plutella xylostella (L.)] on leaves and on extracted leaf waxes of resistant and susceptible cabbages. J Chem Ecol 7:169l–l704

    Google Scholar 

  • Ellis PR, Farrell JA (1995) Resistance to cabbage aphid (Brevicoryne brassicae) in six Brassica accessions in New Zealand. NZ J Crop Hort Sci 23:25–29

    Article  Google Scholar 

  • Ellis PR, Cole RA, Crisp P, Hardman JA (1980) The relationship between cabbage root fly egg laying and volatile hydrolysis products of radish. Ann Appl Biol 95:283–289

    Article  CAS  Google Scholar 

  • Ellis PR, Kiff NB, Pink DAC, Jukes PL, Lynn J, Tatchell GM (2000) Variation in resistance to the cabbage aphid (Brevicoryne brassicae) between and within wild and cultivated Brassica species. Genet Resour Crop Evol 47:395–401

    Article  Google Scholar 

  • Eskanderi F, Sylvester ES, Richardson J (1979) Evidence for lack of propagation of potato leaf roll virus in Myzus persicae. Phytopathology 68:45–47

    Article  Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51

    Article  CAS  PubMed  Google Scholar 

  • Falk KL, Gershenson J (2007) The desert locust, Schistocerca gregaria, detoxifies the glucosinolates of Schowia purpurea by desulfation. J Chem Ecol 33:1542–1555

    Article  CAS  PubMed  Google Scholar 

  • Felton GW, Eichenseer H (1999) Herbivore saliva and its effects on plant defense against herbivores and pathogens. In: Agrawal AA, Tuzun S, Bent E (eds) Induced plant defenses against pathogens. APS Press, St. Paul, pp 19–36

    Google Scholar 

  • Fenwick R, Heaney RK, Mullin WJ (1983) Glucosinolates and their breakdown products in food and food plants. CRC Crit Rev Food Sci Nutr 18:123–201

    Article  CAS  Google Scholar 

  • Foissac X, Nguyen TL, Christou P, Gatehouse AMR, Gatehouse JA (2000) Resistance to green leaf hopper (Nephotettix virescens) and brown plant hopper (Nilaparvata lugens) in transgenic rice expressing snowdrop lectin (Galanthus nivalis agglutinin; GNA). J Insect Physiol 46:573–583

    Article  CAS  PubMed  Google Scholar 

  • Font R, Del Rio-Celestion M, Rosa E, Aires A, De Hardo-Bailon A (2005) Glucosinolate assessment in Brassica oleracea leaves by near-infrared spectroscopy. J Agric Sci 143:65–73

    Article  CAS  Google Scholar 

  • Fukatsu T, Nikoh N, Kawai R, Koga R (2000) The secondary endosymbiotic bacterium of the pea aphid Acyrthosiphon pisum (Insecta: Homoptera). Appl Environ Microbiol 66:2748–2758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukatsu T, Tsuchida T, Nikoh N, Koga R (2001) Spiroplasma symbiont of the pea aphid Acyrthosiphon pisum (Insecta: Homoptera). Appl Environ Microbiol 67:1284–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabrys B, Tjallingii WF (2002) The role of sinigrin in host plant recognition by aphids during initial plant penetration. Entomol Exp Appl 104:89–93

    Article  CAS  Google Scholar 

  • Gao LL, Anderson JP, Klingler JP, Nair RM, Edwards OR, Singh KB (2007) Involvement of the octadecanoid pathway in bluegreen aphid resistance in Medicago truncatula. Mol Plant-Microbe Interact 20:82–93

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, PoinssotB WD, Pugin A (2006) Early signaling events induced by elicitors of plant defenses. Mol Plant-Microbe Interact 19:711–724

    Article  CAS  PubMed  Google Scholar 

  • Giamoustaris A, Mithen R (1995) The effect of modifying the glucosinolate content of leaves of oilseed rape (Brassica napus ssp. oleifera) on its interaction with specialist and generalist pests. Ann Appl Biol 126:347–363

    Article  CAS  Google Scholar 

  • Gibson RW (1972) The distribution of aphids on potato leaves in relation to vein size. Entomol Exp Appl 15:213–223

    Article  Google Scholar 

  • Gill RS, Bakhetia DRC (1985) Resistance of some Brassica napus and B. campestris strains to Lipaphis erysimi (Kalt.). J Oilseeds Res 2:227–239

    Google Scholar 

  • Giordanengo P, Brunissen L, Rusterucci C, Vincent C, van Bel A, Dinant S, Girousse C, Faucher M, Bonnemain JL (2010) Compatible plant-aphid interactions: how aphids manipulate plant responses. C R Biol 333:516–523

    Article  PubMed  Google Scholar 

  • Goggin FL (2007) Plant-aphid interactions: molecular and ecological perspectives. Curr Opinion Plant Biol 10:399–408

    Article  CAS  Google Scholar 

  • Gruber MY, Wang S, Ethier S, Holowachuk J, Bonham-Smith PC, Soroka JJ, Lloyd A (2006) “HAIRY CANOLA”—Arabidopsis GL3 induces a dense covering of trichomes on Brassica napus seedlings. Plant Mol Biol 60:679–698

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Sangha MK, Kaur G, Banga S, Gupta M, Kumar H, Banga SS (2015) QTL analysis for phytonutrient compounds and the oxidant molecule in mustard (Brassica juncea L.). Euphytica 201:345–356. doi:10.1007/s10681-014-1204-3

    Article  CAS  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  CAS  PubMed  Google Scholar 

  • Hart CA, Batt RM, Saunders JR, Getty B (1988) Lectin-induced damage to the enterocyte brush border: an electron-microscopic study in rabbits. Scand J Gastroenterol 23:1153–1159

    Article  CAS  PubMed  Google Scholar 

  • Haukioja E (1999) Ecology: bite the mother, fight the daughter. Nature 40:22–23

    Article  CAS  Google Scholar 

  • Haynes S, Darby AC, Daniell TJ, Webster G, van Veen FJF, Godfray HCJ, Prosser JI, Douglas AE (2003) Diversity of bacteria associated with natural aphid populations. Appl Environ Microbiol 69:7216–7223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegedus DD, Erlandson M (2012) Genetics and genomics of insect resistance in brassicaceae crops. In: Edwards D, Batley J, Parkin I, Kole C (eds) Genetics, genomics and breeding of oilseed brassicas. CRC Press, Taylor and Francis, New York, pp 319–372

    Google Scholar 

  • Henning E (1966) Zür histologie und funktion von einstichen der schwarzen bohnenlaus (Aphis fabae Scop.) in Vicia faba pflanzen. J Insect Physiol 12:67–76

    Google Scholar 

  • Hines RL, Hutchison WD (2013) Cabbage aphids. VegEdge, vegetable IPM resource for the midwest. University of Minnesota, Minneapolis, MN. http://www.vegedge.umn.edu/vegpest/colecrop/aphid.htm

  • Höglund AS, Lenman M, Rask L (1992) Myrosinase is localized to the interior of myrosin grains and is not associated to the surrounding tonoplast membrane. Plant Sci 85:165–170

    Article  Google Scholar 

  • Hopkins RJ, van Dam NM, van Loon JJA (2009) Role of glucosinolates in insect plant relationships and multitrophic interactions. Annu Rev Entomol 54:57–83

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Maiti MK, Basu A, Sen S, Ghosh AK, Sen SK (2006) Transgenic expression of onion leaf lectin in Indian mustard offers protection against aphid colonization. Crop Sci 46:2022–2032

    Article  CAS  Google Scholar 

  • Imlau A, Truernit E, Sauer N (1999) Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein in sink tissues. Plant Cell 11:309–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarvis JL (1970) Relative injury to some cruciferous oilseeds by the turnip aphid. J Econ Entomol 63:1498–1502

    Article  Google Scholar 

  • Jensen CR, Mogensen VO, Mortensen G, Fieldsend JK, Milford GFJ, Andersen MN, Thage JH (1996) Seed glucosinolate, oil and protein contents of field-grown rape (Brassica napus L.) affected by soil drying and evaporative demand. Field Crop Res 47:93–105

    Article  Google Scholar 

  • Jenson EB, Felkl G, Kristiansen K, Andersen SB (2002) Resistance to the cabbage root fly, Delia radicum within rassica fruticulosa. Euphytica 124:379–386

    Article  Google Scholar 

  • Jones P, Vogt T (2001) Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta 213:164–174

    Article  CAS  PubMed  Google Scholar 

  • Jones TH, Cole RA, Finch S (1988) A cabbage root fly oviposition deterrent in the frass of garden pebble moth caterpillars. Entomol Exp Appl 49:277–282

    Article  CAS  Google Scholar 

  • Kalra VK, Singh H, Rohilla HR (1987) Influence of various genotypes of Brassica juncea on biology of mustard aphid, Lipaphis erysimi (Kalt.). Indian J Agric Sci 57:277–279

    Google Scholar 

  • Kanrar S, Venkateswari J, Kirti PB, Chopra VL (2002) Transgenic India mustard (Brassica juncea) with resistance to the mustard aphid (Lipaphis erysimi Kaltenbach). Plant Cell Rep 20:976–981

    Article  CAS  Google Scholar 

  • Kawada K, Murai T (1979) Apterous males and holocyclic reproduction of Lipaphis erysimi in Japan. Entomol Exp Appl 26:343–345

    Article  Google Scholar 

  • Kehr J (2006) Phloem sap proteins: their identities and potential roles in the interaction between plants and phloem-feeding insects. J Exp Biol 57:767–774

    CAS  Google Scholar 

  • Kelly PJ, Bones A, Rossiter JT (1998) Sub-cellular immunolocalisation of the glucosinolate sinigrin in seedlings of Brassica juncea. Planta 206:370–377

    Article  CAS  PubMed  Google Scholar 

  • Kift NB, Ellis PR, Tatchell GM, Pink DAC (2000) The influence of genetic background on resistance to the cabbage aphid (Brevicoryne brassicae) in kale (Brassica oleracea var. acephala). Ann Appl Biol 136:189–195

    Article  Google Scholar 

  • Kissen R, Rossiter JT, Bones AM (2009) The “mustard oil bomb”: not so easy to assemble?! Localization, expression and distribution of the components of the myrosinase enzyme system. Phytochem Rev 8:69–86

    Article  CAS  Google Scholar 

  • Kloth KJ, ten Broeke CJM, Thoen MPM, van den Brink MH, Wiegers GL, Krips OE, Noldus LPJJ, Dicke M, Jongsma MA (2015) High-throughput phenotyping of plant resistance to aphids by automated video tracking. Plant Methods 11:4. doi:10.1186/s13007-015-0044-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komath SS, Kavitha M, Swamy MJ (2006) Beyond carbohydrate binding: new directions in plant lectin research. Org Biomol Chem 4:973–988

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Atri C, Sangha MK, Banga SS (2011) Screening of wild crucifers for resistance to mustard aphid, Lipaphis erysimi (Kaltenbach) and attempt at introgression of resistance gene(s) from Brassica fruticulosa to Brassica juncea. Euphytica 179:461–470. doi:10.1007/s10681-011-0351-z

    Article  Google Scholar 

  • Kusnierczyk A, Winge P, Jørstad T, Troczyńska J, Rossiter JT, Bones AM (2008) Towards global understanding of plant defence against aphids—timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack. Plant Cell Environ 31:1097–1115

    Article  CAS  PubMed  Google Scholar 

  • Labana KS (1976) Release of mutant variety of raya (Brassica juncea). Mutat Breed Newsl 7:11

    Google Scholar 

  • Lamb RJ (1980) Hairs protect pods of mustard (Brassica hirta ‘Gisilba’) from flea beetle feeding damage. J Plant Sci 60:1439–1440

    Google Scholar 

  • Lamb RJ, Smith MAH, Bodnaryk RP (1993) Leaf waxiness and the performance of Lipaphis erysimi (Kaltenbach) (Homoptera: Aphididae) on three Brassica crops. Can Entomol 125:1023–1031

    Article  Google Scholar 

  • Lammerink J (1968) Rangi: new rape that resists aphids. N Z J Agric 117:61

    Google Scholar 

  • LeCoz C, Ducombs G (2006) Plants and plant products. In: Frosch PJ, Menne T, Lepottevin JP (eds) Contact dermatitis, 4th edn. Springer, Berlin/Heidelberg, pp 751–800

    Chapter  Google Scholar 

  • Loe G, Torang P, Gaudeul M, Agren J (2007) Trichome production and spatiotemporal variation in herbivory in the perennial herb Arabidopsis lyrata. Oikos 116:134–142

    Article  Google Scholar 

  • Louda S, Mole S (1991) Glucosinolates, chemistry and ecology. In: Rosenthal GA, Berenbaum MR (eds) Herbivores. Their interactions with secondary plant metabolites, vol 1, 2nd edn. Academic Press, San Diego, pp 123–164

    Chapter  Google Scholar 

  • Lüthy B, Matile P (1984) The mustard oil bomb: rectified analysis of the subcellular organization of the myrosinase system. Biochem Physiol Pflanzen 179:5–12

    Article  Google Scholar 

  • Macedo MLR, de Castro MM, Freire MDGM (2004) Mechanisms of the insecticidal action of TEL (Talisia esculenta Lectin) against Callosobruchus maculatus (Coleoptera: Bruchidae). Arch Insect Biochem Physiol 56:84–96

    Article  CAS  PubMed  Google Scholar 

  • Maffei ME, Mithofer A, Boland W (2007) Before gene expression: early events in plant-insect interaction. Trends Plant Sci 12:310–316

    Article  CAS  PubMed  Google Scholar 

  • Malik RS (1981) Morphological, anatomical and biochemical basis of aphid, Lipaphis erysimi (Kalt.) resistance in cruciferous species. Sver Utsaedesfoeren Tidskr 91:25–35

    Google Scholar 

  • Mandal P (2003) Development and characterization of somatic hybrids between Rorippa indica and Brassica juncea. Dissertation, Jadhavpur University, Kolkata

    Google Scholar 

  • Meisner J, Mitchell BK (1984) Phagodeterrency induced by some secondary plant substances in adults of the flea beetle Phyllotreta striolata. J Plant Dis Prot 91:301–304

    Google Scholar 

  • Mewis IZ, Ulrich C, Schnitzler WH (2002) The role of glucosinolates and their hydrolysis products in oviposition and host plant finding by cabbage webworm, Hellula undalis. Entomol Exp Appl 105:129–139

    Article  CAS  Google Scholar 

  • Michiels K, van Damme EJM, Smagghe G (2010) Plant-insect interactions: what can we learn from plant lectins? Arch Insect Biochem Physiol 73:193–212

    Article  CAS  PubMed  Google Scholar 

  • Miles PW (1999) Aphid saliva. Biol Rev 74:41–85

    Article  Google Scholar 

  • Milford GFJ, Fieldsend JK, Porter AJR, Rawlinson CJ, Evans EJ, Bilsborrow PE (1989) Changes in glucosinolate concentrations during the vegetative growth of single- and double-low cultivars of winter oilseed rape. Asp Appl Biol 23:83–90

    Google Scholar 

  • Mitchell-Olds T (2001) Arabidopsis thaliana and its wild relatives: a model system for ecology and evolution. Trends Ecol Evol 16:693–700

    Article  Google Scholar 

  • Moran NA (1992) The evolution of aphid life cycles. Annu Rev Entomol 37:321–348

    Article  Google Scholar 

  • Moran NA, Russell JA, Koga R, Fukatsu T (2005) Evolutionary relationships of three new species of Enterobacteriaceae living as symbionts of aphids and other insects. Appl Environ Microbiol 71:3302–3310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muir AD, Gruber MY, Hinks CF, Lees GL, Onyilagha J, Soroka J, Erlandson M (1999) Effect of condensed tannins in the diets of major crop insects. In: Gross G, Hemingway RW, Yoshida T (eds) Plant Polyphenols 2: Chemstry, biology, pharmacology Ecology. Kluwer Academic/Plenum Publ, NY, pp 867–881

    Chapter  Google Scholar 

  • Munson MA, Baumann P, Kinsey MG (1991) Buchnera gen. nov. and Buchnera aphidicola sp. nov., a taxon consisting of the mycetocyteassociated, primary endosymbionts of aphids. Int J Syst Bacteriol 41:566–568

    Article  Google Scholar 

  • Muratori F, Le Ralec A, Lognay G, Hance T (2006) Epicuticular factors involved in host recognition for the aphid parasitoid Aphidius rhopalosiphi. J Chem Ecol 32:579–593

    Article  CAS  PubMed  Google Scholar 

  • Murdock LL, Huesing JE, Nielsen SS, Pratt RC, Shade RE (1990) Biological effects of plant lectins on the cowpea weevil. Phytochemistry 29:85–89

    Article  CAS  Google Scholar 

  • Mutti NS, Park Y, Reese JC, Reek GR (2006) RNAi knockdown of a salivary transcript leading to lethality in the pea aphid Acyrthosiphon pisum. J Insect Sci 6:38

    Article  PubMed Central  Google Scholar 

  • Mutti NS, Louis J, Pappan LK, Pappan K, Begum K, Chen MS, Park Y, Dittmer N, Marshall J, Reese JC, Reeck GR (2008) A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant. Proc Natl Acad Sci U S A 105:9965–9969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nachbar MS, Oppenheim JD (1980) Lectins in the United States diet: a survey of lectins in commonly consumed foods and a review of the literature. American J Clinical Nutr 33:2338–2345

    CAS  Google Scholar 

  • Nguz K, van Gaver D, Huyghebaert A (1998) In vitro inhibition of digestive enzymes by sorghum condensed tannins [Sorghum bicolour L. (Moench)]. Sci Aliment 18:507–514

    CAS  Google Scholar 

  • Nielsen JK (1978) Host plant discrimination within Cruciferae: feeding responses of four leaf beetles (Coleoptera: Chrysomelidae) to glucosinolates, cucurbitacins and cardenolides. Entomol Exp Appl 24:41–54

    Article  CAS  Google Scholar 

  • Nielsen JK, Larsen LM, Sørensen H (1979) Host plant selection of the horseradish flea beetle Phyllotreta armoraciae (Coleoptera: Chrysomelidae): identification of two flavonol glycosides stimulating feeding in combination with glucosinolates. Entomol Exp Appl 26:40–48

    Article  CAS  Google Scholar 

  • Nottingham SF, Hardie J, Dawson GW, Hick AJ, Pickett JA, Wadhams LJ, Woodcock CM (1991) Behavioral and electrophysiological responses of aphids to host and nonhost plant volatiles. J Chem Ecol 17:1231–1242

    Article  CAS  PubMed  Google Scholar 

  • Oliver KM, Degnan PH, Burke GR, Moran NA (2010) Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol 55:247–266

    Article  CAS  PubMed  Google Scholar 

  • Onyilagha JC, Lazorko J, Gruber MY, Soroka JJ, Erlandson MA (2004) Effect of flavonoids on feeding preference and development of the crucifer pest Mamestra configurata Walker. J Chem Ecol 30:109–124

    Article  CAS  PubMed  Google Scholar 

  • Pedras MSC, Yaya EE (2010) Phytoalexins from Brassicaceae: news from the front. Phytochemistry 71:1191–1197

    Article  CAS  PubMed  Google Scholar 

  • Pitino M, Coleman AD, Maffei ME, Ridout CJ, Hogenhout SA (2011) Silencing of aphid genes by dsRNA feeding from plants. PLoS One 6(10):e25709. doi:10.1371/journal.pone.0025709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponsen MB (1972) The site of potato leafroll virus multiplication in its vector, Myzus persicae-An anatomical study. Mededlingen Landbouwhogeschool Wageningen 72(16):1–147

    Google Scholar 

  • Pope TW, Kissen R, Grant M, Pickett JA, Rossiter JT, Powell G (2008) Comparative innate responses of the aphid parasitoid Diaeretiella rapae to alkenyl glucosinolate derived isothiocyanates, nitriles and epithionitriles. J Chem Ecol 34:1302–1310

    Article  CAS  PubMed  Google Scholar 

  • Porter AJR, Morton AM, Kiddle G, Doughty KJ, Wallsgrove RM (1991) Variation in the glucosinolate content of oilseed rape (Brassica napus L.). I. Effects of leaf age and position. Ann Appl Biol 118:461–467

    Article  CAS  Google Scholar 

  • Powell KS (2001) Antimetabolic effects of plant lectins towards nymphal stages of the plant hoppers Tarophagous proserpina and Nilaparvata lugens. Entomol Exp Appl 99:71–77

    Article  CAS  Google Scholar 

  • Powell KS, Gatehouse AMR, Hilder VA, Gatehouse JA (1993) Antimetabolic effects of plant lectins and plant and fungal enzymes on the nymphal stages of two important rice pests, Nilaparvata lugens and Nephotettix cinciteps. Entomol Exp Appl 66:119–126

    Article  CAS  Google Scholar 

  • Prakash S, Raut RN (1983) Artificial synthesis of Brassica napus and its prospects as an oilseeds crop in India. J Genet 43:282–290

    Google Scholar 

  • Quaglia F, Rossi E, Petacchi R, Taylor CE (1993) Observations on an infestation by green peach aphids (Homoptera: Aphididae) on greenhouse tomatoes in Italy. J Econ Entomol 86:1019–1025

    Article  Google Scholar 

  • Rahbé Y, Deraison C, Bonadé-Bottino M, Girard C, Nardon C, Jouanin L (2003) Effects of the cysteine protease inhibitor oryzacystatin (OC-I) of different aphids and reduced performance of Myzus persicae on OC-I expressing transgenic oilseed rape. Plant Sci 164:441–450

    Article  CAS  Google Scholar 

  • Rajan SS (1961) Aphid resistance of autotetraploid toria. Indian Oilseeds J 8:251–255

    Google Scholar 

  • Rana J (2005) Performance of Lipaphis erysimi (Homoptera: Aphididae) on different Brassica species in a tropical environment. J Pest Sci 78:155–160

    Article  Google Scholar 

  • Rask L, Andreasson E, Ekbom B, Eriksson S, Pontoppidan B, Meijer J (2000) Myrosinase: gene family evolution and herbivore defence in Brassicaceae. Plant Mol Biol 42:93–113

    Article  CAS  PubMed  Google Scholar 

  • Ratzka A, Vogel H, Kliebenstein DJ, Mitchell-Olds T, Kroymann J (2002) Disarming the mustard oil bomb. P Natl Acad Sci USA 99:11223–11228

    Article  CAS  Google Scholar 

  • Raymer PL (2002) Canola: an emerging oilseed crop. In: Janwick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, VA, pp 122–126

    Google Scholar 

  • Reifenrath K, Riederer M, Müller C (2005) Leaf surface wax layers of Brassicaceae lack feeding stimulants for Phaedon cochleariae. Entomol Exp Appl 115:41–50

    Article  CAS  Google Scholar 

  • Remaudière G, Remaudière M (1997) Catalogue des Aphididae du Monde. INRA, Paris

    Google Scholar 

  • Renwick JAA (2002) The chemical world of crucivores: lures, treats and traps. Entomol Exp Appl 104:35–42

    Article  CAS  Google Scholar 

  • Renwick JAA, Radke CD, Sachdev-Gupta K, Städler E (1992) Leaf surface chemicals stimulating oviposition by Pieris rapae (Lepidoptera: Pieridae) on cabbage. Chemoecology 3:33–38

    Article  CAS  Google Scholar 

  • Renwick JAA, Haribal M, Gouinguenѐ S, Städler E (2006) Isothiocyanates stimulating oviposition by the diamondback moth, Plutella xylostella. J Chem Ecol 32:755–766

    Article  CAS  PubMed  Google Scholar 

  • Rossiter JT, Jones AM, Bones AM (2003) A novel myrosinase-glucosinolate defense system in cruciferous specialist aphids. Recent Adv Phytochem 37:127–142

    Article  CAS  Google Scholar 

  • Russell JA, Latorre A, Sabater-Munoz B, Moya A, Moran NA (2003) Independent origins and horizontal transfer of bacterial symbionts of aphids. Mol Ecol 12:1061–1075

    Article  CAS  PubMed  Google Scholar 

  • Sadasivam S, Thayumanavan B (2003) Molecular host plant resistance to pests. Marcel Dekker Inc., New York

    Google Scholar 

  • Sadeghi H (2002) The relationship between oviposition preference and larval performance in an aphidophagous hover fly, Syrphus ribesii L. (Diptera: Syrphidae). J Agric Sci Technol 4:1–10

    Google Scholar 

  • Sandstrom JP, Russell JA, White JP, Moran NA (2001) Independent origins and horizontal transfer of bacterial symbionts of aphids. Mol Ecol 10:217–228

    Article  CAS  PubMed  Google Scholar 

  • Sarkar P, Jana J, Chatterjee S, Sikdar SR (2016) Functional characterization of Rorippa indica defensin and its efficacy against Lipaphis erysimi. Springer Plus 5:511. doi:10.1186/s40064-016-2144-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sauvion N, Charles H, Febvay G, Rahbé Y (2004a) Effects of jackbean lectin (ConA) on the feeding behaviour and kinetics of intoxication of the pea aphid, Acyrthosiphon pisum. Entomol Exp Appl 110:31–44

    Google Scholar 

  • Sauvion N, Nardon C, Febvay G, Gatehouse AMR, Rahbé Y (2004b) Binding of the insecticidal lectin Concanavalin A in pea aphid, Acyrthosiphon pisum (Harris) and induced effects on the structure of midgut epithelial cells. J Insect Physiol 50:1137–1150

    Google Scholar 

  • Saxena AK, Bhadoria SS, Gadewadikar PN, Barteria AM, Tomar SS, Dixit SC (1995) Yield losses in some improved varieties of mustard by aphid, Lipaphis erysimi (Kalt.). Agric Sci Dig 15:235–237

    Google Scholar 

  • Schnee C, Kollner TG, Held M, Turlings TCJ, Gershenzon J, Degenhardt J (2006) The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc Natl Acad Sci 103(4):1129–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoonhoven LM, Dicke M, van Loon JJA (2007) Insect–plant biology. Oxford University Press, Oxford

    Google Scholar 

  • Sekhon BS, Åhman I (1992) Insect resistance with special reference to mustard aphid. In: Lubana KS, Banga SS, Banga SK (eds) Monographs on theoretical and applied genetics: breeding oilseed brassicas. Springer, New York, pp 206–221

    Google Scholar 

  • Shakesby AJ, Wallace LS, Isaacs HV, Pritchard J, Roberts DM, Douglas AE (2009) A water-specific aquaporin involved in aphid osmoregulation. Insect Biochem Mol Biol 39:1–10

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Khan AN, Subrahmanyam S, Raman A, Taylor GS, Fletcher MJ (2014) Salivary proteins of plant feeding hemipteroids – implications in phytophagy. Bull Entomol Res 104:117–136. doi:10.1017/S0007485313000618

    Article  CAS  PubMed  Google Scholar 

  • Singh CP, Sachan GC (1994) Assessment of yield losses in yellow sarson due to mustard aphid, Lipaphis erysimi (Kalt.). J Oilseeds Res 11:179–184

    Google Scholar 

  • Singh SR, Narain A, Srivastava KP, Siddiqui RA (1965) Fecundity of mustard aphid on different rape and mustard species. Indian Oilseeds J 9:215–219

    Google Scholar 

  • Smallegange R, van Loon J, Blatt S, Harvey J, Agerbirk N, Dicke M (2007) Flower vs. leaf feeding by Pieris brassicae: glucosinolate rich flower tissues are preferred and sustain higher growth rate. J Chem Ecol 33:1831–1844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CM (1989) Plant resistance to insects- a fundamental approach. Wiley, New York, p 286

    Google Scholar 

  • Smith CM, Chuang WP (2014) Plant resistance to aphid feeding: behavioral, physiological, genetic and molecular cues regulate aphid host selection and feeding. Pest Manag Sci 70:528–540

    Article  PubMed  CAS  Google Scholar 

  • Sotelo T, Soengas P, Velasco P, Rodriguez VM, Cartea ME (2014) Identification of metabolic QTLs and candidate genes for glucosinolate synthesis in Brassica oleracea leaves, seeds and flower buds. PLoS One. doi:10.1371/journal.pone.0091428

    Google Scholar 

  • Southwood SR (1986) Plant surfaces and insects-an overview. In: Juniper B, Southwood SR (eds) Insects and the plant surface. Arnold, London, pp 1–22

    Google Scholar 

  • Srinivasachar D, Malik RS (1972) An induced aphid resistant, non-waxy mutant in turnip, Brassica rapa. Curr Sci 41:820–821

    Google Scholar 

  • Srinivasachar D, Verma PK (1971) Induced aphid resistance in Brassica juncea (L.) Coss. Curr Sci 49:311–313

    Google Scholar 

  • Städler E, Reifenrath K (2009) Glucosinolates on the leaf surface perceived by insect herbivores: review of ambiguous results and new investigations. Phytochem Rev 8:207–225

    Article  CAS  Google Scholar 

  • Stern DL (1995) Aphidomorpha. Aphids, green flies, plant lice, adelgids, phylloxerids. In: the tree of life web project, http://tolweb.org/Aphidomorpha/10985/1995.01.01

  • Stork NE (1980) Role of waxblooms in preventing attachment to brassicas by the mustard beetle, Phaedon cochleariae. Entomol Exp Appl 28:100–107

    Article  Google Scholar 

  • Thangstad OP, Evjen K, Bones A (1991) Immunogold-EM localization of myrosinase in Brassicaceae. Protoplasma 161:85–93

    Article  CAS  Google Scholar 

  • Thomma BPHJ, Penninckx IAMA, Cammue BPA, Broekaert WF (2001) The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13:63–68

    Article  CAS  PubMed  Google Scholar 

  • Thomma B, Cammue B, Thevissen K (2002) Plant defensins. Planta 216:193–202

    Article  CAS  PubMed  Google Scholar 

  • Thompson GA, Goggin FL (2006) Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. J Exp Bot 57:755–766

    Article  CAS  PubMed  Google Scholar 

  • Tjallingii WF (1988) Electrical recording of stylet penetration activities. In: Minks AK, Harrewijn P (eds) Aphids, their biology, natural enemies and control, vol 2B. Elsevier, Amsterdam, pp 95–108

    Google Scholar 

  • Traw BM (2002) Is induction response negatively correlated with constitutive resistance in black mustard? Evolution 56:2116–2205

    Article  Google Scholar 

  • Traw MB, Dawson TE (2002) Reduced performance of two specialist herbivores (Lepidoptera: Pieridae, Coleoptera: Chrysomelidae) on new leaves of damaged black mustard plants. Environ Entomol 31:714–722

    Article  Google Scholar 

  • Trebicki P, Tjallingii WF, Harding RM, Rodoni BC, Powell KS (2012) EPG monitoring of the probing behaviour of the common brown leafhopper Orosius orientalis on artificial diet and selected host plants. Arthropod Plant Interact 6:405–415

    Article  Google Scholar 

  • Tripathi MK, Mishra AS (2007) Glucosinolates in animal nutrition: a review. Animal Feed Sci Technol 132:1–27

    Article  CAS  Google Scholar 

  • Tumlinson JH, Pare P, Lewis WJ (1999) Plant production of volatile semiochemicals in response to insect-derived elicitors. In: Insect-plant interactions and induced plant defense. Wiley, Chichester, pp 95–109

    Google Scholar 

  • Ulmer BJ, Gillott C, Woods D, Erlandson M (2002) Diamondback moth, Plutella xylostella (L.), feeding and oviposition preferences on glossy and waxy Brassica rapa (L.) lines. Crop Prot 21:327–331

    Article  Google Scholar 

  • Urbanska A, Tjallingii WF, Dixon AFG, Leszczynski B (1998) Phenol oxidizing enzymes in the grain aphid’s saliva. Entomol Exp Appl 86:197–203

    Article  CAS  Google Scholar 

  • van Loon JJA, Chen ZW, Nielsen JK, Gols R, Yu TQ (2002) Flavonoids from cabbage are feeding stimulants for diamondback moth larvae additional to glucosinolates: chemoreception and behaviour. Entomol Exp Appl 104:27–34

    Article  Google Scholar 

  • Vandenborre G, Smagghe G, van Damme EJM (2011) Plant lectins as defense proteins against phytophagous insects. Phytochemistry 72:1538–1550. doi:10.1016/j.phytochem.2011.02.024

    Article  CAS  PubMed  Google Scholar 

  • Vasconcelos IM, Oliveira JT (2004) Antinutritional properties of plant lectins. Toxicon 44:385–403

    Article  CAS  PubMed  Google Scholar 

  • Walling LL (2008) Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiol 146:859–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walton TJ (1990) Waxes, cutin and suberin. In: Dey PM, Harborne JB (eds) Methods in plant biochemistry. Academic Press, San Diego, pp 105–158

    Google Scholar 

  • Werker E (2000) Trichome diversity and development. Adv Bot Res 31:1–35

    Article  Google Scholar 

  • Wietsma R (2010) The effect of differences in aliphatic glucosinolate concentrations in Arabidopsis thaliana on herbivores of different feeding guilds and different levels of specialization. Dissertation, Wageningen University and Research Centre, Wageningen

    Google Scholar 

  • Will T, Vilcinskas A (2013) Aphid proof plants: biotechnology-based approaches for aphid control. Adv Biochem Eng Biotechnol. doi:10.1007/10_2013_211

  • Will T, Tjallingii WF, Thönnessen A, van Bel AJE (2007) Molecular sabotage of plant defense by aphid saliva. P Natl Acad Sci USA 104:10536–10541

    Article  CAS  Google Scholar 

  • Will T, Kornemann SR, Furch ACU, Tjallingii WF, van Bel AJE (2009) Aphid watery saliva counteracts sieve-tube occlusion: a universal phenomenon? J Exp Biol 212:3305–3312

    Article  CAS  PubMed  Google Scholar 

  • Will T, Steckbauer K, Hardt M, van Bel AJE (2012) Aphid gel saliva: sheath structure, protein composition and Secretory dependence on Stylet-tip milieu. PLoS One 7(10):e46903. doi:10.1371/journal.pone.0046903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Will T, Furch ACU, Zimmermann MR (2013) How phloem feeding insects face the challenge of phloem located defenses. Front Plant Sci 4:1–12. doi:10.3389/fpls.2013.00336

    Article  Google Scholar 

  • Williams IS, Dixon AFG (2007) Life cycles and polymorphism. In: van Emden HF, Harrington R (eds) Aphids as crop pests. CABI, Wallingford, pp 69–85

    Chapter  Google Scholar 

  • Wittstock U, Agerbirk N, Stauber EJ, Olsen CE, Hippler M, Mitchell-Olds T, Gershenzon J, Vogel H (2004) Successful herbivore attack due to metabolic diversion of a plant chemical defense. P Natl Acad Sci USA 101:4859–4864

    Article  CAS  Google Scholar 

  • Zhu-Salzman K, Salzman RA, Ahn JE, Koiwa H (2004) Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiol 134:420–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zust T, Agrawal AA (2016) Mechanisms and evolution of plant resistance to aphids. Nature Plants. doi:10.1038/NPLANTS.2015.206

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Banga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kumar, S., Banga, S.S. (2017). Breeding for Aphid Resistance in Rapeseed Mustard. In: Arora, R., Sandhu, S. (eds) Breeding Insect Resistant Crops for Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-6056-4_6

Download citation

Publish with us

Policies and ethics