Skip to main content

Integrated Mechanisms of Plant Disease Containment by Rhizospheric Bacteria: Unraveling the Signal Cross Talk Between Plant and Fluorescent Pseudomonas

  • Chapter
  • First Online:
Agriculturally Important Microbes for Sustainable Agriculture

Abstract

Being the universal green factories on earth, plants harbor many microbes in the rhizosphere arena. Majority of such free-living microorganisms have a positive effect on plant, known as plant growth-promoting rhizobacteria (PGPR). The PGPR are the extensively studied bacteria which elicit the plant probiotic traits and disease resistance through its competitive dominance in rhizosphere and production of secondary metabolites which act directly or indirectly on plant signaling mechanism. Bacillus and Pseudomonas are the major rhizobacterial members of PGPR group; both are known to exert direct and indirect means of growth promotion on host plant. Although Bacillus have an additional advantage of spore forming nature, majority of the biocontrol negotiators are made of vast Pseudomonas group. Pseudomonas beholds numerous qualities that enable them well suited to function as biocontrol and plant growth-promoting agents in agriculture. The direct mechanism is majorly by phosphate solubilization and release of major growth-promoting hormones. Indirect mechanisms of growth promotion are complex diverse mechanisms, which work individually or together, resulting in imparting probiotic traits. The present review portrays a broad updated understanding of principal mechanisms of Pseudomonas-induced probiotic traits associated with systemic resistance signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahemad MA, Khan MS (2011) Functional aspects of plant growth promoting rhizobacteria: recent advancements. Insight Microbiol 1:39–54

    Article  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Article  Google Scholar 

  • Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 293–313. doi:10.1007/978-81-322-2776-2_21

  • Akram A, Ongena M, Duby F, Dommes J, Thonart P (2008) Systemic resistance and lipoxygenase-related defence response induced in tomato by Pseudomonas putida strain BTP1. BMC Plant Biol 8:1–12

    Article  CAS  Google Scholar 

  • Ali SZ, Sandhya V, Rao LV (2013) Isolation and characterization of drought tolerant ACC deaminase and exopolysaccharide – producing fluorescent Pseudomonas sp. Ann Microbiol 64:493–502

    Article  CAS  Google Scholar 

  • Alvarez A, Montesano M, Schmelz E, Leon IPD (2016) Activation of Shikimate, Phenylpropanoid and auxin pathways in Pectobacterium carotovorum elicitors-treated moss. Front Plant Sci doi: 10.3389/fpls.2016.00328

  • Anitha G, Kumudini BS (2014) Isolation and characterization of fluorescent pseudomonads and their effect on plant growth promotion. J Environ Biol 35:627–634

    CAS  PubMed  Google Scholar 

  • Antico CJ, Colon C, Banks T, Ramonell KM (2012) Insights into the role of jasmonic acid-mediated defenses against necrotrophic and biotrophic fungal pathogens. Front Biol 7:48–56

    Article  CAS  Google Scholar 

  • Arima K, Imanaka H, Kousaka M, Fukuta A, Tamura G (1964) Pyrrolnitrin, a new antibiotic substance, produced by Pseudomonas. Agric Biol Chem 28:575–576

    Article  CAS  Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.) Pedosphere 18:611–620

    Article  Google Scholar 

  • Aznar A, Dellagi A (2015) New insights into the role of siderophores as triggers of plant immunity: what can we learn from animals? J Exp Bot 66:3001–3010

    Article  CAS  PubMed  Google Scholar 

  • Babu AN, Jogaiah S, Ito S, Nagaraj AK, Tran LSP (2015) Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizosphere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenol oxidase. Plant Sci 231:62–73

    Article  CAS  Google Scholar 

  • Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol 20:642–650

    Article  CAS  PubMed  Google Scholar 

  • Bahadur I, Meena VS, Kumar S (2014) Importance and application of potassic biofertilizer in Indian agriculture. Int Res J Biol Sci 3:80–85

    Google Scholar 

  • Bahadur I, Maurya BR, Kumar A, Meena VS, Raghuwanshi R (2016a) Towards the soil sustainability and potassium-solubilizing microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 225–266. doi:10.1007/978-81-322-2776-2_18.

  • Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2016b) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiol J. doi:10.1080/01490451.2016.1219431

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2012) 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation. Plant Physiol Biotech 58:227–235

    Article  CAS  Google Scholar 

  • Belimov A, Dodd IC, Safronova VI, Davies WJ (2009) ACC deaminase-containing rhizobacteria improve vegetative development and yield of potato plants grown under water- limited conditions. Asp Appl Biol 98:163–169

    Google Scholar 

  • Bhattacharya A (2010) Siderophore mediated metal uptake by Pseudomonas fluorescens and its comparison to iron (iii) chelation. Ceylon J Sci 39:147–155

    Google Scholar 

  • Bhattacharya PN, Jha DK (2012) Plant growth promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  Google Scholar 

  • Biswas SK, Pandey NK, Rajik M (2012) Inductions of defense response in tomato against fusarium wilt through inorganic chemicals as inducers. J plant Pathol Microbiol. doi.Org/10.4172/2157-7471.1000128

  • Blaha D, Prigent-Combaret C, Mirza MS, Moenne-Loccoz Y (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56:455–470

    Article  CAS  PubMed  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  CAS  PubMed  Google Scholar 

  • Bruto M, Prigent-Combaret C, Muller D, Moenne-Loccoz Y (2014) Analysis of genes contributing to plant-beneficial functions in plant growth-promoting rhizobacteria and related Proteobacteria. Sci Rep 4:6261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buddrus-Schiemann K, Schmid M, Schreiner K, Welzl G, Hartmann A (2010) Root colonization by Pseudomonas sp. DSMZ 13134 and impact on the indigenous rhizosphere bacterial community of barley. Microb Ecol. doi:10.1007/s00248-010-9720-8

  • Camejo D, Guzmán-Cedeno A, Moreno A (2016) Reactive oxygen species, essential molecules, during plant-pathogen interactions. Plant Physiol Biochem. doi:10.1016/j.plaphy.2016.02.035

  • Che FS, Nakajima Y, Tanaka N, Iwano M, Yoshida T, Takayama S (2000) Flagellin from an incompatible strain of Pseudomonas avenae induces a resistance response in cultured rice cells. J Biol Chem 275:32347–32356

    Article  CAS  PubMed  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Mulders IHM, Dekkers LC, Lugtenberg BJJ (2000) Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant Microbe In 13:1340–1345

    Article  CAS  Google Scholar 

  • Cho JC, Tiedje JM (2000) Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl Environ Microbiol 66:5448–5456

    Google Scholar 

  • Choudhary DK, Vaishnav A, Varma A, Kasotia A, Kumari S, Jain S, Sharma KP (2016) Bacterial-mediated tolerance and resistance to plants under abiotic and biotic stresses. J Plant Growth Regul 35:276–300

    Article  CAS  Google Scholar 

  • Companta S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Couillerot O, Prigent-Combaret C, Caballero-Mellado J, Monne-Loccoz Y (2009) Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Lett Appl Microbiol 48:505–512

    Article  CAS  PubMed  Google Scholar 

  • Cronin D, Moenne-Loccoz Y, Fenton A, Dunne C, Dowling DN, O’Gara F (1997) Ecological interaction of a biocontrol Pseudomonas fluorescens strain producing 2,4-diacetylphloroglucinol with the soft rot potato pathogen Erwinia carotovora subsp. Atroseptica. FEMS Microbiol Ecol 23:95–106

    Article  CAS  Google Scholar 

  • Das I, Pradhan M (2016) Potassium-solubilizing microorganisms and their role in enhancing soil fertility and health. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 281–291. doi:10.1007/978-81-322-2776-2_20

  • Das K, Roychoudhary A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci http://dx.doi.org/10.3389/fenvs.2014.00053

    Google Scholar 

  • de Vleesschauwer D, Cornelis P, Hofte M (2006) Redox-active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporthe grisea but enhances Rhizoctonia solani susceptibility in rice. Mol Plant Microbe Int 19:1406–1419

    Article  CAS  Google Scholar 

  • Decho AW, Norman RS, Visscher PT (2010) Quorum sensing in natural environments: emerging views from microbial mats. Trends Microbiol 18:73–80

    Article  CAS  PubMed  Google Scholar 

  • Dominguez-Nunez JA, Benito B, Berrocal-Lobo M, Albanesi A (2016) Mycorrhizal fungi: role in the solubilization of potassium. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 77–98. doi:10.1007/978-81-322-2776-2_6

  • Doornbos RF, Geraats BPJ, Kuramae EE, van Loon LC, Bakker PAHM (2011) Effects of jasmonic acid, ethylene, and salicylic acid signaling on the rhizosphere bacterial community of Arabidopsis thaliana. Mol Plant Microbe Int 24:395–407

    Article  CAS  Google Scholar 

  • Dotaniya ML, Meena VD, Basak BB, Meena RS (2016) Potassium uptake by crops as well as microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 267-280. doi:10.1007/978-81-322-2776-2_19

  • Duca D, Lorv J, Patten CL, Rose D, Glick BR (2014) Indole-3-acetic acid in plant–microbe interactions. Antonie Van Leeuwenhoek 106:85–125

    Article  CAS  PubMed  Google Scholar 

  • Dutta S, Podile AR (2010) Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Crit Rev Microbiol 36:232–244

    Article  PubMed  Google Scholar 

  • Elkahoui S, Djébali N, Yaich N, Azaiez S, Hammami M, Essid R, Limam F (2015) Antifungal activity of volatile compounds-producing Pseudomonas P2 strain against Rhizoctonia solani. World J Microb Biotech 31:175–185

    Article  CAS  Google Scholar 

  • Erb M, Vryrat N, Robert CAM, Xu H, Frey M, Ton J, Turlings TCJ (2015) Indole is an essential herbivore-induced volatile priming signal in maize. Nature Comm doi. doi:10.1038/ncomms7273

  • Fierro-Coronado RA, Quiroz-Figueroa FR, Garcia-Perez LM, Ramirez-Chavez E, Molina-Torres J, Maldonado-Mendoza IE (2014) IAA-producing rhizobacteria from chickpea (Cicer arietinum L.) induce changes in root architecture and increase root biomass. Can J Microbiol 60:639–648

    Article  CAS  PubMed  Google Scholar 

  • Fraser CM, Chapple C (2011) The phenylpropanoid pathway in Arabidopsis. Arabidopsis Book. doi:10.1199/tab.0152

  • Fuente LDL, Mavrodi O, BAjsa N, Mavrodi D (2008) Antibiotics produced by fluorescent Pseudomonas in Sorvari S, Pirtilla AM (ed.) prospects and applications for plant-associated microbes. BioBien innovations. Finland

    Google Scholar 

  • Garcia-Gutierrez L, Romero D, Zeriouh H, Cazorla F, Torés JA, de Vicente A, Perez-Garcia A (2012) Isolation and selection of plant growth-promoting rhizobacteria as inducers of systemic resistance in melon. Plant Soil 358:201–212

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Dm P, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:3–68

    Article  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Gontia-Mishra I, Sasidharan S, Tiwari S (2014) Recent developments in use of 1-aminocyclopropane-1- carboxylate (ACC) deaminase for conferring tolerance to biotic and abiotic stress. Biotechnol Lett 36:889–898

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Sanchez MA, Perez-Jimenez RM, Pliego C, Ramos C, de Vicente A, Cazorla FM (2010) Biocontrol bacteria selected by a direct plant protection strategy against avocado white root rot show antagonism as a prevalent trait. J Appl Microbiol 109:65–78

    CAS  PubMed  Google Scholar 

  • Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent food Agric doi.org/10.1080/23311932.2015.1127500

    Google Scholar 

  • Govardhan M, Kumudini BS (2016) Isolation and characterization of drought-tolerant PGPR from rhizosphere of drought prone areas and enhancement of plant growth promotion in Cucumber. Acta Biologica Indica (in Press)

    Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase containing plant growth- promoting bacteria. Plant Physiol Biochem 39:11–17

    Article  CAS  Google Scholar 

  • Gross H, Loper JE (2009) Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 26:1408–1446

    Article  CAS  PubMed  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:96–102

    Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Rev Microbiol 3:307–319

    Article  CAS  Google Scholar 

  • Han KJ, Collins M, Vanzant ES, Dougherty CT (2006) Characteristics of baled silage made from first and second harvests of wilted and severely wilted forages. Grass Forage Sci 61:22–31

    Article  Google Scholar 

  • Hariprasad P, Venkateswaran G, Niranjana SR (2014) Diversity of cultivable rhizobacteria across tomato growing regions of Karnataka. Biol Control 72:9–16

    Article  Google Scholar 

  • Hatfield R, Vermerris W (2001) Lignin formation in plants. The dilemma of linkage specificity. Plant Physiol 126:1351–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helman Y, Chernin L (2014) Silencing the mob: disrupting quorum sensing as a means to fight plant disease. Mol Plant Pathol. doi:10.1111/mpp.12180

  • Henkes GJ, Alexandre Jousset A, Bonkowski M, Thorpe MR, Lanoue A, Schurr U, Rose USR (2011) Pseudomonas fluorescens CH0 maintains carbon delivery to Fusarium graminearum-infected roots and prevents reduction in biomass of barley shoots through systemic interactions. J Exp Bot. doi:10.1093/jxb/err149

  • Hol WHG, Bezemer TM, Biere A (2013) Getting the ecology into interactions between plants and the plant growth–promoting bacterium Pseudomonas fluorescens. Front Plant Sci doi:10.3389/fpls.2013.00081

  • Hu M, Zhang C, Mu Y, Shen Q, Feng Y (2010) Indole affects biofilm formation in bacteria. Indian J Microbiol 50:362–368

    Article  CAS  PubMed  Google Scholar 

  • Hussain A, Hasnain S (2009) Cytokinin production by some bacteria: its impact on cell division in cucumber cotyledons. Afr J Microbiol Res 3:704–712

    CAS  Google Scholar 

  • Hussain B, War AR, Sharma HC (2013) Jasmonic and salicylic acid-induced resistance in sorghum against the stem borer Chilo partellus. Phytoparasitica 42:99–108

    Article  CAS  Google Scholar 

  • Illakkiam D, Anuj N, Ponraj P, Shankar M (2013) Proteolytic enzyme mediated antagonistic potential of Pseudomonas aeruginosa against Macrophomina phaseolina. Indian J Exp Biol 51:1024–1031

    CAS  PubMed  Google Scholar 

  • Jain A, Singh A, Singh HB, Singh S (2013) Microbial consortium-induced changes in oxidative stress markers in pea plants challenged with Sclerotinia sclerotiorum. J Plant Growth Regul 32:388–398

    Article  CAS  Google Scholar 

  • Jaiswal DK, Verma JP, Prakash S, Meena VS, Meena RS (2016) Potassium as an important plant nutrient in sustainable agriculture: a state of the art. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 21-29. doi:10.1007/978-81-322-2776-2_2

  • Jalili F, Khavazi K, Pazira E, Nejati A, Rahmani H, Sadaghiani H, Miransari M (2009) Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J Plant Physiol 166:667–674

    Article  CAS  PubMed  Google Scholar 

  • Jat LK, Singh YV, Meena SK, Meena SK, Parihar M, Jatav HS, Meena RK, Meena VS (2015) Does integrated nutrient management enhance agricultural productivity?. J. Pure. Appl Microbiol 9(2):1211–1221

    CAS  Google Scholar 

  • Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2015) Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regul 76:25–40

    Article  CAS  Google Scholar 

  • Jenifer JA, Donio MBS, Thangaviji V, Velmurugan S, Michaelbabu M, Albindhas S, Citarasu T (2013) Halo-alkaliphilic actinomycetes from solar salt works in India: diversity and antimicrobial activity. Blue Biotechnol J 2(1):137–151

    Google Scholar 

  • Jha Y, Subramanian RB (2016) Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. In Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New York, pp 149-162. doi:10.1007/978-81-322-2776-2_11.

  • Kanchiswamy CN, Malnoy M, Maffei ME (2015) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci. doi:10.3389/fpls.2015.00151

  • Kerkar S, Raiker L, Tiwari A, Mayilraj S, Dastager S (2012) Biofilm associated indole acetic acid producing bacteria and their impact in the proliferation of biofilm mats in solar salterns. Biologia 67:454–460

    Article  CAS  Google Scholar 

  • Khan H, Parmar N, Kahlon RS (2016) Pseudomonas-plant interactions I: plant growth promotion and defense-mediated mechanisms. In: Kahlon RS (ed) Pseudomonas: molecular and applied biology. Springer International Publishing, Switzerland

    Google Scholar 

  • Kim MS, Kim YC, Cho BH (2004) Gene expression analysis in cucumber leaves primed by root colonization with Pseudomonas chlororaphis O6 upon challenge-inoculation with Corynespora cassiicola. Plant Biol 6:105–108

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Schroth SN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th International conference on plant pathogenic bacteria Angers, France: Station de Pathologie Végétale et Phytobactériologie, INRA 2:879–888

    Google Scholar 

  • Kloepper JW, Schroth MN (1981) Development of powder formulation of rhizobacteria for inoculation of potato seed pieces. Phytopathology 71:590–592

    Article  Google Scholar 

  • Kogovsek P, Pompe-Novak M, Petek M, Fragner L, Weckwerth W, Gruden K (2016) Primary metabolism, phenylpropanoids and antioxidant pathways are regulated in potato as s response to Potato virus Y infection. PLoS One. doi:10.1371/journal.pone.0146135

  • Kravchenko LV, Azarova TS, Dostanko OY (2003) Effect of exometabolites of wheat with different genome ploidy on growth of Azospirillum brasilense. Microbiol U.S.S.R 62:517–520

    Google Scholar 

  • Kumar S, Agarwal M, Dheeman S, Maheshwari DK (2015a) Exploitation of phytohormone-producing pgpr in development of multispecies bioinoculant formulation. In Maheshwari DK (ed) Bacterial metabolites in sustainable Agroecosystem, sustainable development and Biodiversity vol 12. Springer International Publishing, Switzerland. doi:10.1007/978-3-319-24654-3_11

    Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015b) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure ApplMicrobiol 9:715–724

    Google Scholar 

  • Kumar A, Meena R, Meena VS, Bisht JK, Pattanayak A (2016a) Towards the stress management and environmental sustainability. J Clean Prod 137:821–822

    Article  Google Scholar 

  • Kumar A, Patel JS, Bahadur I, Meena VS (2016b) The molecular mechanisms of KSMs for enhancement of crop production under organic farming. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 61–75. doi:10.1007/978-81-322-2776-2_5

  • Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-gangetic plain of India. J Plant Growth Regul. doi:10.1007/s00344-016-9663-5

  • Lareen A, Burton F, Schafer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavanya SN, Raj SN, Udayashankar AC, Kini KR, Amruthesh KN, Niranjana SR, Shetty HS (2012) Comparative analysis of activities of vital defence enzymes during induction of resistance in pearl millet against downy mildew. Arch Phytopathol Plant Protect 45:1252–1272

    Article  CAS  Google Scholar 

  • Lavicoli A, Boutet E, Buchala A, Metraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant-Microbe Interact 16:851–858

    Article  Google Scholar 

  • Lee JH, Ma KC, Ko SJ, Kang BR, Kim IS, Kim YC (2011) Nematicidal activity of a nonpathogenic biocontrol bacterium, Pseudomonas chlororaphis O6. Curr Microbiol 62:746–751

    Article  CAS  PubMed  Google Scholar 

  • Leeman M, Den Ouden FM, Van Pelt JA, Dirkx FPM, Steijl H, Bakker PAHM, Schippers B (1996) Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathol 86:149–155

    Article  CAS  Google Scholar 

  • Lehmann S, Serrano M, L’Haridon F, Tjamos SE, Metraux JP (2014) Reactive oxygen species and plant resistance to fungal pathogens. Phytochem. http://dx.doi.org/10.1016/j.phytochem.2014.08.027

    Google Scholar 

  • Lenin G, Jayanthi M (2012) Indole acetic acid, gibberellic acid and siderophore production by PGPR isolates from rhizospheric soils of Catharanthus roseus. IJPBA 3:933–938

    Google Scholar 

  • Lopes LD, Pereira e Silva MC, Andreote FD (2016) Bacterial abilities and adaptation toward the rhizosphere colonization. Front Microbiol doi:10.3389/fmicb.2016.01341

  • Lugtenberg B, Kamilova F (2009) Plant growth promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lyons R, Manners JM, Kazan K (2013) Jasmonate biosynthesis and signaling in monocots: a comparative overview. Plant Cell Rep 32:815–827

    Article  CAS  PubMed  Google Scholar 

  • Maldonado-Gonzalez MM, Prieto P, Ramos C, Mercado-Blanco J (2013) From the root to the stem: interaction between the biocontrol root endophyte Pseudomonas fluorescens PICF7 and the pathogen Pseudomonas savastanoi NCPPB3335 in olive knots. Microbiol Biotechnol 6:275–287

    Article  CAS  Google Scholar 

  • Malhotra M, Srivastava S (2009) Stress-responsive indole-3- acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth. Eur J Soil Biol 45:73–80

    Article  CAS  Google Scholar 

  • Mariutto M, Duby F, Adam A, Bureau C, Fauconnier ML, Thonart P, Dommes J (2011) The elicitation of a systemic resistance by Pseudomonas putida BTP1 in tomato involves the stimulation of two lipoxygenase isoforms. BMC Plant Biol 11:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masood S, Bano A (2016) Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 137–147. doi:10.1007/978-81-322-2776-2_10

  • Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27:181–187

    Google Scholar 

  • Mavrodi DV, Thomashow LS, Blankenfeldt W (2006) Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44:417–445

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Bioch 42:565–572

    Article  CAS  Google Scholar 

  • McClean RJC, Pierson LS, Fuqua C (2004) A simple screening protocol for the identification of quorum signal antagonists. J Microbiol Methods 58:351–360

    Article  CAS  Google Scholar 

  • McNear DH Jr (2013) The rhizosphere-roots, soil and everything in between. Nature Education Knowledge 4:1

    Google Scholar 

  • Meena OP, Maurya BR, Meena VS (2013a) Influence of K-solubilizing bacteria on release of potassium from waste mica. Agric Sust. Dev 1:53–56

    Google Scholar 

  • Meena VS, Maurya BR, Bohra JS, Verma R, Meena MD (2013b) Effect of concentrate manure and nutrient levels on enzymatic activities and microbial population under submerged rice in alluvium soil of Varanasi. Crop res. 45 (1,2 & 3): 6-12.

    Google Scholar 

  • Meena VS, Maurya BR, Verma R, Meena RS, Jatav GK, Meena SK, Meena SK (2013c) Soil microbial population and selected enzyme activities as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi. The Bioscan 8(3):931–935

    CAS  Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bang J Bot 43:235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015a) The needs of healthy soils for a healthy world. J of Cleaner Prod 102:560–561

    Article  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015b) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553

    Article  Google Scholar 

  • Meena VS, Maurya BR, Meena RS (2015c) Residual impact of wellgrow formulation and NPK on growth and yield of wheat (Triticum aestivum L.). Bangladesh J. Bot 44(1):143–146

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015d) Potassium solubilizing rhizobacteria (KSR): Isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Meena VS, Meena SK, Verma JP, Meena RS, Ghosh BN (2015e) The needs of nutrient use efficiency for sustainable agriculture. J Clean Prod 102:562–563. doi:10.1016/j.jclepro.2015.04.044.

    Article  Google Scholar 

  • Meena VS, Verma JP, Meena SK (2015f) Towards the current scenario of nutrient use efficiency in crop species. J Clean Prod 102:556–557. doi:10.1016/j.jclepro.2015.04.030.

    Article  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2016a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol 4:806–811

    Google Scholar 

  • Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Sihag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J of Cleaner Prod 112(1):1258–1260

    Article  Google Scholar 

  • Meena SK, Rakshit A, Meena VS (2016c) Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatal Agric Biotechnol 6:68–75

    Google Scholar 

  • Meena VS, Bahadur I, Maurya BR, Kumar A, Meena RK, Meena SK, Verma JP (2016d) Potassium-solubilizing microorganism in evergreen agriculture: an overview. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 1–20. doi:10.1007/978-81-322-2776-2_1

  • Meena VS, Meena SK, Bisht JK, Pattanayak A (2016e) Conservation agricultural practices in sustainable food production. J Clean Prod 137:690–691

    Article  Google Scholar 

  • Meena VS, Maurya BR, Meena SK, Meena RK, Kumar A, Verma JP, Singh NP (2017) Can Bacillus species enhance nutrient availability in agricultural soils? In: Rahman M, Pandey P, Jha CK, Aeron A (eds) Islam MT. Springer International Publishing, Bacilli and Agrobiotechnology, pp 367–395. doi:10.1007/978-3-319-44409-3_16

    Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Miethling R, Wieland G, Backhaus H, Tebbe CC (2000) Variation of microbial rhizosphere communities in response to crop species, soil origin and inoculation with Sinorhizobium meliloti L33. Microbiol Ecol 41:43–56

    Article  Google Scholar 

  • Mishra PK, Mishra S, Selvakumar G, Bisht SC, Bisht JK, Kundu S, Gupta HS (2008) Characterisation of a psychrotolerant plant growth promoting Pseudomonas sp. strain PGERs17 (MTCC 9000) isolated from north western Indian Himalayas. Ann Microbiol 58:561–568

    Article  Google Scholar 

  • Muthukumar A, Bhaskaran R, Sanjeevkumar E (2010) Efficacy of endophytic Pseudomonas fluorescens (Trevisan) migula against chilli damping-off. J Biopest 3:105–109

    Google Scholar 

  • Nadeem SM, Ahmad M, Naveed M, Imran M, Zahir ZA, Crowley DE (2016) Relationship between in vitro characterization and comparative efficacy of plant growth-promoting rhizobacteria for improving cucumber salt tolerance. Arch Microbiol 198:379–387

    Article  CAS  PubMed  Google Scholar 

  • Nadell CD, Xavier JB and Foster KR (2009) The socio-biology of biofilms. FEMS Microbiol Rev 33:206–224

    Google Scholar 

  • Nagarajkumar M, Jayaraj J, Muthukrishnan S, Bhaskaran R, Velazhahan R (2005) Detoxification of oxalic acid by Pseudomonas fluorescens strain PfMDU2: implications for the biological control of rice sheath blight caused by Rhizoctonia solani. Microbiol Res 160:291–298

    Article  CAS  PubMed  Google Scholar 

  • Negi YK, Prabha D, Garg SK, Kumar J (2015) Biological control of ragi blast disease by chitinase producing fluorescent Pseudomonas isolates. Org Agr. doi:10.1007/s13165-015-0142-2

  • Ng LC, Sariah M, Sariam O, Radziah O, Abidin MAZ (2015) PGPM-induced defense-related enzymes in aerobic rice against rice leaf blast caused by Pyricularia oryzae. Eur J Plant Pathol 145:167–175

    Article  CAS  Google Scholar 

  • Nihorimbere V, Ongena M, Smargiassi M, Thonart P (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Soc Environ 15:327–337

    Google Scholar 

  • Nishma KS, Adrisyanti B, Anusha SH, Rupali P, Sneha K, Jayamohan NS, Kumudini BS (2014) Induced growth promotion under in vitro salt stress tolerance on Solanum lycopersicum by fluorescent pseudomonads associated with rhizosphere. IJASER 3:422–430

    Google Scholar 

  • Ongena M, Jourdan E, Adam A, Schäfer M, Budzikiewicz H, Thonart P (2008) Amino acids, iron, and growth rate as key factors influencing production of the Pseudomonas putida BTP1 benzylamine derivative involved in systemic resistance induction in different plants. Microb Ecol 55:280–292

    Article  CAS  PubMed  Google Scholar 

  • Pal KK, Tilak KV, Saxena AK, Dey R, Singh CS (2000) Antifungal characteristics of a fluorescent Pseudomonas strain involved in the biological control of Rhizoctonia solani. Microbiol Res 155:233–242. doi:10.1016/S0944-5013(00)80038-5

    Article  CAS  PubMed  Google Scholar 

  • Parewa HP, Yadav J, Rakshit A, Meena VS, Karthikeyan N (2014) Plant growth promoting rhizobacteria enhance growth and nutrient uptake of crops. Agriculture for. Sustain Dev 2(2):101–116

    Google Scholar 

  • Park I, Park J, Kim K, Choi K, Choi I, Kim C (2005) Nematicidal activity of plant EOs and components from garlic (Allium sativum) and cinnamon (Cinnamomum verum) oils against the pine wood nematode (Bursaphelenchus xylophilus). Nematology 7:767–774

    Article  CAS  Google Scholar 

  • Parray JA, Egamberdieva D, Jan S, Kamili AN, Ahmad P, Qadri RA (2016) Current perspectives on plant growth-promoting rhizobacteria. J Plant Growth Regul. doi:10.1007/s00344-016-9583-4

  • Pastor N, Masciarelli O, Fischer S, Luna V, Rovera M (2016) Potential of Pseudomonas putida PCI2 for the protection of tomato plants against fungal pathogens. Current Microbiol 73:346–353

    Article  CAS  PubMed  Google Scholar 

  • Patil SV, Jayamohan NS, Kumudini BS (2016) Strategic assessment of multiple plant growth promotion traits for shortlisting of fluorescent Pseudomonas spp. and seed priming against ragi blast disease. Plant Growth Regul 80:47–58

    Article  CAS  Google Scholar 

  • Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GSA, Mavrodi DV, DeBoy RT, Seshadri R, Ren Q, Madupu R, Dodson RJ, Durkin AS, Brinkac LM, Daugherty SC, Sullivan SA, Rosovitz MJ, Gwinn ML, Zhou L, Schneider DJ, Cartinhour SW, Nelson WC, Weidman J, Watkins K, Kevin T, Kouri H, Pierson EA, Pierson LS, Thomashow LS, Loper JE (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens pf-5. Nature Biotechnol 23:873–878

    Article  CAS  Google Scholar 

  • Perez-Montano F, Alias-Villegas C, Bellogín RA, Cerro P, Espuny MR, Jimenez-Guerrero I, Lopez-Baena FJ, Ollero FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336

    Article  CAS  PubMed  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, WHv P (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nature Rev Microbiol 11:789–799

    Article  CAS  Google Scholar 

  • Picard C, Di Cello F, Ventura M, Fai R, Guckert A (2000) Frequency and biodiversity of 2, 4- diacetylphloroglucinol – producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl Environ Microbiol 66:948–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CMJ, Berendsen RL, Van Wees SCM, Zamioudis C, Weller DM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, de Jonge R, Berendsen RL (2016) The soil-borne supremacy. Trends Plant Sci. http://dx.doi.org/10.1016/j.tplants.2016.01.018.

  • Pliego C, DeWeert S, Lamers G, De Vincente A, Bloemberg G, Cazorla FM, Ramos C (2008) Two similar enhanced root-colonizing Pseudomonas strains differ largely in their colonization strategies of avocado roots and Rosellinia necarrix hyphae. Environ Microbiol 10:3295–3304

    Article  PubMed  Google Scholar 

  • Podile AR, Vakunti RVNR, Sravani A, Kalam S, Dutta S, Durgeshwar P, Rao VP (2014) Root colonization and quorum sensing are the driving forces of plant growth promoting rhizobacteria (PGPR) for growth promotion. Proc Indian Natn Sci Acad 80:407–413

    Article  Google Scholar 

  • Prakash S, Verma JP (2016) Global perspective of potash for fertilizer production. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 327–331. doi:10.1007/978-81-322-2776-2_23

  • Prashar P, Kapoor N, Sachdeva S (2014) Rhizosphere: its structure, bacterial diversity and significance. Rev Environ Sci Biotechnol 13:63–77

    Article  CAS  Google Scholar 

  • Prieto P, Navarro-Raya C, Valverde-Corredor A, Amyotte SG, Dobinson KF, Mercado-Blanco J (2009) Colonization process of olive tissues by Verticillium dahliae and its in planta interaction with the biocontrol root endophyte Pseudomonas fluorescens PICF7. Microbial Biotechnol 2:499–511

    Article  CAS  Google Scholar 

  • Priyadharsini P, Muthukumar T (2016) Interactions between arbuscular mycorrhizal fungi and potassium-solubilizing microorganisms on agricultural productivity. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 111–125. doi:10.1007/978-81-322-2776-2_8

  • Raghavendra MP, Nayaka NC, Nuthan BR (2016) Role of rhizosphere microflora in potassium solubilization. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 43–59. doi:10.1007/978-81-322-2776-2_4

  • Ramamoorthy V, Raguchander T, Samiyappan R (2002) Induction of defense-related proteins in tomato roots treated with Pseudomonas fluorescens Pf1 and Fusarium oxysporum f . sp. lycopersici. Plant Soil 239:55–68

    Article  CAS  Google Scholar 

  • Rani MU, Reddy AG (2012) Screening of rhizobacteria containing plant growth promoting (PGPR) traits in rhizosphere soils and their role in enhancing growth of pigeon pea. Afr J Biotechnol 11:8085–8091

    Google Scholar 

  • Rawat J, Sanwal P, Saxena J (2016) Potassium and its role in sustainable agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 235–253. doi:10.1007/978-81-322-2776-2_17

  • Redondo-Nieto M, Barret M, Morrisey JP, Germaine K, Martínez-Granero F, Barahona E, Navazo A, Sánchez-Contreras M, Moynihan JA, Giddens SR, Coppoolse ER, Muriel C, Stiekema WJ, Rainey PB, Dowling D, O’Gara F, Martín M, Rivilla R (2012) Genome sequence of the biocontrol strain Pseudomonas fluorescens F113. J Bacteriol 194:1273–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robison MM, Shah S, Tamot B, Pauls KP, Moffatt BA, Glick BR (2001) Reduced symptoms of verticillium wilt in transgenic tomato expressing a bacterial ACC deaminase. Mol Plant Pathol 2:135–145

    Article  CAS  PubMed  Google Scholar 

  • Roman G, Lubarsky B, Kieber JJ, Rothenberg M, Ecker JR (1995) Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: five novel mutant loci integrated into a stress response pathway. Genetic 139:1393–1409

    CAS  Google Scholar 

  • Rosas SB, Avanzini G, Carlier E, Pasluosta C, Pastor N, Rovera M (2009) Root colonization and growth promotion of wheat and maize by Pseudomonas aurantiaca SR1. Soil Biol Biochem 41:1802–1806

    Article  CAS  Google Scholar 

  • Ryu CM, Farag MA, CH H, Reddy MS, Wei HX, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Indian Natn Sci Acad 100:4927–4932

    Article  CAS  Google Scholar 

  • Ryu C-M, Kang BR, Han SH, Cho SM, Kloepper JW, Anderson AJ, Kim YC (2007) Tobacco cultivars vary in induction of systemic resistance against Cucumber mosaic virus and growth promotion by Pseudomonas chlororaphis O6 and its GacS mutant. Eur J Plant Pathol 119:383–390

    Article  Google Scholar 

  • Saha M, Maurya BR, Bahadur I, Kumar A, Meena VS (2016a) Can potassium-solubilising bacteria mitigate the potassium problems in India?. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 127–136. doi:10.1007/978-81-322-2776-2_9.

  • Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016b) Identification and characterization of potassium solubilizing bacteria (KSB) from indo-Gangetic Plains of India. Biocatal Agric Biotechnol 7:202–209

    Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. LSMR 21:1–30

    Google Scholar 

  • Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169:18–29

    Article  CAS  PubMed  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescence mediated saline resistance in groundnut Arachis hypogea. Plant. J Appl Microbiol 102:1283–1292

    Article  CAS  PubMed  Google Scholar 

  • Schuhegger R, Rauhut T, Glawischnig E (2007) Regulatory variability of camalexin biosynthesis. J Plant Physiol 164:636–644

    Article  CAS  PubMed  Google Scholar 

  • Schuster M, Sexton DJ, Diggle SP, Greenberg EP (2013) Acyl-homoserine lactone quorum sensing: from evolution to application. Ann Rev Micriobiol 67:43–63

    Article  CAS  Google Scholar 

  • Shahzad SM, Khalid A, Arshad M, Kalil-ur-Rehman (2010) Screening rhizobacteria containing ACC-deaminase for growth promotion of chickpea seedlings under axenic conditions. Soil Environ 29:38–46

    Google Scholar 

  • Shakir MA, Asghari B, Arshad M (2012) Rhizosphere bacteria containing ACC deaminase conferred drought tolerance in wheat grown under semi-arid climate. Soil Environ 31:108–112

    CAS  Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2016) Potassium-solubilizing microorganisms: mechanism and their role in potassium solubilization and uptake. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 203–219. doi:10.1007/978-81-322-2776-2_15

  • Shrivastava M, Srivastava PC, D’Souza SF (2016) KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 221–234. doi:10.1007/978-81-322-2776-2_16

  • Siddikee MA, Glick BR, Chauhan PS, Yim WJ, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1- aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem 49:427–434

    Article  CAS  PubMed  Google Scholar 

  • Sindhu SS, Parmar P, Phour M, Sehrawat A (2016) Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 171–185. doi:10.1007/978-81-322-2776-2_13

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99. doi:10.5958/2229-4473.2015.00012.9

  • Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL, Lata M (2016) Role of biofertilizers in conservation agriculture. Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp:113–134. doi:10.1007/978-981-10-2558-7_4

  • Sivasakthi S, Usharani G, Saranraj P (2014) Biocontrol potentiality of plant growth promoting bacteria (PGPR) – Pseudomonas fluorescens and Bacillus subtilis: a review. African J Agri Res 9:1265–1277

    Google Scholar 

  • Sorokan AV, Burkhanova GF, Maksimov IV (2013) The interplay between salicylic and jasmonic acid during phytopathogenesis. In: Hayat et al. (eds) Salicylic acid. Springer, Dordrecht

    Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Spiers AJ, Buckling A, Rainey PB (2000) The causes of Pseudomonas diversity. Microbiol 146:2345–2350

    Article  CAS  Google Scholar 

  • Steidle A, Sigl K, Schuhegger R, Ihring A, Schmid M, Gantner S, Stoffels M, Riedel K, Givskov M, Hartmann A, Langebartels C, Eberl L (2001) Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl Environ Microbiol 67:5761–5770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian J, Satyan K (2014) Isolation and selection of fluorescent pseudomonads based on multiple plant growth promotion traits and siderotyping. Chil J Agric Res 74:319–325

    Article  Google Scholar 

  • Subramoni S, Gonzalez JF, Johnson A, Pechy-Tarr M, Rochat L, Paulsen I, Loper JE, Keel C, Venturi V (2011) Bacterial subfamily of LuxR regulators that respond to plant compounds. Appl Environ Microbiol 77:4579–4588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulochana MBQ, Jayachandra SY, Kumar SKA, Dayanand A (2013) Antifungal attributes of siderophore produced by the Pseudomonas aeruginosa JAS-25. J Basic Microbiol. doi:10.1002/jobm.201200770

  • Sumayo M, Hahm MS, Ghim Y (2013) Determinants of plant growth-promoting Ochrobactrum lupini KUDC1013 involved in induction of systemic resistance against Pectobacterium carotovorum subsp carotovorum in tobacco leaves. Plant Pathol J 29:174–181. doi:10.5423/PPJ.SI.09. 2012.0143

    Article  PubMed  PubMed Central  Google Scholar 

  • Tailor AJ, Joshi BH (2014) Harnessing plant growth promoting rhizobacteria beyond nature: a review. J Plant Nut 37:1534–1571

    Article  CAS  Google Scholar 

  • Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A (2016) Rhizosphere microbes: potassium solubilization and crop productivity-present and future aspects. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 315–325. doi:10.1007/978-81-322-2776-2_22

  • Thomashow LS, Weller DM (1988) Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170:3499–3508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toklikishvili N, Dandurishvili N, Vainstein A, Tediashvili M, Giorgobiani N, Lurie S, Szegedi E, Glick BR, Chernin L (2010) Inhibitory effect of ACC deaminase-producing bacteria on crown gall formation in tomato plants infected by Agrobacterium tumefaciens or A. vitis. Plant Pathol 59:1023–1030

    Article  Google Scholar 

  • Tonelli ML, Furlan A, Taurian T, Castro S, Fabra A (2011) Peanut priming induced by biocontrol agents. Physiol Mol Plant P 75:100–105

    Article  Google Scholar 

  • Uma B, Podile AR (2015) Apoplastic oxidative defenses during non-host interactions of tomato (Lycopersicon esculentum L.) with Magnaporthe grisea. Acta Physiol Plant. doi:10.1007/s11738-015-1779-x

  • Upadhyay A, Srivastava S (2010) Evaluation of multiple plant growth promoting traits of an isolate of Pseudomonas fluorescens strain Psd. Indian J Exp Biol 48:601–609

    CAS  PubMed  Google Scholar 

  • Vacheron J, Desbrosses G, Marie-Lara B, Touraine B, Moenne- Loccoz Y, Muller D, Legendre L, Wisniewski-Dye F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci. doi:10.3389/fpls.2013.00356

  • Vaikuntapu PR, Dutta S, Samudrala RB, Rao VR, Kalam S, Podile AR (2014) Preferential promotion of Lycopersicon esculentum (tomato) growth by plant growth promoting bacteria associated with tomato. Indian J Microbiol 54:403–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varsha T, Kumudini BS (2016) Fluorescent Pseudomonas mediated alleviation of trivalent chromium toxicity in ragi through enhanced antioxidant activities. Proc Natl Acad Sci, India, Sect B Biol Sci. doi:10.1007/s40011-016-0816-x

  • Velazquez E, Silva LR, Ramírez-Bahena MH, Peix A (2016) Diversity of potassium-solubilizing microorganisms and their interactions with plants. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 99–110. doi:10.1007/978-81-322-2776-2_7

  • Velusamy P, Ko HS, Kim KY (2011) Determination of antifungal activity of Pseudomonas sp. A3 against Fusarium oxysporum by high performance liquid chromatography (HPLC). AFAB 1:15–23

    Google Scholar 

  • Venturi V, Keel C (2016) Signaling in the rhizosphere. Trends Plant Sci 21:187–198

    Google Scholar 

  • Verma R, Maurya BR, Meena VS (2014) Integrated effect of bio-organics with chemical fertilizer on growth, yield and quality of cabbage (Brassica oleracea var capitata). Indian J Agricul Sci 84(8):914–919

    CAS  Google Scholar 

  • Verma JP, Jaiswa DK, Meena VS, Meena RS (2015a) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547

    Article  Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Kumar A, Meena RS (2015b) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health. J Clean Prod 107:793–794

    Article  Google Scholar 

  • Viswanathan R, Samiyappan R (2002) Induced systemic resistance by fluorescent pseudomonads against red rot disease of sugarcane caused by Colletotrichum falcatum. Crop Prot 21:1–10

    Article  Google Scholar 

  • Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20

    Article  CAS  PubMed  Google Scholar 

  • Waewthongrak W, Leelasuphakul W, McCollum G (2014) Cyclic lipopeptides from Bacillus subtilis ABS–S14 elicit defense-related gene expression in citrus fruit. PLoS One 9:e109386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yadav BK, Sidhu AS (2016) Dynamics of potassium and their bioavailability for plant nutrition. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 187–201. doi:10.1007/978-81-322-2776-2_14

  • Yadav S, Yadav S, Kaushik R, Saxena AK, Arora DK (2013) Genetic and functional diversity of fluorescent Pseudomonas from rhizospheric soils of wheat crop. J Basic Microbiol 54:425–437

    Article  PubMed  CAS  Google Scholar 

  • Yang M-M, Wen S-S, Mavrodi DV, Mavrodi OV, Wettstein DV, Thomashow LS, Guo J-H, Weller DM (2014) Biological control of wheat root diseases by the CLP-producing strain Pseudomonas fluorescens HC1-07. Phytopathol. http://dx.doi.org/10.1094/PHYTO-05-13-0142-R

  • Yasin M, Munir I, Faisal M (2016) Can Bacillus spp. enhance K+ uptake in crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 163–170. doi:10.1007/978-81-322-2776-2_12

  • Zahedi H (2016) Growth-promoting effect of potassium-solubilizing microorganisms on some crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 31–42. doi:10.1007/978-81-322-2776-2_3

  • Zhang Y, Butelli E, Alseekh S, Tohge T, Rallapalli G, Luo J, Kawar PG, Hill L, Santino A, Fernie AR, Martin C (2015) Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato. Nat Commun 6:8635. doi:10.1038/ncomms9635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Authors wish to apologize to all whose relevant work cannot be quoted in this book chapter due to space constraints. The authors acknowledge Jain University and DST-SERB GOI for the research funding (YSS/2015/001905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belur Satyan Kumudini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kumudini, B.S., Jayamohan, N.S., Patil, S.V. (2017). Integrated Mechanisms of Plant Disease Containment by Rhizospheric Bacteria: Unraveling the Signal Cross Talk Between Plant and Fluorescent Pseudomonas . In: Meena, V., Mishra, P., Bisht, J., Pattanayak, A. (eds) Agriculturally Important Microbes for Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-5343-6_9

Download citation

Publish with us

Policies and ethics