Skip to main content

Abstract

Reactive oxygen species (ROS) are generated in various plant organelles under normal conditions and play an important role in different physiological progressions. But under abiotic stress, excessive ROS generation takes place which causes damage to normal functioning of plants. ROS play a dual role as they cause cellular damage and are also involved in abiotic stress signaling. Therefore, it is important to investigate the features of appearance of physiological effects of ROS depending on their cellular localization under the abiotic stress. Plants possess certain antioxidative mechanisms to deal with excess ROS in the cells, which involves enzymatic and nonenzymatic antioxidants. In the review, the mechanisms of ROS formation in different cellular compartments like mitochondria, peroxisomes, chloroplasts, nucleus, vacuole, cell wall, and plasma membranes are considered and summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1O2 :

Singlet oxygen

ABA:

Abscisic acid

ADP:

Adenosine diphosphate

AOs:

Amine oxidases

AOX:

Alternative oxidase

APX:

Ascorbate peroxidases

Ca2+ :

Calcium cation

Cad2+ :

Cadaverine

CAT:

Catalase

CO2 :

Carbon dioxide

COX:

Cyclooxygenase

Cu:

Copper

Cys:

Cystine

Cyt:

Cytosol

DAO:

Diamine oxidase

DCFH:

1, 2′-7′-dichlorodihydrofluorescein

DHE:

Dihydroethidium

DNA:

Deoxyribose nucleic acid

ETC:

Electron transport chain

FAD:

Flavin adenine dinucleotide

g:

Gram

GFP:

Green fluorescent proteins

GSH:

Glutathione

GSSG:

Glutathione disulfide

H2O2 :

Hydrogen peroxide

HE:

Hydroethidine

HOCl:

Hypochlorous acid

HPLC:

High-performance liquid chromatography

kD:

Kilodaltons

MAOs:

Monoamine oxidases

MAP:

Mitogen-activated protein

mg:

Milligram

min:

Minute

MitoAR:

4-aminophenyl aryl ether

MitoHR:

4-hydroxy aryl ether group

MitoSOX:

Mitochondrial-targeted dihydroethidium

MS:

Mass spectroscopy

NADP:

Nicotinamide adenine dinucleotide phosphate

NADPH:

Reduced nicotinamide adenine dinucleotide phosphate

nmol:

Nanomole

NO:

Nitric oxide

O2 :

Oxygen

O2 •− :

Superoxide anion

OH• :

Hydroxyl radical

ONOO− :

Peroxynitrite

PAOs:

Polyamine oxidases

PCD:

Programmed cell death

PET:

Photoinduced electron transfer

PMA:

Phorbol-12-myristate-13-acetate

PML:

Promyelocytic leukemia

Prx:

Peroxiredoxins

PS:

Photosystem

PS I:

Photosystem I

PS II:

Photosystem II

Put2+ :

Putrescine

RBOH:

Respiratory burst oxidase homologs

RBOHD:

Respiratory burst oxidase homolog protein D

RBOHF:

Respiratory burst oxidase homolog protein F

roGFPs:

Hyper, redox-sensitive green fluorescent proteins

ROS:

Reactive oxygen species

rxYFP:

Redox-sensitive yellow fluorescent protein

SOD:

Superoxide dismutase

SOSG:

Singlet oxygen sensor green

Spd3+ :

Spermidine

Spm4+ :

Thermospermine

TCA:

Quinine-triazine-based excitation probe

TCAO:

Oxidized quinine-triazine-based excitation probe

Trxs:

Thioredoxins

UPLC:

Ultra-performance liquid chromatography

UV:

Ultraviolet

Zn:

Zinc

References

  • Ai H (2015) Fluorescent-protein-based probes: general principles and practices. Anal Bioanal Chem 407:9–15

    Article  CAS  PubMed  Google Scholar 

  • Alam MM, Hasanuzzaman M, Nahar K, Fujita M (2013) Exogenous salicylic acid ameliorates short-term drought stress in mustard (Brassica juncea L.) seedlings by upregulating the antioxidant defense and glyoxalase system. Aust J Crop Sci 7:1053–1063

    CAS  Google Scholar 

  • Andreev M (2012) Role of the vacuole in the redox homeostasis of plant cells. Russ J Plant Physiol 59(5):611–617

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Asada K (2000) The water-water cycle as alternative photon and electron sinks. Philoso Trans Royal Soc B: Biol Sci 355:1419–1431

    Article  CAS  Google Scholar 

  • Baker A, Graham AI (2002) Plant peroxisomes: biochemistry, cell biology and biotechnological applications. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Ball L, Accotto GP, Bechtold U, Creissen G, Funck D, Jimenez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H, Karpinski S, Mullineaux PM (2004) Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16(9):2448–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartoli CG, Gomez F, Martinez DE, Guiamet JJ (2004) Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.) J Exp Bot 55:1663–1669

    Article  CAS  PubMed  Google Scholar 

  • Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Shakhbazov KS, Terskikh AV, Lukyanov S (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3:281–286

    Article  CAS  PubMed  Google Scholar 

  • Bestwick CS, Brown IR, Bennett MHR, Mansfield JW (1997) Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv. Phaseolicola. Plant Cell 9:209–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bienert GP, Møller ALB, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192

    Article  CAS  PubMed  Google Scholar 

  • Bolouri-Moghaddam MR, Le Roy K, Xiang L, Rolland F, Van den Ende W (2010) Sugar signalling and antioxidant network connections in plant cells. FEBS J 277:2022–2037

    Article  CAS  PubMed  Google Scholar 

  • Bueso E, Alejandro S, Carbonell P, Perez-Amador MA, Fayos J, Belles JM (2007) The lithium tolerance of the Arabidopsis cat2 mutant reveals a cross talk between oxidative stress and ethylene. Plant J 52:1052–1065

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Cai J, Jones DP (2006) Mitochondrial thioredoxin in regulation of oxidant induced cell death. FEBS Lett 580:6596–6602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Zhang M, Shen S (2010) Effect of salt on malondialdehyde and antioxidant enzymes in seedling roots of Jerusalem artichoke (Helianthus tuberosus L.) Acta Physiol Plant 33:273–278

    Article  CAS  Google Scholar 

  • Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav 8:e23681

    Article  PubMed  CAS  Google Scholar 

  • Cleland RE, Grace SC (1999) Voltammetric detection of superoxide production by photosystem II. FEBS Lett 457:348–352

    Article  CAS  PubMed  Google Scholar 

  • Conde A, Chaves MM, Geros H (2011) Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant Cell Physiol 52(9):1583–1602

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Fernandez-Ocana A, Carreras A, Valderrama R, Luque F, Esteban FJ, Rodriguez-Serrano M, Chaki M, Pedrajas JR, Sandalio LM (2006) The expression of different superoxide dismutase forms is cell-type dependent in olive (Olea europaea L.) leaves. Plant Cell Physiol 47:984–994

    Article  CAS  PubMed  Google Scholar 

  • Cvetkovska M, Vanlerberghe GC (2013) Alternative oxidase impacts the plant response to biotic stress by influencing the mitochondrial generation of reactive oxygen species. Plant Cell Environ 36:721–732

    Article  CAS  PubMed  Google Scholar 

  • Das P, Nutan KK, Singla-Pareek SL, Pareek A (2015) Oxidative environment and redox homeostasis in plants: dissecting out significant contribution of major cellular organelles. Front Environ Sci. doi:10.3389/fenvs.2014.00070

  • Del Rio LA, Palma JM, Sandalio LM, Corpas FJ, Pastori GM, Bueno P, Lopez-Huertas E (1996) Peroxisomes as a source of superoxide and hydrogen peroxide in stressed plants. Biochem Soc Trans 24:434–438

    Article  PubMed  Google Scholar 

  • Del Rio LA, Corpas FJ, Sandalio LM, Palma JM, Gomez M, Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53:1255–1272

    Article  PubMed  Google Scholar 

  • Del Rio LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes: production, scavenging and role in cell signalling. Plant Physiol 141:330–335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demidchik, V. (2012) Reactive oxygen species and oxidative stress in plants. In: Shabala S (ed) Plant stress physiology. CAB International, p 24–58

    Google Scholar 

  • Dickinson BC, Srikun D, Chang CJ (2010) Mitochondrial-targeted fluorescent probes for reactive oxygen species. Curr Opin Chem Biol 4(1):50–56

    Article  CAS  Google Scholar 

  • Elstner EF (1991) Mechanisms of oxygen activation in different compartments of plant cells. In: Pell EJ, Steffen KL (eds) Active oxygen/oxidative stress and plant metabolism. American Society of Plant Physiologists, Rockville, pp 13–25

    Google Scholar 

  • Faize M, Burgos L, Faize L, Piqueras A, Nicolas E, Barba-Espin G, Clemente-Moreno MJ, Alcobendas R, Artlip T, Hernandez JA (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot 62:2599–2613

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplast, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–906

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Xing D, Li L, Zhang L (2008) Implication of reactive oxygen species and mitochondrial dysfunction in the early stages of plant programmed cell death induced by ultraviolet-C overexposure. Planta 227:755e767

    Article  CAS  Google Scholar 

  • Gavrilova AA, Razina SV (2014) Compartmentalization of the cell nucleus and spatial organization of the genome. Mol Biol 49(1):21–39

    Google Scholar 

  • Gechev TS, Breusegem FV, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28(11):1091–1101

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gleason C, Huang S, Thatcher L, Foley RC, Anderson CR, Carroll AJ, Millar AH, Singh KB (2011) Mitochondrial complex II has a key role in mitochondrial-derived reactive oxygen species influence on plant stress gene regulation and defense. Proc Natl Acad Sci U S A 108:10768–10773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glyan’ko AK, Ischenko AA (2010) Structural and functional characteristics of plant NADPH oxidase: a review. Appl Biochem Microbiol 46:463–471

    Article  CAS  Google Scholar 

  • Go YM, Jones DP (2002) Redox potential of GSH/GSSG couple: assay and biological significance. Methods Enzymol 348:93–112

    Google Scholar 

  • Go YM, Jones DP (2008) Redox compartmentalization in eukaryotic cells. Biochim Biophys Acta 1780:1273–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Go YM, Jones DP (2013) The redox proteome. J Biol Chem 288:26512–26520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Go YM, Pohl J, Jones DP (2009) Quantification of redox conditions in the nucleus. Methods Mol Biol 464:303–317

    Article  PubMed  Google Scholar 

  • Go YM, Park H, Koval M, Orr M, Reed M, Liang Y (2010) A key role for mitochondria in endothelial signalling by plasma cysteine/cystine redox potential. Free Radic Biol Med 48:275–283

    Article  CAS  PubMed  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151–157

    Article  PubMed  PubMed Central  Google Scholar 

  • Grivennikova VG, Vinogradov AD (2013) Mitochondrial production of reactive oxygen species. Biochem Mosc 78(13):1490–1511

    Article  CAS  Google Scholar 

  • Gupta KJ, Igamberdiev AU (2015) Compartmentalization of reactive oxygen species and nitric oxide production in plant cells: an overview. In: Gupta KJ, Igamberdiev AU (eds) Reactive oxygen and nitrogen species signaling and communication in plants. Springer International Publishing, Switzerland. 2015. doi:10.1007/978-3-319-10079-1_1

    Chapter  Google Scholar 

  • Halvey PJ, Hansen JM, Johnson JM, Go YM, Samali A, Jones DP (2007) Selective oxidative stress in cell nuclei by nuclear-targeted D-amino acid oxidase. Antioxid Redox Signal 9(7):807–816

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Gil SS, Fujita M (2014) Drought stress responses in plants, oxidative stress and antioxidant defense. In: Gill SS, Tuteja N (eds) Climate change and plant abiotic stress tolerance. Wiley, Weinheim, pp 209–249

    Google Scholar 

  • Hernandez-Barrera A, Quinto C, Johnson EA, Wu HM, Cheung AY, Cardenas L (2013) Using hyper as a molecular probe to visualize hydrogen peroxide in living plant cells: a method with virtually unlimited potential in plant biology. Methods Enzymol 527:275–290

    Article  CAS  PubMed  Google Scholar 

  • Heyneke E, Luschin-Ebengreuth N, Krajcer I, Wolkinger V, MĂ¼ller M, Zechmann B (2013) Dynamic compartment specific changes in glutathione and ascorbate levels in Arabidopsis plants exposed to different light intensities. BMC Plant Biol 13:104. doi:10.1186/1471-2229-13-104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heyno E, Mary V, Schopfer P, Krieger-Liszkay A (2011) Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes. Planta 234:35–45

    Article  CAS  PubMed  Google Scholar 

  • Hideg E, Kalai T, Hideg K (2011) Direct detection of free radicals and reactive oxygen species in thylakoids. Methods Mol Biol 684:187–200

    Article  CAS  PubMed  Google Scholar 

  • Hu YQ, Liu S, Yuan HM, Li J, Yan DW, Zhang JF (2010) Functional comparison of catalase genes in the elimination of photorespiratory H2O2 using promoter and 3 untranslated region exchange experiments in the Arabidopsis cat2 photo respiratory mutant. Plant Cell Environ 33:1656–1670

    Article  CAS  PubMed  Google Scholar 

  • Jacquot JP, Eklund H, Rouhier N, SchĂ¼rmann P (2009) Structural and evolutionary aspects of thioredoxin reductases in photosynthetic organisms. Trends Plant Sci 14:336–343

    Article  CAS  PubMed  Google Scholar 

  • Jajic I, Sarna T, Strzalka K (2015) Senescence, stress, and reactive oxygen species. Plant Sci 4:393–411

    CAS  Google Scholar 

  • Jimenez A, Hernandez JA, Pastori G, del Rio LA, Sevilla F (1998) Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol 118:1327–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DP (2006) Redefining oxidative stress. Antioxid Redox Signal 8:1865–1879

    Article  CAS  PubMed  Google Scholar 

  • Jones DP, Go YM (2010) Redox compartmentalization and cellular stress diabetes. Diabetes Obes Metab 12(2):116–125

    Google Scholar 

  • Kaludercic N, Carpi A, Nagayama T, Sivakumaran V, Zhu G, Lai EW (2014a) Monoamine oxidase B prompts mitochondrial and cardiac-dysfunction in pressure overloaded hearts. Antioxid Redox Signal 20:267–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaludercic N, Deshwal S, Lisa FD (2014b) Reactive oxygen and redox compartmentalization. Front Physiol 5., Article:285. doi:10.3389/fphys.2014.00285

    Article  PubMed  PubMed Central  Google Scholar 

  • Karpets YV, Kolupaev YE, Yastreb TO (2011) Effect of sodium nitroprusside on heat resistance of wheat coleoptiles: dependence on the formation and scavenging of reactive oxygen species. Russ J Plant Physiol 58(6):1027–1033

    Article  CAS  Google Scholar 

  • Kaur A, Kolanowski JL, New EJ (2016) Reversible fluorescent probes for biological redox states. Angew Chem Int Ed 55:1602–1613

    Article  CAS  Google Scholar 

  • Kaye Y, Golani Y, Singer Y, Leshem Y, Cohen G, Ercetin M, Gillaspy G, Levine A (2011) Inositol polyphosphate 5-phosphatase7 regulates the production of reactive oxygen species and salt tolerance in Arabidopsis. Plant Physiol 157:229–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keunen E, Peshev D, Vangronsveld J, Van Den Ende W, Cuypers A (2013) Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ 36(7):1242–1255

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Khan NA (2014) Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PS II activity, photosynthetic-nitrogen use efficiency and antioxidant metabolism. Protoplasma 251:1007–1019

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.) Plant Physiol Biochem 80:67–74

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Nazir F, Asgher M, Per TS, Khan NA (2015) Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol 178:9–18

    Article  CAS  Google Scholar 

  • Khan MIR, Iqbal N, Masood A, Mobin M, Anjum NA, Khan NA (2016a) Modulation and significance of nitrogen and sulfur metabolism in cadmium challenged plants. Plant Growth Regul 78:1–11

    Article  CAS  Google Scholar 

  • Khan MIR, Khan NA, Masood A, Per TS, Asgher M (2016b) Hydrogen peroxide alleviates nickel-inhibited photosynthetic responses through increase in use-efficiency of nitrogen and sulfur, and glutathione production in mustard. Front Plant Sci 7:44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura S, Kaya H, Kawarazaki T, Hiraoka G, Senzaki E, Michikawa M, Kuchitsu K (2012) Protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Arabidopsis NADPH oxidases and may function as a trigger for the positive feedback regulation of Ca2+ and reactive oxygen species. Biochim Biophys Acta 1823:398–405

    Article  CAS  PubMed  Google Scholar 

  • Koffler BE, Ebengreuth NL, Stabentheiner E, Muller M, Zechmann B (2014) Compartment specific response of antioxidants to drought stress in Arabidopsis. Plant Sci 227:133–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolupaev YE, Karpets YV (2013) Participation of reactive oxygen species in formation of induced resistances of plants to abiotic stressors. In: Suzuki M, Yamamoto S (eds) Handbook on reactive oxygen species (ROS): formation mechanisms, physiological roles and common harmful effects. Nova Science Publishers, NY, pp 109–136

    Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI (2003) NADPH oxidase Atrboh D and Atrboh F genes function in ROS dependent ABA signaling in Arabidopsis. EMBO J 22(11):2623–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwak JM, Nguyen V, Schroeder JI (2006) The role of reactive oxygen species in hormonal responses. Plant Physiol 141:323–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laloi C, Stachowiak M, Pers-Kamczyc E, Warzych E, Murgia I, Apel K (2007) Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana. Proc Natl Acad Sci USA 104:672–677

    Article  CAS  PubMed  Google Scholar 

  • Lee KP, Kim C, Landgraf F, Apel K (2007) EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc Nat Acad Sci USA 104:10270–10275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Seo PJ, Lee HJ, Park CM (2012) A nac transcription factor ntl4 promotes reactive oxygen species production during drought-induced leaf senescence in arabidopsis. Plant J Cell Mol Biol 70:831–844

    Article  CAS  Google Scholar 

  • Lodi R, Tonon C, Calabrese V, Schapira AH (2006) Friedreich’s ataxia: from disease mechanisms to therapeutic interventions. Antioxid Redox Signal 8:438–443

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Liu D, Liu S (2007) Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep 26(10):1909–1917

    Article  CAS  PubMed  Google Scholar 

  • Lukyanov KA, Belousov VV (2014) Genetically encoded fluorescent redox sensors. Biochim Biophys Acta 1840:745–756

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari R, Dubey RS (2009) Nickel-induced oxidative stress and the role of antioxidant defence in rice seedlings. Plant Growth Regul 59(1):37–49

    Article  CAS  Google Scholar 

  • Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17:9–15

    Article  CAS  PubMed  Google Scholar 

  • Maron BA, Michel T (2012) Subcellular localization of oxidants and redox modulation of endothelial nitric oxide synthase. Off J Japan Circ Soc. doi:10.1253/circj.CJ-12-1207

  • Meldi L, Brickner JH (2011) Compartmentalization of the nucleus. Trends Cell Biol 21(12):701–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer AJ, Dick TP (2010) Fluorescent protein-based redox probes. Antioxid Redox Signal 13(5):621–650

    Article  CAS  PubMed  Google Scholar 

  • Meyer Y, Reichheld JP, Vignols F (2005) Thioredoxins in Arabidopsis and other plants. Photosynth Res 86:419–433

    Article  CAS  PubMed  Google Scholar 

  • Miller EW, Albers AE, Pralle A, Isacoff EY, Chang CJ (2005) Boronate based fluorescent probes for imaging cellular hydrogen peroxide. J Am Chem Soc 127:16652–16659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33(4):453–467

    Article  CAS  PubMed  Google Scholar 

  • Minibayeva F, Kolesnikov O, Chasov A, Beckett RP, LĂ¼thje S, Vylegzhanina N, Buck F, Böttger M (2009) Wound-induced apoplastic peroxidase activities: their roles in the production and detoxification of reactive oxygen species. Plant Cell Environ 32:497–508

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Jha AB, Dubey RS (2011) Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248(3):565–577

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  PubMed  Google Scholar 

  • Moller IM (2001a) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  CAS  PubMed  Google Scholar 

  • Moller IM (2001b) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Ann Rev Plant Physiol Mol Biol 52:561e591

    Article  Google Scholar 

  • Mori IC, Schroeder JS (2004) Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiol 135:702–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naya L, Ladrera R, Ramos J, GonzĂ¡lez EM, Arrese-Igor C, Minchin FR, Becana M (2007) The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiol 144(2):1104–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L, Foyer CH (2002) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration. Ann Bot 89:841–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Mhamdi A, Queval G, Foyer CH (2013) Regulating the redox gatekeeper: vacuolar sequestration puts glutathione disulfide in its place. Plant Physiol 163(2):665–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Mhamdi A, Foyer CH (2014) The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol 164:1636–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NĂ¼hse TS, Bottrill AR, Jones AME, Peck SC (2007) Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J 51:931–940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oda T, Hashimoto H, Kuwabara N, Akashi S, Hayashi K, Kojima C, Wong HL, Kawasaki T, Shimamoto K, Sato M, Shimizu T (2010) Structure of the N-terminal regulatory domain of a plant NADPH oxidase and its functional implications. J Biol Chem 285:1435–1445

    Article  CAS  PubMed  Google Scholar 

  • Ogasawara Y, Kaya H, Hiraoka G, Yumoto F, Kimura S, Kadota Y, Hishinuma H, Senzaki E, Yamagoe S, Nagata K, Nara M, Suzuki K, Tanokura M, Kuchitsu K (2008) Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J Biol Chem 283:8885–8892

    Article  CAS  PubMed  Google Scholar 

  • Pani G, Bedogni B, Colavitti R, Anzevino R, Borrello S, Gleotti T (2001) Cell compartmentalization in redox signaling. IUBMB Life 52:7–16

    Article  CAS  PubMed  Google Scholar 

  • Peshev D, Vergauwen R, Moglia A, Hideg E, Van den Ende W (2013) Towards understanding vacuolar antioxidant mechanisms: a role for fructans? J Exp Bot 64(4):1025–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrov V, Hille J, Mueller-Roeber B, Gechev TS (2015) ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci 6:69. doi:10.3389/fpls..00069

    Article  PubMed  PubMed Central  Google Scholar 

  • Piantadosi CA (2008) Carbon monoxide, reactive oxygen signaling, and oxidative stress. Free Radic Biol Med 45:562–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pottosin I, Velarde-BuendĂ­ AM, Bose J, Zepeda-Jazo I, Shabala S, Dobrovinskaya O (2014) Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane: implications for plant adaptive responses. J Exp Bot:1–13. doi:10.1093/jxb/ert423

  • Purvis AC (1997) Role of the alternative oxidase in limiting superoxide production by plant mitochondria. Physiol Plant 100:165–170

    Article  CAS  Google Scholar 

  • Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol 50:2e18

    Article  CAS  Google Scholar 

  • Queval G, Jaillard D, Zechmann B, Noctor G (2011) Increased intracellular H2O2 availability preferentially drives glutathione accumulation in vacuoles and chloroplasts. Plant Cell Environ 34:21–32

    Article  CAS  PubMed  Google Scholar 

  • Rhee SG, Chae HZ, Kim K (2005) Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signalling. Free Radic Biol Med 38:1543–1552

    Article  CAS  PubMed  Google Scholar 

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006a) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol 141:357–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006b) Mitochondrial reactive oxygen species: contribution to oxidative stress and interorganellar signaling. Plant Physiol 141:357–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivera-Ingraham GA, Rocchetta I, Bickmeyer U, Meyer S, Abele D (2016) Spatial compartmentalization of free radical formation and mitochondrial heterogeneity in bivalve gills revealed by live-imaging techniques. Front Zool 13:4. doi:10.1186/s12983-016-0137-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robinson KM, Janes MS, Pehar M, Monette JS, Ross MF, Hagen TM (2006) Selective fluorescent imaging of super oxide in vivo using ethidium-based probes. Proc Natl Acad Sci USA 103:15038–15043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gomez M, Del R, Sandalio LA, L.M. (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29:1532–1544

    Article  CAS  PubMed  Google Scholar 

  • Sagi M, Fluhr R (2001) Superoxide production by plant homologues of the gp91phox NADPH oxidase: modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol 126:1281–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212

    Article  CAS  PubMed  Google Scholar 

  • Schrader M, Fahimi HD (2006) Peroxisomes and oxidative stress. Biochim Biophys Acta 1763:1755–1766

    Article  CAS  PubMed  Google Scholar 

  • Schroeder P, Popp R, Wiegand B, Altschmied J, Haendeler J (2007) Nuclear redox-signalling is essential for apoptosis inhibition in endothelial cells- important role for nuclear thioredoxin-1. Arterioscler Thromb Vasc Biol 27:2325–2331

    Article  CAS  PubMed  Google Scholar 

  • Sewelam N, Kazan K, Schenk PM (2016) Global plant stress signaling: reactive oxygen species at the cross-road. Front Plant Sci 7., Article:187. doi:10.3389/fpls.2016.00187

    Article  PubMed  PubMed Central  Google Scholar 

  • Shapiguzov A, Vainonen JP, Wrzaczek M, Kangasjärvi J (2012) ROS-talk – how the apoplast, the chloroplast, and the nucleus get the message through. Front Plant Sci 3:292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Aust J Bot 2012:1–26

    Google Scholar 

  • Smith CV, Jones DP, Guenthner TM, Lash LH, Lauterburg BH (1996) Compartmentation of glutathione: implications for the study of toxicity and disease. Toxicol Appl Pharmacol 140:1–12

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Miller G, Salazar C, Mondal HA, Shulaev E, Cortes DF (2013) Temporal-spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants. Plant Cell 25:3553–3569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L (2008) Local positive feedback regulation determines cell shape in root hair cells. Science 319:1241–1244

    Article  CAS  PubMed  Google Scholar 

  • Takimoto E, Kass DA (2007) Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension 49:241–248

    Article  CAS  PubMed  Google Scholar 

  • Tarpey MM, Wink DA, Grisham MB (2004) Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am J Phys Regul Integr Comp Phys 286:431–444

    Google Scholar 

  • Tewari RK, Hahn EJ, Paek KY (2008) Function of nitric oxide and superoxide anion in the adventitious root development and antioxidant defence in Panax ginseng. Plant Cell Rep 27:563–573

    Article  CAS  PubMed  Google Scholar 

  • Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H (2010) Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot 67(3):429–443

    Article  CAS  Google Scholar 

  • Torres MA, Dangl JL, Jones JDG (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci U S A 99:517–522

    Article  CAS  PubMed  Google Scholar 

  • Toumi I, Moschou PN, Paschalidis KA, Bouamama B, Ben Salem-Fnayou A, Ghorbel AW, Mliki A, Roubelakis-Angelakis KA (2010) Abscisic acid signals reorientation of polyamine metabolism to orchestrate stress responses via the polyamine exodus pathway in grapevine. J Plant Physiol 167(7):519–525

    Article  CAS  PubMed  Google Scholar 

  • Tripathy BC, OelmĂ¼ller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7(12):1621–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valluru R, Lammens W, Claupein W, Van den Ende W (2008) Freezing tolerance by vesicle-mediated fructan transport. Trends Plant Sci 13:409–414

    Article  CAS  PubMed  Google Scholar 

  • Wanders RJ, Waterham HR (2006) Biochemistry of mammalian peroxisomes revisited. Annu Rev Biochem 75:295–332

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9(5):244–252

    Article  CAS  PubMed  Google Scholar 

  • Waypa GB, Marks JD, Guzy R, Mungai PT, Schriewer J, Dockie D (2010) Hypoxia triggers subcellular compartment redox signaling in vascular smooth muscle cells. Circ Res 106:526–535

    Article  CAS  PubMed  Google Scholar 

  • Wei SJ, Botero A, Hirota K, Bradbury CM, Markovina S, Laszlo A, Spitz DR, Goswami PC, Yodoi J, Gius D (2000) Thioredoxin nuclear translocation and interaction with redox factor-1 activates the activator protein-1 transcription factor in response to ionizing radiation. Cancer Res 60(23):6688–6695

    CAS  PubMed  Google Scholar 

  • Winterbourn CC (2014) The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochim Biophys Acta 1840:730–738

    Article  CAS  PubMed  Google Scholar 

  • Wong HL, Pinontoan R, Hayashi K, Tabata R, Yaeno T, Hasegawa K, Kojima C, Yoshioka H, Iba K, Kawasaki T, Shimamoto K (2007) Regulation of rice NADPH-oxidase by Rac GTPase to its N-terminal extension. Plant Cell 19:4022–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumoto H (2002) Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol 128:63–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yesbergenova Z, Yang G, Oron E, Soffer D, Fluhr R, Sagi M (2005) The plant mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid. Plant J 42(6):862–876

    Article  CAS  PubMed  Google Scholar 

  • You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092. doi:10.3389/fpls.2015.01092

    Article  PubMed  PubMed Central  Google Scholar 

  • Yun BW, Feechan A, Yin M, Saidi NBB, Le Bihan T, Yu M, Moore JW, Kang JG, Kwon E, Kang JG, Spoel SH, Pallas JA, Loake GJ (2011) S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478:264–268

    Article  CAS  PubMed  Google Scholar 

  • Zarepour M, Kaspari K, Stagge S, Rethmeier R, Mendel R, Bittner F (2010) Xanthine dehydrogenase AtXDH1 from Arabidopsis thaliana is a potent producer of superoxide anions via its NADH oxidase activity. Plant Mol Biol 72:301–310

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhu H, Zhang Q, Maoyin L, Yan M, Wang R, Wang L, Welti R, Zhang W, Wang X (2009) Phospholipase Dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell 21:2357–2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang CJ, Zhao BC, Ge WN, Zhang YF, Song Y, Sun DY, Guo Y (2011) An apoplastic h-type thioredoxin is involved in the stress response through regulation of the apoplastic reactive oxygen species in rice. Plant Physiol 157(4):1884–1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Zhang Q, Wu J, Zheng X, Zheng S, Sun X, Qiu Q, Lu T (2013) Gene knockout study reveals that cytosolic ascorbate peroxidase 2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PLoS One 8:e57472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Wang X, Li P, Huang F, Wang H, Zhang W, Tang B (2015) Elucidating the relationship between superoxide anion levels and lifespan using an enhanced two-photon fluorescence imaging probe. Chem Commun 51:9710–9713

    Article  CAS  Google Scholar 

  • Zhou L, Aon MA, Liu T, O’Rourke B (2011) Dynamic modulation of Ca2+ sparks by mitochondrial oscillations in isolated guinea pig cardiomyocytes under oxidative stress. J Mol Cell Cardiol 51:632–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Bhardwaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Gautam, V. et al. (2017). ROS Compartmentalization in Plant Cells Under Abiotic Stress Condition. In: Khan, M., Khan, N. (eds) Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress. Springer, Singapore. https://doi.org/10.1007/978-981-10-5254-5_4

Download citation

Publish with us

Policies and ethics