Skip to main content

Quantification of Redox Conditions in the Nucleus

  • Protocol
The Nucleus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 464))

Abstract

Many nuclear proteins contain thiols, which undergo reversible oxidation and are critical for normal function. These proteins include enzymes, transport machinery, structural proteins, and transcription factors with conserved cysteine in zinc fingers and DNA-binding domains. Uncontrolled oxidation of these thiols causes dysfunction, and two major thiol-dependent antioxidant systems provided protection. The redox states of these systems, including the small redox active protein thioredoxin-1 (Trx1) and the abundant, low molecular weight thiol antioxidant glutathione (GSH), in nuclei provide means to quantify nuclear redox conditions. Redox measurements are obtained under conditions with excess thiol-reactive reagents. Here we describe a suite of methods to measure nuclear redox state, which include a redox Western blot technique to quantify the redox state of Trx l, a biotinylated iodoacetamide (BIAM) method for thioredoxin reductase-1 (TrxR1), GSH redox measurement using total protein S-glutathionylation, and a redox isotope-coded affinity tag (ICAT) method for measuring oxidation of specific cysteines in high-abundance nuclear proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones, D.P. (2006) Redefining oxidative stress. Antioxid. Redox Signal. 8, 1865-1879.

    Article  PubMed  CAS  Google Scholar 

  2. Hansen, J.M., Go, Y.M., and Jones, D.P. (2006) Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu. Rev. Pharmacol. Toxicol. 46, 215-234.

    Article  PubMed  CAS  Google Scholar 

  3. Dijkwel, P.A. and Wenink, P.W. (1986) Structural integrity of the nuclear matrix: differential effects of thiol agents and metal chelators. J. Cell Sci. 84, 53-67.

    PubMed  CAS  Google Scholar 

  4. Klug, A. and Rhodes, D. (1987) Zinc fingers: a novel protein fold for nucleic acid recognition. Cold Spring Harb. Symp. Quant. Biol. 52, 473-482.

    Article  PubMed  CAS  Google Scholar 

  5. De Capoa, A., Ferraro, M., Lavia, P., Pelliccia, F., and Finazzi-Agro, A. (1982) Silver staining of the nucleolus organizer regions (NOR) requires clusters of sulfhydryl groups. J Histochem. Cytochem. 30, 908-911.

    Article  PubMed  CAS  Google Scholar 

  6. Suthanthiran, M., Anderson, M.E., Sharma, V.K., and Meister, A. (1990) Glutathione regulates activation-dependent DNA synthesis in highly purified normal human T lymphocytes stimulated via the CD2 and CD3 antigens. Proc. Natl. Acad. Sci. USA 87, 3343-3347.

    Article  PubMed  CAS  Google Scholar 

  7. Sandstrom, B.E. and Marklund, S.L. (1990) Effects of variation in glutathione peroxidase activity on DNA damage and cell survival in human cells exposed to hydrogen peroxide and t-butyl hydroperoxide. Biochem. J. 271, 17-23.

    PubMed  CAS  Google Scholar 

  8. Sen, C.K. and Packer, L. (1996) Antioxidant and redox regulation of gene transcription. FASEB J. 10, 709-720.

    PubMed  CAS  Google Scholar 

  9. Hirota, K., Murata, M., Sachi, Y., Nakamura, H., Takeuchi, J., Mori, K., and Yodoi, J. (1999) Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-kappaB. J. Biol. Chem. 274, 27891-27897.

    Article  PubMed  CAS  Google Scholar 

  10. Wei, S.J., Botero, A., Hirota, K., Bradbury, C.M., Markovina, S., Laszlo, A., Spitz, D.R., Goswami, P.C., Yodoi, J., and Gius, D. (2000) Thioredoxin nuclear translocation and interaction with redox factor-1 activates the activator protein-1 transcription factor in response to ionizing radiation. Cancer Res. 60, 6688-6695.

    PubMed  CAS  Google Scholar 

  11. Bellomo, G., Vairetti, M., Stivala, L., Mirabelli, F., Richelmi, P., and Orrenius, S. (1992) Demonstration of nuclear compartmentalization of glutathione in hepatocytes. Proc. Natl. Acad. Sci. USA 89, 4412-4416.

    Article  PubMed  CAS  Google Scholar 

  12. Briviba, K., Fraser, G., Sies, H., and Ketterer, B. (1993) Distribution of the monochlorobimane-glutathione conjugate between nucleus and cytosol in isolated hepatocytes. Biochem. J. 294, 631-633.

    PubMed  CAS  Google Scholar 

  13. Cotgreave, I.A. (2003) Analytical developments in the assay of intra- and extracellular GSH homeostasis: specific protein S-glutathionylation, cellular GSH and mixed disulphide compartmentalisation and interstitial GSH redox balance. Biofactors 17, 269-277.

    Article  PubMed  CAS  Google Scholar 

  14. Holmgren, A. and Fagerstedt, M. (1982) The in vivo distribution of oxidized and reduced thioredoxin in Escherichia coli. J. Biol. Chem. 257, 6926-6930.

    PubMed  CAS  Google Scholar 

  15. Watson, W.H., Pohl, J., Montfort, W.R., Stuchlik, O., Reed, M.S., Powis, G., and Jones, D.P. (2003) Redox potential of human thioredoxin 1 and identification of a second dithiol/disulfide motif. J. Biol. Chem. 278, 33408-33415.

    Article  PubMed  CAS  Google Scholar 

  16. Janssen, Y.M. and Sen, C.K. (1999) Nuclear factor kappa B activity in response to oxidants and antioxidants. Methods Enzymol. 300, 363-374.

    Article  PubMed  CAS  Google Scholar 

  17. Padgett, C.M. and Whorton, A.R. (1995) S-nitrosoglutathione reversibly inhibits GAPDH by S-nitrosylation. Am. J. Physiol. 269, C739-749.

    PubMed  CAS  Google Scholar 

  18. Stadtman, T.C. (2002) Discoveries of vitamin B12 and selenium enzymes. Annu. Rev. Biochem. 71, 1-16.

    Article  PubMed  CAS  Google Scholar 

  19. Gasdaska, P.Y., Gasdaska, J.R., Cochran, S., and Powis, G. (1995) Cloning and sequencing of a human thioredoxin reductase. FEBS Lett. 373, 5-9.

    Article  PubMed  CAS  Google Scholar 

  20. Mustacich, D. and Powis, G. (2000) Thioredoxin reductase. Biochem. J. 346, 1-8.

    Article  PubMed  CAS  Google Scholar 

  21. Soini, Y., Kahlos, K., Napankangas, U., Kaarteenaho-Wiik, R., Saily, M., Koistinen, P., Paaakko, P., Holmgren, A., and Kinnula, V.L. (2001) Widespread expression of thioredoxin and thioredoxin reductase in non-small cell lung carcinoma. Clin. Cancer Res. 7, 1750-1757.

    PubMed  CAS  Google Scholar 

  22. Kim, J.R., Lee, S.M., Cho, S.H., Kim, J.H., Kim, B.H., Kwon, J., Choi, C.Y., Kim, Y.D., and Lee, S.R. (2004) Oxidation of thioredoxin reductase in HeLa cells stimulated with tumor necrosis factor-alpha. FEBS Lett. 567, 189-196.

    Article  PubMed  CAS  Google Scholar 

  23. Brigelius, R., Lenzen, R., and Sies, H. (1982) Increase in hepatic mixed disulphide and glutathione disulphide levels elicited by paraquat. Biochem. Pharmacol. 31, 1637-1641.

    Article  PubMed  CAS  Google Scholar 

  24. Brigelius, R., Muckel, C., Akerboom, T.P., and Sies, H. (1983) Identification and quantitation of glutathione in hepatic protein mixed disulfides and its relationship to glutathione disulfide. Biochem. Pharmacol. 32, 2529-2534.

    Article  PubMed  CAS  Google Scholar 

  25. Lash, L.H. and Jones, D.P. (1985) Distribution of oxidized and reduced forms of glutathione and cysteine in rat plasma. Arch. Biochem. Biophys. 240, 583-592.

    Article  PubMed  CAS  Google Scholar 

  26. Go, Y.M., Ziegler, T.R., Johnson, J.M., Gu, L., Hansen, J.M., and Jones, D.P. (2007) Selective protection of nuclear thioredoxin-1 and glutathione redox systems against oxidation during glucose and glutamine deficiency in human colonic epithelial cells. Free Radic. Biol. Med. 42, 363-370.

    Article  PubMed  CAS  Google Scholar 

  27. Sethuraman, M., McComb, M.E., Huang, H., Huang, S., Heibeck, T., Costello, C.E., and Cohen, R.A. (2004) Isotope-coded affinity tag (ICAT) approach to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures. J. Proteome Res. 3, 1228-1233.

    Article  PubMed  CAS  Google Scholar 

  28. Halvey, P.J., Watson, W.H., Hansen, J.M., Go, Y.M., Samali, A., and Jones, D.P. (2005) Compartmental oxidation of thiol-disulphide redox couples during epidermal growth factor signalling. Biochem. J. 386, 215-219.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Go, YM., Pohl, J., Jones, D.P. (2008). Quantification of Redox Conditions in the Nucleus. In: Hancock, R. (eds) The Nucleus. Methods in Molecular Biology, vol 464. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-461-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-461-6_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-460-9

  • Online ISBN: 978-1-60327-461-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics