Skip to main content

Unravelling the Interaction of Plant and Their Phyllosphere Microbiome

  • Chapter
  • First Online:
Understanding Host-Microbiome Interactions - An Omics Approach

Abstract

The phyllosphere is a type of an ecosystem having economical and ecological values and comprises of several microbial population that are present on the aerial parts of the plant. It is a vibrant environment where inhabitant microorganisms have the ability to change in humidity, temperature and heat during the whole day and night. The interaction between the microorganisms in the phyllosphere influences the growth of plants in natural habitat, the productivity of agricultural crops and the protective of horticultural produce for human consumption. Phyllosphere microbial community will help us to understand a deep knowledge of the phyllosphere microorganisms. The focus of this chapter will be (1) diversity study of phyllosphere microbial community; (2) mechanisms of phyllosphere microbe colonization; (3) understanding of the leaf structure, environmental and ecological parameters for growth and survival colonists; (4) understanding of the influences of biotic and abiotic factors on phyllospheric microbiome; (5) adaptations of microorganisms for establishment in the habitat of phyllosphere; and (6) significance of plant genotypic control of phyllosphere communities and its role in plant protection and plant growth. Futhermore, theinsights study of phyllosphere microbiota; structure, function and valuable challenges for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARDRA:

Amplified ribosomal DNA restriction analysis

EPS:

Extracellular polymeric substances

IAA:

Indole-3-acetic acid

PCR:

Polymerase chain reaction

PMC:

Phyllosphere microbial communities

rDNA:

Ribosomal DNA

ROS:

Reactive oxygen species

RT-PCR:

Reverse transcription polymerase chain reaction

VOC:

Volatile organic compound

References

  • Abanda-Nkpwatt D, Mush M, Tschiersch J, Boettner M, Schwab W (2006) Molecular interaction between Methllobacteria extorquens and seedlings: growth promotion, methanol consumption, and localizations of the methanol emission site. J Exp Bot 57(15):4025–4032

    Article  CAS  PubMed  Google Scholar 

  • Abril AB (2005) The importance of phyllosphere microbial populations in nitrogen cycling in the Chaco semi-arid woodland. J Trop Ecol 21:103–107

    Article  Google Scholar 

  • Alvarez-Loayza P, White JF, Torres MS, Balslev H, Kristiansen T, Svenning JC, Gil N (2011) Light converts endosymbiotic fungus to pathogen, influencing seedling survival and niche-space filling of a common tropical tree, Iriartea deltoidea. PLoS One 6:e16386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atamna-Ismaeel N, Finkel OM, Glaser F, Sharon I, Schneider R, Post AF (2012) Microbial rhodopsins on leaf surfaces of terrestrial plants. Environ Microbiol 14:140–146

    Article  CAS  PubMed  Google Scholar 

  • Bacon CW, White JE (2000) Microbialendophytes. Marcel Dekker New York, USA:4–5

    Google Scholar 

  • Baldotto LEB, Olivares FL (2008) Phylloepiphytic interaction between bacteria and different plant species in a tropical agricultural system. Can J Microbiol 54:918–931

    Article  CAS  PubMed  Google Scholar 

  • Barlocher F (2016) Aquatic hyphomycetes in a changing environment. Fungal Ecol 19:14–26

    Article  Google Scholar 

  • Beattie GA, Lindow SE (1999) Bacterial colonization of leaves: a spectrum of strategies. Phytopathology 89:353–359

    Article  CAS  PubMed  Google Scholar 

  • Bercel A (2012) Novel techniques and finding in the study of plant microbiota: search for plant probiotics. Plant Sci 193:96–102

    Google Scholar 

  • Bodenhausen N, Bortfeld-Miller M, Ackermann M, Vorholt JA (2014) A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet 10:100428310–100428137

    Article  Google Scholar 

  • Bringel F, Couee I (2015) Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmosphere trace gas dynamics. Front Microbiol 6:486

    Article  PubMed  PubMed Central  Google Scholar 

  • Brusseau GA, Bulygina ES, Hanson RS (1994) Phylogenetic analysis and development of probes for differentiating methylotrophic bacteria. Appl Environ Microbiol 60:626–636

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, Loren V, van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Burkhardt J, Hunsche M (2013) “Breath figures” on leaf surfaces formation and effects of microscopic leaf wetness. Front Plant Sci 4:422

    Article  PubMed  PubMed Central  Google Scholar 

  • Chauvet E, Cornut J, Sridhar KR, Selosse MA, Barlocher¨ F (2016) Beyond the water column: aquatic hyphomycetes outside their preferred habitat. Fungal Ecol 19:112–127

    Article  Google Scholar 

  • Chung SH, Rosa C, Scully ED, Peiffer M, Tooker JF, Hoover K (2013) Herbivore exploits orally secreted bacteria to suppress plant defenses. Proc Natl Acad Sci U S A 110:15728–15733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Copeland JK, Yuan L, Layeghifard M, Wang PW, Guttman DS (2015) Seasonal community succession of the phyllosphere microbiome. Mol Plant-Microbe Interact 28:274–285

    Article  CAS  PubMed  Google Scholar 

  • Cordier T, Robin C, Capdevielle X, Fabreguettes O, Desprez-Loustau ML, Vacher C (2012) The composition of phyllosphere fungal assemblages of European beech (Fagus sylvatica) varies significantly along an elevation gradient. New Phytol 196:510–519

    Article  PubMed  Google Scholar 

  • Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, von Mering C, Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. P Natl Acad Sci USA 106:16428–16433

    Article  CAS  Google Scholar 

  • De Oliveira Costa L, de Queiroz M, Borges A, de Moraes C, de Araujo E (2012) Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris). Braz J Microbiol 43:1562–1575

    Article  PubMed  PubMed Central  Google Scholar 

  • Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156:1322–1335

    Article  CAS  PubMed  Google Scholar 

  • Fürnkranz M (2008) Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. ISME J 2(5):561–570

    Article  PubMed  Google Scholar 

  • Glawe DA (2008) The powdery mildews: a review of the world’s most familiar (yet poorly known) plant pathogens. Annu Rev Phytopathol 46:27–51

    Article  CAS  PubMed  Google Scholar 

  • Hirano SS, Upper CD (2000) Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae-a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev 64:624–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heyndrickx M, Vauterin L, Vandamme P, Kersters K, De Vos P (1996) Applicability of combined amplified ribosomal DNA restriction analysis (ARDRA) patterns in bacterial phylogeny and taxonomy. J Microbiol Methods 26:247–259

    Article  CAS  Google Scholar 

  • Humphrey PT, Nguyen TT, Villalobos MM, Whiteman NK (2014) Diversity and abundance of phyllosphere bacteria are linked to insect herbivory. Mol Ecol 23:1497–1515

    Article  CAS  PubMed  Google Scholar 

  • Inacio´ J, Ludwig W, Spencer-Martins I, Fonseca A (2010) Assessment of phylloplane yeasts on selected Mediterranean plants by FISH with group- and species-specific oligonucleotide probes. FEMS Microbiol Ecol 71(1):61–72

    Article  PubMed  Google Scholar 

  • Innerebner G, Knief C, Vorholt JA (2011) Protection of Arabidopsis thaliana against leaf-pathogenicPseudomonas syringae by Sphingomonas strains in a controlled model system. Appl Environ Microbiol 77(10):3202–3210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson CR, Denney WC (2010) Annual and seasonal variation in the phyllosphere bacterial community associated with leaves of the southern Magnolia (Magnolia grandiflora). Microb Ecol 61:113–122

    Article  PubMed  Google Scholar 

  • Jourand P, Giraud E, Bena G, Sy A, Willems A, Gillis M (2004) Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule-forming and nitrogen-fixing bacteria. Int J Syst Evol Microbiol 54:2269–2273

    Article  CAS  PubMed  Google Scholar 

  • Junker RR (2011) Composition of epiphytic bacterial com- munities differs on petal sand leaves. Plant Biol 13:918–924

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Singh D, Lai-Hoe A, Go R, Abdul Rahim R, Ainuddin AN, Chun J, Adams JM (2012) Distinctive phyllosphere bacterial communities in tropical trees. Microb Ecol 63:674–681

    Article  PubMed  Google Scholar 

  • Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, von Mering C, Vorholt JA (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378–1390

    Article  CAS  PubMed  Google Scholar 

  • Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner, AA, Azevedo JL, Júlia, K S, and A, Pizzirani-Kleiner, A. (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    Google Scholar 

  • Leveau JHJ (2006) Microbial communities in the phyllosphere. In: Riederer M, Muller C (eds) Biology of the plant cuticle. Blackwell, Oxford, pp 334–367

    Chapter  Google Scholar 

  • Leveau JHJ, Tech JJ (2011) Grapevine microbiomics: bacterial diversity on grape leaves and berries revealed by high-throughput sequence analysis of 16S rRNA amplicons. Acta Hort(ISHS) 905:31–42

    Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Velasco G, Welbaum GE, Boyer RR, Mane SP, Ponder MA (2011) Changes in spinach phylloepiphytic bacteria communities following minimal processing and refrigerated storage described using pyrosequencing of 16S rRNA amplicons. J Appl Microbiol 110:1203–1214

    Article  CAS  PubMed  Google Scholar 

  • Maughan H, Wang PW, Diaz Caballero J, Fung P, Gong Y, Donaldson SL, Yuan L, Keshavjee S, Zhang Y, Yau YCW, Waters VJ, Tullis DE, Hwang DM, Guttman DS (2012) Analysis of the cystic fibrosis lung microbiota via serial Illumina se-quencing of bacterial 16S rRNA hypervariable regions. PLoS One 7:e45791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manching HC, Balint-Kurti PJ, Stapleton AE (2014) Southern leaf blight disease is correlated with decreased maize leaf epiphytic bacterial species richness and the phyllosphere bacterial diversity decline is enhanced by nitrogen fertilisation. Front Plant Sci 5:403

    Article  PubMed  PubMed Central  Google Scholar 

  • Mason CJ, Couture JJ, Raffa KF (2014) Plant-associated bacteria degrade defense chemicals and reduce their adverse effects on an insect defoliator. Oecologia 175:901–910

    Article  PubMed  Google Scholar 

  • Monier JM, Lindow SE (2004) Frequency, size and localization of bacteria aggregates on bean leaf surface. Appl Environ Microbiol 70:348–355

    Article  Google Scholar 

  • Moran MA, Miller WL (2007) Resourceful heterotrophs make the most of light in the coastal ocean. Nat Rev Microbiol 5:792–800

    Article  CAS  PubMed  Google Scholar 

  • Morris CE, Conen F, Huffman JA, Phillips V, Pöschl U, Sands DC (2014) Bioprecipitation: a feedback cycle linking Earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere. Glob Chang Biol 20:341–351

    Article  PubMed  Google Scholar 

  • Nakamiya K, Nakayama T, Ito H, Shibata Y, Morita M (2009) Isolation and properties of a 2-chlorovinylarsonic acid-degrading microorganism. J Hazard Mater 165:388–393

    Article  CAS  PubMed  Google Scholar 

  • Penuelas J, Summer season Kim M, Singh D, Lai-Hoe A, Go R, Abdul Rahim R, Ainuddin AN, Chun J, Adams JM (2012) Distinctive phyllosphere bacterial communities in tropical trees. Microb Ecol 63:674–681

    Article  Google Scholar 

  • Perazzolli M, Antonielli L, Storari M, Storari M, Puopolo G, Pancher M, Giovannini O, Pindo M, Pertot I (2014) Resilience of the natural phyllosphere microbiota of the grapevine to chemical and biological pesticides. Appl Environ Microbiol 80:3585–9356

    Article  PubMed  PubMed Central  Google Scholar 

  • Rastogi G, Sbodio A, Tech JJ, Suslow TV, Coaker GL, Leveau JHJ (2012) Leaf microbiota in an agroecosystem: Spatiotem-poral variation in bacterial community composition on field-grown lettuce. ISME J 6:1812–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rastogi G (2013) New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol Lett 348:1–10

    Article  CAS  PubMed  Google Scholar 

  • Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N (2010) The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol 12:2885–2289

    Article  PubMed  PubMed Central  Google Scholar 

  • Remus-Emesermann MN, Tecon R, Kowalchuk GA, Laveau JH (2012) Variation in local carrying capacity and the individual fate of bacterial colonizers in the phyllosphere. ISME J 6:756–765

    Article  Google Scholar 

  • Reisberg EE, Hildebrandt U, Riederer M, Hentschel U (2013) Distinct phyllosphere bacterial communities on Arabidopsis wax mutant leaves. PLoS One 8:e78613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rennie EA, Turgeon R (2009) A comprehensive picture of phloem loading strategies. Proc Natl Acad Sci U S A 106:14162–14167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez RJ, White JF Jr., Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182(2):314–330

    Google Scholar 

  • Scheublin TR, Leveau JH (2013) Isolation of Arthrobacter spices from the phyllosphere and demonstration of their epiphytic fitness. Microbiology 2:205–2013

    CAS  Google Scholar 

  • Schreiber L, Krimm U, Knoll D (2004) Interactions between epiphyllic microorganisms and leaf cuticles. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology, Berlin-Heidelberg, Springer-Verlag, pp 145–156

    Google Scholar 

  • Stoitsova SO, Braun Y, Ullrich MS, Weingart H (2008) Characterization of the RND-type multidrug efflux pump MexAB-OprM of the plant pathogen Pseudomonas syringae. Appl Environ Microbiol 74:3387–3393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stromberg KD, Kinkel LL, Leonard KJ (1999) Relationship between phyllosphere population sizes of Xanthomonas translucens pv. Translucens and bacterial leaf streak severity on wheat seedling. Phytopathology 89:131–135

    Article  CAS  PubMed  Google Scholar 

  • Sulmon C, Gouesbet G, Ramel F, Cabello-Hurtado F, Penno C, Bechtold N (2011) Carbon dynamics, development and stress responses in Arabidopsis: involvement of the APL4 subunit of ADP-glucose pyrophosphorylase (starch synthesis). PLoS One 6:e26855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trouvelot S, Héloir MC, Poinssot B, Gauthier A, Paris F, Guillier C (2014) Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays. Front Plant Sci 5:592

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsuji K, Tsien HC, Hanson RS, De Palma SR, Scholtz R, LaRoche S (1990) 16S ribosomal RNA sequence analysis for determination of phylogenetic relationship among methylotrophs. J Gen Microbiol 136:1–10

    Article  CAS  PubMed  Google Scholar 

  • Vacher C, Hampe A, Porte AJ, Sauer U, Compant S, Cindy E, Morris CE (2016) The phyllosphere: microbial jungle at the plant–climate interface. Annu Rev Ecol Evol Syst 47:1–24

    Article  Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev 10:828–840

    CAS  Google Scholar 

  • Williams TR, Moyne A-L, Harris LJ, Marco ML (2013) Season, irrigation, leaf age, and Escherichia coli inoculation influence the bacterial diversity in the lettuce phyllosphere. PLoS One 8:e68642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeats TH, Rose JKC (2013) The formation and function of plant cuticles. Plant Physiol 163:5–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support obtained from the Department of Biotechnology, Government of India and New Delhi, India, for providing DBT BioCARe Women Scientist Fellowship under Grant Ref. BT/Bio-CARe/03/420/2012 & 03-09-2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chetana Roat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Roat, C., Saraf, M. (2017). Unravelling the Interaction of Plant and Their Phyllosphere Microbiome. In: Singh, R., Kothari, R., Koringa, P., Singh, S. (eds) Understanding Host-Microbiome Interactions - An Omics Approach. Springer, Singapore. https://doi.org/10.1007/978-981-10-5050-3_10

Download citation

Publish with us

Policies and ethics