Skip to main content

Therapeutic Cancer Vaccines

  • Chapter
  • First Online:
Progress in Cancer Immunotherapy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 909))

Abstract

Cancer is one of the major leading death causes of diseases. Prevention and treatment of cancer is an important way to decrease the incidence of tumorigenesis and prolong patients’ lives. Subversive achievements on cancer immunotherapy have recently been paid much attention after many failures in basic and clinical researches. Based on deep analysis of genomics and proteomics of tumor antigens, a variety of cancer vaccines targeting tumor antigens have been tested in preclinical and human clinical trials. Many therapeutic cancer vaccines alone or combination with other conventional treatments for cancer obtained spectacular efficacy, indicating the tremendously potential application in clinic. With the illustration of underlying mechanisms of cancer immune regulation, valid, controllable, and persistent cancer vaccines will play important roles in cancer treatment, survival extension and relapse and cancer prevention. This chapter mainly summarizes the recent progresses and developments on cancer vaccine research and clinical application, thus exploring the existing obstacles in cancer vaccine research and promoting the efficacy of cancer vaccine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams, S. I., Hand, P. H., Tsang, K. Y., & Schlom, J. (1996). Mutant ras epitopes as targets for cancer vaccines. Seminars in Oncology, 23, 118–134.

    CAS  PubMed  Google Scholar 

  • Andtbacka, R. H., Kaufman, H. L., Collichio, F., Amatruda, T., Senzer, N., Chesney, J., Delman, K. A., Spitler, L. E., Puzanov, I., Agarwala, S. S., et al. (2015). Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 33, 2780–2788.

    Article  CAS  Google Scholar 

  • Arum, C. J., Anderssen, E., Viset, T., Kodama, Y., Lundgren, S., Chen, D., & Zhao, C. M. (2010). Cancer immunoediting from immunosurveillance to tumor escape in microvillus-formed niche: A study of syngeneic orthotopic rat bladder cancer model in comparison with human bladder cancer. Neoplasia, 12, 434–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aurisicchio, L., Roscilli, G., Marra, E., Luberto, L., Mancini, R., La Monica, N., & Ciliberto, G. (2015). Superior immunologic and therapeutic efficacy of a xenogeneic genetic cancer vaccine targeting carcinoembryonic human antigen. Human Gene Therapy, 26, 386–398.

    Article  CAS  PubMed  Google Scholar 

  • Banchereau, J., & Palucka, A. K. (2005). Dendritic cells as therapeutic vaccines against cancer. Nature Reviews Immunology, 5, 296–306.

    Article  CAS  PubMed  Google Scholar 

  • Banday, A. H., Jeelani, S., & Hruby, V. J. (2015). Cancer vaccine adjuvants – recent clinical progress and future perspectives. Immunopharmacology and Immunotoxicology, 37, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Bartlett, D. L., Liu, Z., Sathaiah, M., Ravindranathan, R., Guo, Z., He, Y., & Guo, Z. S. (2013). Oncolytic viruses as therapeutic cancer vaccines. Molecular Cancer, 12, 103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Becker, J. C., Andersen, M. H., Hofmeister-Muller, V., Wobser, M., Frey, L., Sandig, C., Walter, S., Singh-Jasuja, H., Kampgen, E., Opitz, A., et al. (2012). Survivin-specific T-cell reactivity correlates with tumor response and patient survival: A phase-II peptide vaccination trial in metastatic melanoma. Cancer Immunology, Immunotherapy: CII, 61, 2091–2103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berd, D. (2002). M-Vax: An autologous, hapten-modified vaccine for human cancer. Expert Opinion on Biological Therapy, 2, 335–342.

    Article  CAS  PubMed  Google Scholar 

  • Berd, D. (2004). M-Vax: An autologous, hapten-modified vaccine for human cancer. Expert Review of Vaccines, 3, 521–527.

    Article  CAS  PubMed  Google Scholar 

  • Berger, M., Kreutz, F. T., Horst, J. L., Baldi, A. C., & Koff, W. J. (2007). Phase I study with an autologous tumor cell vaccine for locally advanced or metastatic prostate cancer. Journal of Pharmacy & Pharmaceutical Sciences: A Publication of the Canadian Society for Pharmaceutical Sciences, Societe Canadienne des Sciences Pharmaceutiques, 10, 144–152.

    CAS  Google Scholar 

  • Bolhassani, A., Safaiyan, S., & Rafati, S. (2011). Improvement of different vaccine delivery systems for cancer therapy. Molecular Cancer, 10, 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brichard, V. G., & Lejeune, D. (2008). Cancer immunotherapy targeting tumour-specific antigens: Towards a new therapy for minimal residual disease. Expert Opinion on Biological Therapy, 8, 951–968.

    Article  CAS  PubMed  Google Scholar 

  • Brunsvig, P. F., Kyte, J. A., Kersten, C., Sundstrom, S., Moller, M., Nyakas, M., Hansen, G. L., Gaudernack, G., & Aamdal, S. (2011). Telomerase peptide vaccination in NSCLC: A phase II trial in stage III patients vaccinated after chemoradiotherapy and an 8-year update on a phase I/II trial. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 17, 6847–6857.

    Article  CAS  Google Scholar 

  • Bubenik, J. (2006). Depletion of Treg cells augments the therapeutic effect of cancer vaccines. Folia Biologica, 52, 202–204.

    CAS  PubMed  Google Scholar 

  • Buhrman, J. D., & Slansky, J. E. (2013). Improving T cell responses to modified peptides in tumor vaccines. Immunologic Research, 55, 34–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butterfield, L. H. (2015). Cancer vaccines. BMJ, 350, h988.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carreno, B. M., Magrini, V., Becker-Hapak, M., Kaabinejadian, S., Hundal, J., Petti, A. A., Ly, A., Lie, W. R., Hildebrand, W. H., Mardis, E. R., et al. (2015). Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science, 348, 803–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castle, J. C., Kreiter, S., Diekmann, J., Lower, M., van de Roemer, N., de Graaf, J., Selmi, A., Diken, M., Boegel, S., Paret, C., et al. (2012). Exploiting the mutanome for tumor vaccination. Cancer Research, 72, 1081–1091.

    Article  CAS  PubMed  Google Scholar 

  • Cerezo, D., Pena, M. J., Mijares, M., Martinez, G., Blanca, I., & De Sanctis, J. B. (2015). Peptide vaccines for cancer therapy. Recent Patents on Inflammation & Allergy Drug Discovery, 9, 38–45.

    Article  CAS  Google Scholar 

  • Chaffer, C. L., Brueckmann, I., Scheel, C., Kaestli, A. J., Wiggins, P. A., Rodrigues, L. O., Brooks, M., Reinhardt, F., Su, Y., Polyak, K., et al. (2011). Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proceedings of the National Academy of Sciences of the United States of America, 108, 7950–7955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty, M., Abrams, S. I., Coleman, C. N., Camphausen, K., Schlom, J., & Hodge, J. W. (2004). External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing. Cancer Research, 64, 4328–4337.

    Article  CAS  PubMed  Google Scholar 

  • Chang, M. H., Shau, W. Y., Chen, C. J., Wu, T. C., Kong, M. S., Liang, D. C., Hsu, H. M., Chen, H. L., Hsu, H. Y., & Chen, D. S. (2000). Hepatitis B vaccination and hepatocellular carcinoma rates in boys and girls. JAMA, 284, 3040–3042.

    Article  CAS  PubMed  Google Scholar 

  • Cheever, M. A., & Higano, C. S. (2011). PROVENGE (Sipuleucel-T) in prostate cancer: The first FDA-approved therapeutic cancer vaccine. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 17, 3520–3526.

    Article  Google Scholar 

  • Chen, C. A., Ho, C. M., Chang, M. C., Sun, W. Z., Chen, Y. L., Chiang, Y. C., Syu, M. H., Hsieh, C. Y., & Cheng, W. F. (2010). Metronomic chemotherapy enhances antitumor effects of cancer vaccine by depleting regulatory T lymphocytes and inhibiting tumor angiogenesis. Molecular Therapy: The Journal of the American Society of Gene Therapy, 18, 1233–1243.

    Article  CAS  Google Scholar 

  • Chen, J., Zurawski, G., Zurawski, S., Wang, Z., Akagawa, K., Oh, S., Hideki, U., Fay, J., Banchereau, J., Song, W., et al. (2015). A novel vaccine for mantle cell lymphoma based on targeting cyclin D1 to dendritic cells via CD40. Journal of Hematology & Oncology, 8, 35.

    Article  CAS  Google Scholar 

  • Cheng, W. F., Chang, M. C., Sun, W. Z., Lee, C. N., Lin, H. W., Su, Y. N., Hsieh, C. Y., & Chen, C. A. (2008). Connective tissue growth factor linked to the E7 tumor antigen generates potent antitumor immune responses mediated by an antiapoptotic mechanism. Gene Therapy, 15, 1007–1016.

    Article  CAS  PubMed  Google Scholar 

  • Chiocca, E. A., & Rabkin, S. D. (2014). Oncolytic viruses and their application to cancer immunotherapy. Cancer Immunology Research, 2, 295–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das, S. K., Sarkar, S., Dash, R., Dent, P., Wang, X. Y., Sarkar, D., & Fisher, P. B. (2012). Chapter one – cancer terminator viruses and approaches for enhancing therapeutic outcomes. Advances in Cancer Research, 115, 1–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Destexhe, E., Stannard, D., Wilby, O. K., Grosdidier, E., Baudson, N., Forster, R., Gerard, C. M., Garcon, N., & Segal, L. (2015). Nonclinical reproductive and developmental safety evaluation of the MAGE-A3 Cancer Immunotherapeutic, a therapeutic vaccine for cancer treatment. Reproductive Toxicology, 51, 90–105.

    Article  CAS  PubMed  Google Scholar 

  • Dhodapkar, K. M., Feldman, D., Matthews, P., Radfar, S., Pickering, R., Turkula, S., Zebroski, H., & Dhodapkar, M. V. (2010). Natural immunity to pluripotency antigen OCT4 in humans. Proceedings of the National Academy of Sciences of the United States of America, 107, 8718–8723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhodapkar, M. V., & Dhodapkar, K. M. (2011). Spontaneous and therapy-induced immunity to pluripotency genes in humans: Clinical implications, opportunities and challenges. Cancer Immunology, Immunotherapy: CII, 60, 413–418.

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Lorenzo, G., Ferro, M., & Buonerba, C. (2012). Sipuleucel-T (provenge(R)) for castration-resistant prostate cancer. BJU International, 110, E99–E104.

    Article  PubMed  CAS  Google Scholar 

  • Ding, Z. Y., Zou, X. L., & Wei, Y. Q. (2012). Cancer microenvironment and cancer vaccine. Cancer Microenvironment: Official Journal of the International Cancer Microenvironment Society, 5, 333–344.

    Article  CAS  Google Scholar 

  • Doehn, C., Bohmer, T., Kausch, I., Sommerauer, M., & Jocham, D. (2008). Prostate cancer vaccines: Current status and future potential. BioDrugs: Clinical Immunotherapeutics, Biopharmaceuticals and Gene Therapy, 22, 71–84.

    Article  CAS  Google Scholar 

  • Draghiciu, O., Nijman, H. W., Hoogeboom, B. N., Meijerhof, T., & Daemen, T. (2015). Sunitinib depletes myeloid-derived suppressor cells and synergizes with a cancer vaccine to enhance antigen-specific immune responses and tumor eradication. Oncoimmunology, 4, e989764.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dranoff, G. (2002). GM-CSF-based cancer vaccines. Immunological Reviews, 188, 147–154.

    Article  CAS  PubMed  Google Scholar 

  • Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J., & Schreiber, R. D. (2002). Cancer immunoediting: From immunosurveillance to tumor escape. Nature Immunology, 3, 991–998.

    Article  CAS  PubMed  Google Scholar 

  • Dzutsev, A. H., Belyakov, I. M., Isakov, D. V., Margulies, D. H., & Berzofsky, J. A. (2007). Avidity of CD8 T cells sharpens immunodominance. International Immunology, 19, 497–507.

    Article  CAS  PubMed  Google Scholar 

  • Easwaran, H., Tsai, H. C., & Baylin, S. B. (2014). Cancer epigenetics: Tumor heterogeneity, plasticity of stem-like states, and drug resistance. Molecular Cell, 54, 716–727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eralp, Y., Wang, X., Wang, J. P., Maughan, M. F., Polo, J. M., & Lachman, L. B. (2004). Doxorubicin and paclitaxel enhance the antitumor efficacy of vaccines directed against HER 2/neu in a murine mammary carcinoma model. Breast Cancer Research: BCR, 6, R275–R283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eser, S., Schnieke, A., Schneider, G., & Saur, D. (2014). Oncogenic KRAS signalling in pancreatic cancer. British Journal of Cancer, 111, 817–822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farsaci, B., Higgins, J. P., & Hodge, J. W. (2012). Consequence of dose scheduling of sunitinib on host immune response elements and vaccine combination therapy. International Journal of Cancer Journal International du Cancer, 130, 1948–1959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fotin-Mleczek, M., Zanzinger, K., Heidenreich, R., Lorenz, C., Thess, A., Duchardt, K. M., & Kallen, K. J. (2012). Highly potent mRNA based cancer vaccines represent an attractive platform for combination therapies supporting an improved therapeutic effect. The Journal of Gene Medicine, 14, 428–439.

    Article  CAS  PubMed  Google Scholar 

  • Fu, J., Malm, I. J., Kadayakkara, D. K., Levitsky, H., Pardoll, D., & Kim, Y. J. (2014). Preclinical evidence that PD1 blockade cooperates with cancer vaccine TEGVAX to elicit regression of established tumors. Cancer Research, 74, 4042–4052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner, T. A., Elzey, B. D., & Hahn, N. M. (2012). Sipuleucel-T (Provenge) autologous vaccine approved for treatment of men with asymptomatic or minimally symptomatic castrate-resistant metastatic prostate cancer. Human Vaccines & Immunotherapeutics, 8, 534–539.

    Article  CAS  Google Scholar 

  • Garnett, C. T., Schlom, J., & Hodge, J. W. (2008). Combination of docetaxel and recombinant vaccine enhances T-cell responses and antitumor activity: Effects of docetaxel on immune enhancement. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 14, 3536–3544.

    Article  CAS  Google Scholar 

  • Gregory, A. E., Titball, R., & Williamson, D. (2013). Vaccine delivery using nanoparticles. Frontiers in Cellular and Infection Microbiology, 3, 13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gubin, M. M., Zhang, X., Schuster, H., Caron, E., Ward, J. P., Noguchi, T., Ivanova, Y., Hundal, J., Arthur, C. D., Krebber, W. J., et al. (2014). Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature, 515, 577–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulley, J. L. (2013). Therapeutic vaccines: The ultimate personalized therapy? Human Vaccines & Immunotherapeutics, 9, 219–221.

    Article  CAS  Google Scholar 

  • Guo, C., Manjili, M. H., Subjeck, J. R., Sarkar, D., Fisher, P. B., & Wang, X. Y. (2013). Therapeutic cancer vaccines: Past, present, and future. Advances in Cancer Research, 119, 421–475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn, W. C., & Weinberg, R. A. (2002). Modelling the molecular circuitry of cancer. Nature Reviews Cancer, 2, 331–341.

    Article  CAS  PubMed  Google Scholar 

  • Helias-Rodzewicz, Z., Funck-Brentano, E., Baudoux, L., Jung, C. K., Zimmermann, U., Marin, C., Clerici, T., Le Gall, C., Peschaud, F., Taly, V., et al. (2015). Variations of BRAF mutant allele percentage in melanomas. BMC Cancer, 15, 497.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herlyn, D., & Birebent, B. (1999). Advances in cancer vaccine development. Annals of Medicine, 31, 66–78.

    Article  CAS  PubMed  Google Scholar 

  • Hodge, J. W., Chakraborty, M., Kudo-Saito, C., Garnett, C. T., & Schlom, J. (2005). Multiple costimulatory modalities enhance CTL avidity. Journal of Immunology, 174, 5994–6004.

    Article  CAS  Google Scholar 

  • Hou, Y., Kavanagh, B., & Fong, L. (2008). Distinct CD8+ T cell repertoires primed with agonist and native peptides derived from a tumor-associated antigen. Journal of Immunology, 180, 1526–1534.

    Article  CAS  Google Scholar 

  • Hu, Q., Wu, M., Fang, C., Cheng, C., Zhao, M., Fang, W., Chu, P. K., Ping, Y., & Tang, G. (2015). Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy. Nano Letters, 15, 2732–2739.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, D. B., Puzanov, I., & Kelley, M. C. (2015). Talimogene laherparepvec (T-VEC) for the treatment of advanced melanoma. Immunotherapy, 7, 611–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandoth, C., McLellan, M. D., Vandin, F., Ye, K., Niu, B., Lu, C., Xie, M., Zhang, Q., McMichael, J. F., Wyczalkowski, M. A., et al. (2013). Mutational landscape and significance across 12 major cancer types. Nature, 502, 333–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantoff, P. W., Schuetz, T. J., Blumenstein, B. A., Glode, L. M., Bilhartz, D. L., Wyand, M., Manson, K., Panicali, D. L., Laus, R., Schlom, J., et al. (2010). Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 28, 1099–1105.

    Article  CAS  Google Scholar 

  • Katakura, Y., Alam, S., & Shirahata, S. (1998). Immortalization by gene transfection. Methods in Cell Biology, 57, 69–91.

    Article  CAS  PubMed  Google Scholar 

  • Kemp, T. J., Garcia-Pineres, A., Falk, R. T., Poncelet, S., Dessy, F., Giannini, S. L., Rodriguez, A. C., Porras, C., Herrero, R., Hildesheim, A., et al. (2008). Evaluation of systemic and mucosal anti-HPV16 and anti-HPV18 antibody responses from vaccinated women. Vaccine, 26, 3608–3616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kemp, T. J., Hildesheim, A., Safaeian, M., Dauner, J. G., Pan, Y., Porras, C., Schiller, J. T., Lowy, D. R., Herrero, R., & Pinto, L. A. (2011). HPV16/18 L1 VLP vaccine induces cross-neutralizing antibodies that may mediate cross-protection. Vaccine, 29, 2011–2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan, A. N., Kolomeyevskaya, N., Singel, K. L., Grimm, M. J., Moysich, K. B., Daudi, S., Grzankowski, K. S., Lele, S., Ylagan, L., Webster, G. A., et al. (2015). Targeting myeloid cells in the tumor microenvironment enhances vaccine efficacy in murine epithelial ovarian cancer. Oncotarget, 6, 11310–11326.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kibe, S., Yutani, S., Motoyama, S., Nomura, T., Tanaka, N., Kawahara, A., Yamaguchi, T., Matsueda, S., Komatsu, N., Miura, M., et al. (2014). Phase II study of personalized peptide vaccination for previously treated advanced colorectal cancer. Cancer Immunology Research, 2, 1154–1162.

    Article  CAS  PubMed  Google Scholar 

  • Kreiter, S., Castle, J. C., Tureci, O., & Sahin, U. (2012). Targeting the tumor mutanome for personalized vaccination therapy. Oncoimmunology, 1, 768–769.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kreiter, S., Vormehr, M., van de Roemer, N., Diken, M., Lower, M., Diekmann, J., Boegel, S., Schrors, B., Vascotto, F., Castle, J. C., et al. (2015). Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature, 520, 692–696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kufe, D. W. (2009). Mucins in cancer: Function, prognosis and therapy. Nature Reviews Cancer, 9, 874–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamm, D. L., Blumenstein, B. A., Crawford, E. D., Montie, J. E., Scardino, P., Grossman, H. B., Stanisic, T. H., Smith, J. A., Jr., Sullivan, J., Sarosdy, M. F., et al. (1991). A randomized trial of intravesical doxorubicin and immunotherapy with bacille Calmette-Guerin for transitional-cell carcinoma of the bladder. The New England Journal of Medicine, 325, 1205–1209.

    Article  CAS  PubMed  Google Scholar 

  • Larocca, C., & Schlom, J. (2011). Viral vector-based therapeutic cancer vaccines. Cancer Journal, 17, 359–371.

    Article  CAS  Google Scholar 

  • Lawrence, M. S., Stojanov, P., Polak, P., Kryukov, G. V., Cibulskis, K., Sivachenko, A., Carter, S. L., Stewart, C., Mermel, C. H., Roberts, S. A., et al. (2013). Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature, 499, 214–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leach, D. R., Krummel, M. F., & Allison, J. P. (1996). Enhancement of antitumor immunity by CTLA-4 blockade. Science, 271, 1734–1736.

    Article  CAS  PubMed  Google Scholar 

  • Ledford, H. (2015). Therapeutic cancer vaccine survives biotech bust. Nature, 519, 17–18.

    Article  CAS  PubMed  Google Scholar 

  • Li, G., Hundemer, M., Wolfrum, S., Ho, A. D., Goldschmidt, H., & Witzens-Harig, M. (2006). Identification and characterization of HLA-class-I-restricted T-cell epitopes in the putative tumor-associated antigens P21-activated serin kinase 2 (PAK2) and cyclin-dependent kinase inhibitor 1A (CDKN1A). Annals of Hematology, 85, 583–590.

    Article  CAS  PubMed  Google Scholar 

  • Li, N., Qin, H., Li, X., Zhou, C., Wang, D., Ma, W., Lin, C., Zhang, Y., Wang, S., & Zhang, S. (2007a). Potent systemic antitumor immunity induced by vaccination with chemotactic-prostate tumor associated antigen gene-modified tumor cell and blockade of B7-H1. Journal of Clinical Immunology, 27, 117–130.

    Article  PubMed  CAS  Google Scholar 

  • Li, N., Qin, H., Li, X., Zhou, C., Wang, D., Ma, W., Lin, C., Zhang, Y., Wang, S., & Zhang, S. (2007b). Synergistic antitumor effect of chemotactic-prostate tumor-associated antigen gene-modified tumor cell vaccine and anti-CTLA-4 mAb in murine tumor model. Immunology Letters, 113, 90–98.

    Article  CAS  PubMed  Google Scholar 

  • Lim, Y. T. (2015). Vaccine adjuvant materials for cancer immunotherapy and control of infectious disease. Clinical and Experimental Vaccine Research, 4, 54–58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin, X., Zhou, C., Wang, S., Wang, D., Ma, W., Liang, X., Lin, C., Wang, Z., Li, J., Guo, S., et al. (2006). Enhanced antitumor effect against human telomerase reverse transcriptase (hTERT) by vaccination with chemotactic-hTERT gene-modified tumor cell and the combination with anti-4-1BB monoclonal antibodies. International Journal of Cancer Journal International du Cancer, 119, 1886–1896.

    Article  CAS  PubMed  Google Scholar 

  • Liu, M. A. (2011). DNA vaccines: An historical perspective and view to the future. Immunological Reviews, 239, 62–84.

    Article  CAS  PubMed  Google Scholar 

  • Liu, R., Zhou, C., Wang, D., Ma, W., Lin, C., Wang, Y., Liang, X., Li, J., Guo, S., Zhang, Y., et al. (2006). Enhancement of DNA vaccine potency by sandwiching antigen-coding gene between secondary lymphoid tissue chemokine (SLC) and IgG Fc fragment genes. Cancer Biology & Therapy, 5, 427–434.

    Article  Google Scholar 

  • Loeffler, M., Kruger, J. A., Niethammer, A. G., & Reisfeld, R. A. (2006). Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. The Journal of Clinical Investigation, 116, 1955–1962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lollini, P. L., Cavallo, F., Nanni, P., & Forni, G. (2006). Vaccines for tumour prevention. Nature Reviews Cancer, 6, 204–216.

    Article  CAS  PubMed  Google Scholar 

  • Lu, L., Tao, H., Chang, A. E., Hu, Y., Shu, G., Chen, Q., Egenti, M., Owen, J., Moyer, J. S., Prince, M. E., et al. (2015). Cancer stem cell vaccine inhibits metastases of primary tumors and induces humoral immune responses against cancer stem cells. Oncoimmunology, 4, e990767.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mac Keon, S., Ruiz, M. S., Gazzaniga, S., & Wainstok, R. (2015). Dendritic cell-based vaccination in cancer: Therapeutic implications emerging from murine models. Frontiers in Immunology, 6, 243.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Machiels, J. P., Reilly, R. T., Emens, L. A., Ercolini, A. M., Lei, R. Y., Weintraub, D., Okoye, F. I., & Jaffee, E. M. (2001). Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Research, 61, 3689–3697.

    CAS  PubMed  Google Scholar 

  • McCarthy, E. F. (2006). The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. The Iowa Orthopaedic Journal, 26, 154–158.

    PubMed  PubMed Central  Google Scholar 

  • Meacham, C. E., & Morrison, S. J. (2013). Tumour heterogeneity and cancer cell plasticity. Nature, 501, 328–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melero, I., Gaudernack, G., Gerritsen, W., Huber, C., Parmiani, G., Scholl, S., Thatcher, N., Wagstaff, J., Zielinski, C., Faulkner, I., et al. (2014). Therapeutic vaccines for cancer: An overview of clinical trials. Nature Reviews. Clinical Oncology, 11, 509–524.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, D. A., Batich, K. A., Gunn, M. D., Huang, M. N., Sanchez-Perez, L., Nair, S. K., Congdon, K. L., Reap, E. A., Archer, G. E., Desjardins, A., et al. (2015). Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature, 519, 366–369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondini, M., Nizard, M., Tran, T., Mauge, L., Loi, M., Clemenson, C., Dugue, D., Maroun, P., Louvet, E., Adam, J., et al. (2015). Synergy of radiotherapy and a cancer vaccine for the treatment of HPV-associated head and neck cancer. Molecular Cancer Therapeutics, 14, 1336–1345.

    Article  CAS  PubMed  Google Scholar 

  • Morris, L. F., & Ribas, A. (2007). Therapeutic cancer vaccines. Surgical Oncology Clinics of North America, 16, 819–831, ix.

    Article  PubMed  Google Scholar 

  • Moss, B. (1996). Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety. Proceedings of the National Academy of Sciences of the United States of America, 93, 11341–11348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller, P. A., & Vousden, K. H. (2014). Mutant p53 in cancer: New functions and therapeutic opportunities. Cancer Cell, 25, 304–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niethammer, A. G., Xiang, R., Becker, J. C., Wodrich, H., Pertl, U., Karsten, G., Eliceiri, B. P., & Reisfeld, R. A. (2002). A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nature Medicine, 8, 1369–1375.

    Article  CAS  PubMed  Google Scholar 

  • Noh, K. T., Son, K. H., Jung, I. D., Kang, T. H., Choi, C. H., & Park, Y. M. (2015). Glycogen synthase kinase-3beta (GSK-3beta) inhibition enhances dendritic cell-based cancer vaccine potency via suppression of interferon-gamma-induced indoleamine 2,3-dioxygenase expression. The Journal of Biological Chemistry, 290, 12394–12402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odunsi, K., Matsuzaki, J., James, S. R., Mhawech-Fauceglia, P., Tsuji, T., Miller, A., Zhang, W., Akers, S. N., Griffiths, E. A., Miliotto, A., et al. (2014). Epigenetic potentiation of NY-ESO-1 vaccine therapy in human ovarian cancer. Cancer Immunology Research, 2, 37–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardee, A. D., Yano, H., Weinstein, A. M., Ponce, A. A., Ethridge, A. D., Normolle, D. P., Vujanovic, L., Mizejewski, G. J., Watkins, S. C., & Butterfield, L. H. (2015). Route of antigen delivery impacts the immunostimulatory activity of dendritic cell-based vaccines for hepatocellular carcinoma. Journal for Immunotherapy of Cancer, 3, 32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parmiani, G., Russo, V., Maccalli, C., Parolini, D., Rizzo, N., & Maio, M. (2014). Peptide-based vaccines for cancer therapy. Human Vaccines & Immunotherapeutics, 10, 3175–3178.

    Article  Google Scholar 

  • Pizzurro, G. A., & Barrio, M. M. (2015). Dendritic cell-based vaccine efficacy: Aiming for hot spots. Frontiers in Immunology, 6, 91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Polyak, K., & Weinberg, R. A. (2009). Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits. Nature Reviews Cancer, 9, 265–273.

    Article  CAS  PubMed  Google Scholar 

  • Qin, H., Zhou, C., Wang, D., Ma, W., Liang, X., Lin, C., Zhang, Y., & Zhang, S. (2005). Specific antitumor immune response induced by a novel DNA vaccine composed of multiple CTL and T helper cell epitopes of prostate cancer associated antigens. Immunology Letters, 99, 85–93.

    Article  CAS  PubMed  Google Scholar 

  • Qin, H., Zhou, C., Wang, D., Ma, W., Liang, X., Lin, C., Zhang, Y., & Zhang, S. (2006). Enhancement of antitumour immunity by a novel chemotactic antigen DNA vaccine encoding chemokines and multiepitopes of prostate-tumour-associated antigens. Immunology, 117, 419–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu, L., Li, J., Yu, S., Wang, Q., Li, Y., Hu, Z., Wu, Q., Guo, Z., & Zhang, J. (2015). A novel cancer immunotherapy based on the combination of a synthetic carbohydrate-pulsed dendritic cell vaccine and glycoengineered cancer cells. Oncotarget, 6, 5195–5203.

    Article  PubMed  PubMed Central  Google Scholar 

  • Quoix, E., Ramlau, R., Westeel, V., Papai, Z., Madroszyk, A., Riviere, A., Koralewski, P., Breton, J. L., Stoelben, E., Braun, D., et al. (2011). Therapeutic vaccination with TG4010 and first-line chemotherapy in advanced non-small-cell lung cancer: A controlled phase 2B trial. The Lancet Oncology, 12, 1125–1133.

    Article  CAS  PubMed  Google Scholar 

  • Radford, K. J., & Caminschi, I. (2013). New generation of dendritic cell vaccines. Human Vaccines & Immunotherapeutics, 9, 259–264.

    Article  CAS  Google Scholar 

  • Ramboer, E., De Craene, B., De Kock, J., Vanhaecke, T., Berx, G., Rogiers, V., & Vinken, M. (2014). Strategies for immortalization of primary hepatocytes. Journal of Hepatology, 61, 925–943.

    Article  CAS  PubMed  Google Scholar 

  • Ramlogan-Steel, C. A., Steel, J. C., & Morris, J. C. (2014). Lung cancer vaccines: Current status and future prospects. Translational Lung Cancer Research, 3, 46–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rojan, A., Funches, R., Regan, M. M., Gulley, J. L., & Bubley, G. J. (2013). Dramatic and prolonged PSA response after retreatment with a PSA vaccine. Clinical Genitourinary Cancer, 11, 362–364.

    Article  PubMed  Google Scholar 

  • Rosendahl, A. H., Gundewar, C., Said Hilmersson, K., Ni, L., Saleem, M. A., & Andersson, R. (2015). Conditionally immortalized human pancreatic stellate cell lines demonstrate enhanced proliferation and migration in response to IGF-I. Experimental Cell Research, 330, 300–310.

    Article  CAS  PubMed  Google Scholar 

  • Sander, J. D., & Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 32, 347–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasada, T., Komatsu, N., Suekane, S., Yamada, A., Noguchi, M., & Itoh, K. (2010). Overcoming the hurdles of randomised clinical trials of therapeutic cancer vaccines. European Journal of Cancer, 46, 1514–1519.

    Article  PubMed  Google Scholar 

  • Scheel, B., Braedel, S., Probst, J., Carralot, J. P., Wagner, H., Schild, H., Jung, G., Rammensee, H. G., & Pascolo, S. (2004). Immunostimulating capacities of stabilized RNA molecules. European Journal of Immunology, 34, 537–547.

    Article  CAS  PubMed  Google Scholar 

  • Scheinberg, D. A., McDevitt, M. R., Dao, T., Mulvey, J. J., Feinberg, E., & Alidori, S. (2013). Carbon nanotubes as vaccine scaffolds. Advanced Drug Delivery Reviews, 65, 2016–2022.

    Article  CAS  PubMed  Google Scholar 

  • Schijns, V., Tartour, E., Michalek, J., Stathopoulos, A., Dobrovolskiene, N. T., & Strioga, M. M. (2014). Immune adjuvants as critical guides directing immunity triggered by therapeutic cancer vaccines. Cytotherapy, 16, 427–439.

    Article  CAS  PubMed  Google Scholar 

  • Schijns, V. E., Pretto, C., Devillers, L., Pierre, D., Hofman, F. M., Chen, T. C., Mespouille, P., Hantos, P., Glorieux, P., Bota, D. A., et al. (2015). First clinical results of a personalized immunotherapeutic vaccine against recurrent, incompletely resected, treatment-resistant glioblastoma multiforme (GBM) tumors, based on combined allo- and auto-immune tumor reactivity. Vaccine, 33, 2690–2696.

    Article  CAS  PubMed  Google Scholar 

  • Schlom, J., Hodge, J. W., Palena, C., Tsang, K. Y., Jochems, C., Greiner, J. W., Farsaci, B., Madan, R. A., Heery, C. R., & Gulley, J. L. (2014). Therapeutic cancer vaccines. Advances in Cancer Research, 121, 67–124.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava, P. K. (2006). Therapeutic cancer vaccines. Current Opinion in Immunology, 18, 201–205.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Q., Zhong, Y., Wu, F., Zhou, C., Wang, D., Ma, W., Zhang, Y., & Zhang, S. (2012). Immunotherapy using slow-cycling tumor cells prolonged overall survival of tumor-bearing mice. BMC Medicine, 10, 172.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tagliamonte, M., Petrizzo, A., Napolitano, M., Luciano, A., Arra, C., Maiolino, P., Izzo, F., Tornesello, M. L., Aurisicchio, L., Ciliberto, G., et al. (2015). Novel metronomic chemotherapy and cancer vaccine combinatorial strategy for hepatocellular carcinoma in a mouse model. Cancer Immunology, Immunotherapy: CII, 64, 1305–1314.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, R., Ishibashi, Y., Hiraoka, K., Matsueda, S., Kawano, K., Kawahara, A., Kage, M., Ohshima, K., Yamanaka, R., Shichijo, S., et al. (2013). Phase II study of personalized peptide vaccination for refractory bone and soft tissue sarcoma patients. Cancer Science, 104, 1285–1294.

    Article  CAS  PubMed  Google Scholar 

  • van den Eertwegh, A. J., Versluis, J., van den Berg, H. P., Santegoets, S. J., van Moorselaar, R. J., van der Sluis, T. M., Gall, H. E., Harding, T. C., Jooss, K., Lowy, I., et al. (2012). Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: A phase 1 dose-escalation trial. The Lancet Oncology, 13, 509–517.

    Article  PubMed  CAS  Google Scholar 

  • van der Bruggen, P., Traversari, C., Chomez, P., Lurquin, C., De Plaen, E., Van den Eynde, B., Knuth, A., & Boon, T. (1991). A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science, 254, 1643–1647.

    Article  PubMed  Google Scholar 

  • Villa, L. L., Costa, R. L., Petta, C. A., Andrade, R. P., Ault, K. A., Giuliano, A. R., Wheeler, C. M., Koutsky, L. A., Malm, C., Lehtinen, M., et al. (2005). Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: A randomised double-blind placebo-controlled multicentre phase II efficacy trial. The Lancet Oncology, 6, 271–278.

    Article  PubMed  Google Scholar 

  • Vogelstein, B., Papadopoulos, N., Velculescu, V. E., Zhou, S., Diaz, L. A., Jr., & Kinzler, K. W. (2013). Cancer genome landscapes. Science, 339, 1546–1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward, S., & Dalgleish, A. (2007). Therapeutic cancer vaccines. Vaccine, 25(Suppl 2), B1–B3.

    Article  PubMed  Google Scholar 

  • Wei, H., Wang, S., Zhang, D., Hou, S., Qian, W., Li, B., Guo, H., Kou, G., He, J., Wang, H., et al. (2009). Targeted delivery of tumor antigens to activated dendritic cells via CD11c molecules induces potent antitumor immunity in mice. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 15, 4612–4621.

    Article  CAS  Google Scholar 

  • Weide, B., Pascolo, S., Scheel, B., Derhovanessian, E., Pflugfelder, A., Eigentler, T. K., Pawelec, G., Hoerr, I., Rammensee, H. G., & Garbe, C. (2009). Direct injection of protamine-protected mRNA: Results of a phase 1/2 vaccination trial in metastatic melanoma patients. Journal of Immunotherapy, 32, 498–507.

    Article  CAS  PubMed  Google Scholar 

  • Wishahi, M. M., Ismail, I. M., & El-Sherbini, M. (1994). Immunotherapy with bacille Calmette-Guerin in patients with superficial transitional cell carcinoma of the bladder associated with bilharziasis. British Journal of Urology, 73, 649–654.

    Article  CAS  PubMed  Google Scholar 

  • Wolff, J. A., Malone, R. W., Williams, P., Chong, W., Acsadi, G., Jani, A., & Felgner, P. L. (1990). Direct gene transfer into mouse muscle in vivo. Science, 247, 1465–1468.

    Article  CAS  PubMed  Google Scholar 

  • Xi, H. B., Wang, G. X., Fu, B., Liu, W. P., & Li, Y. (2015). Survivin and PSMA loaded dendritic cell vaccine for the treatment of prostate cancer. Biological & Pharmaceutical Bulletin, 38, 827–835.

    Article  CAS  Google Scholar 

  • Xiang, R., Luo, Y., Niethammer, A. G., & Reisfeld, R. A. (2008). Oral DNA vaccines target the tumor vasculature and microenvironment and suppress tumor growth and metastasis. Immunological Reviews, 222, 117–128.

    Article  CAS  PubMed  Google Scholar 

  • Yadav, M., Jhunjhunwala, S., Phung, Q. T., Lupardus, P., Tanguay, J., Bumbaca, S., Franci, C., Cheung, T. K., Fritsche, J., Weinschenk, T., et al. (2014). Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature, 515, 572–576.

    Article  CAS  PubMed  Google Scholar 

  • Yang, B., Jeang, J., Yang, A., Wu, T. C., & Hung, C. F. (2014). DNA vaccine for cancer immunotherapy. Human Vaccines & Immunotherapeutics, 10, 3153–3164.

    Article  Google Scholar 

  • Yi, S. Y., Hao, Y. B., Nan, K. J., & Fan, T. L. (2013). Cancer stem cells niche: A target for novel cancer therapeutics. Cancer Treatment Reviews, 39, 290–296.

    Article  CAS  PubMed  Google Scholar 

  • Ying, H., Zaks, T. Z., Wang, R. F., Irvine, K. R., Kammula, U. S., Marincola, F. M., Leitner, W. W., & Restifo, N. P. (1999). Cancer therapy using a self-replicating RNA vaccine. Nature Medicine, 5, 823–827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P., Volz, S. E., Joung, J., van der Oost, J., Regev, A., et al. (2015). Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 163, 759–771.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S., & Zhang, Y. (2008). Novel chemotactic-antigen DNA vaccine against cancer. Future Oncology, 4, 299–303.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Tian, S., Liu, Z., Zhang, J., Zhang, M., Bosenberg, M. W., Kedl, R. M., Waldmann, T. A., Storkus, W. J., Falo, L. D., Jr., et al. (2014). Dendritic cell-derived interleukin-15 is crucial for therapeutic cancer vaccine potency. Oncoimmunology, 3, e959321.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huajun Jin or Qijun Qian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ye, Z., Li, Z., Jin, H., Qian, Q. (2016). Therapeutic Cancer Vaccines. In: Zhang, S. (eds) Progress in Cancer Immunotherapy. Advances in Experimental Medicine and Biology, vol 909. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7555-7_3

Download citation

Publish with us

Policies and ethics