Skip to main content

Advertisement

Log in

Improving T cell responses to modified peptides in tumor vaccines

  • Immunology in Colorado
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Immune recognition and elimination of cancerous cells is the primary goal of cancer immunotherapy. However, obstacles including immune tolerance and tumor-induced immunosuppression often limit beneficial immune responses. Vaccination is one proposed intervention that may help to overcome these issues and is an active area of study in cancer immunotherapy. Immunizing with tumor antigenic peptides is a promising, straight-forward vaccine strategy hypothesized to boost preexisting antitumor immunity. However, tumor antigens are often weak T cell agonists, attributable to several mechanisms, including immune self-tolerance and poor immunogenicity of self-derived tumor peptides. One strategy for overcoming these mechanisms is vaccination with mimotopes, or peptide mimics of tumor antigens, which alter the antigen presentation and/or T cell activation to increase the expansion of tumor-specific T cells. Evaluation of mimotope vaccine strategies has revealed that even subtle alterations in peptide sequence can dramatically alter antigen presentation and T cell receptor recognition. Most of this research has been performed using T cell clones, which may not be accurate representations of the naturally occurring antitumor response. The relationship between clones generated after mimotope vaccination and the polyclonal T cell repertoire is unclear. Our work with mimotopes in a mouse model of colon carcinoma has revealed important insights into these issues. We propose that the identification of mimotopes based on stimulation of the naturally responding T cell repertoire will dramatically improve the efficacy of mimotope vaccination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Coley WB II. Contribution to the knowledge of Sarcoma. Ann Surg. 1891;14:199–220.

    PubMed  CAS  Google Scholar 

  2. Burnet M. Cancer: a biological approach. III. Viruses associated with neoplastic conditions. IV. Practical applications. Br Med J. 1957;1:841–7.

    PubMed  CAS  Google Scholar 

  3. Thomas L. In Cellular and humoral aspects of the hypersensitive states. Discussion, ed. e.H. Lawrence. 1959; New York: Hoeber-Harper.

  4. Quezada SA, et al. Shifting the equilibrium in cancer immunoediting: from tumor tolerance to eradication. Immunol Rev. 2011;241:104–18.

    PubMed  CAS  Google Scholar 

  5. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480:480–9.

    PubMed  CAS  Google Scholar 

  6. Stutman O. Chemical carcinogenesis in nude mice: comparison between nude mice from homozygous matings and heterozygous matings and effect of age and carcinogen dose. J Natl Cancer Inst. 1979;62:353–8.

    PubMed  CAS  Google Scholar 

  7. Stutman O. Tumor development after 3-methylcholanthrene in immunologically deficient athymic-nude mice. Science. 1974;183:534–6.

    PubMed  CAS  Google Scholar 

  8. Maleckar JR, Sherman LA. The composition of the T cell receptor repertoire in nude mice. J Immunol. 1987;138:3873–6.

    PubMed  CAS  Google Scholar 

  9. Street SE, et al. Suppression of lymphoma and epithelial malignancies effected by interferon gamma. J Exp Med. 2002;196:129–34.

    PubMed  CAS  Google Scholar 

  10. Shankaran V, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410:1107–11.

    PubMed  CAS  Google Scholar 

  11. Dudley ME, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002;298:850–4.

    PubMed  CAS  Google Scholar 

  12. Koebel CM, et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature. 2007;450:903–7.

    PubMed  CAS  Google Scholar 

  13. Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting. Nat Rev Immunol. 2006;6:836–48.

    PubMed  CAS  Google Scholar 

  14. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329–60.

    PubMed  CAS  Google Scholar 

  15. Maeurer MJ, et al. Tumor escape from immune recognition: lethal recurrent melanoma in a patient associated with downregulation of the peptide transporter protein TAP-1 and loss of expression of the immunodominant MART-1/Melan-A antigen. J Clin Invest. 1996;98:1633–41.

    PubMed  CAS  Google Scholar 

  16. Maeurer MJ, et al. Tumor escape from immune recognition: loss of HLA-A2 melanoma cell surface expression is associated with a complex rearrangement of the short arm of chromosome 6. Clin Cancer Res. 1996;2:641–52.

    PubMed  CAS  Google Scholar 

  17. Zhou G, et al. Reciprocal changes in tumor antigenicity and antigen-specific T cell function during tumor progression. J Exp Med. 2004;200:1581–92.

    PubMed  CAS  Google Scholar 

  18. Matsushita H, et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature. 2012;482:400–4.

    PubMed  CAS  Google Scholar 

  19. Jarnicki AG, et al. Suppression of antitumor immunity by IL-10 and TGF-beta-producing T cells infiltrating the growing tumor: influence of tumor environment on the induction of CD4+ and CD8+ regulatory T cells. J Immunol. 2006;177:896–904.

    PubMed  CAS  Google Scholar 

  20. Lizee G, et al. Immunosuppression in melanoma immunotherapy: potential opportunities for intervention. Clin Cancer Res. 2006;12:2359s–65s.

    PubMed  CAS  Google Scholar 

  21. Gross S, et al. Immunosuppressive mechanisms in cancer: consequences for the development of therapeutic vaccines. Vaccine. 2009;27:3398–400.

    PubMed  CAS  Google Scholar 

  22. Zhang N, Bevan MJ. CD8(+) T cells: foot soldiers of the immune system. Immunity. 2011;35:161–8.

    PubMed  CAS  Google Scholar 

  23. Buonaguro L, et al. Translating tumor antigens into cancer vaccines. Clin Vaccine Immunol. 2010;18:23–34.

    PubMed  Google Scholar 

  24. Wilson RK, et al. Structure, organization and polymorphism of murine and human T-cell receptor alpha and beta chain gene families. Immunol Rev. 1988;101:149–72.

    PubMed  CAS  Google Scholar 

  25. Krogsgaard M, Davis MM. How T cells ‘see’ antigen. Nat Immunol. 2005;6:239–45.

    PubMed  CAS  Google Scholar 

  26. Lefrancois L, Obar JJ. Once a killer, always a killer: from cytotoxic T cell to memory cell. Immunol Rev. 2010;235:206–18.

    PubMed  CAS  Google Scholar 

  27. Zehn D, Lee SY, Bevan MJ. Complete but curtailed T-cell response to very low-affinity antigen. Nature. 2009;458:211–4.

    PubMed  CAS  Google Scholar 

  28. Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol. 1996;14:233–58.

    PubMed  CAS  Google Scholar 

  29. Curtsinger JM, et al. Type I IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation. J Immunol. 2005;174:4465–9.

    PubMed  CAS  Google Scholar 

  30. Sun JC, Bevan MJ. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science. 2003;300:339–42.

    PubMed  CAS  Google Scholar 

  31. Slifka MK, Whitton JL. Functional avidity maturation of CD8(+) T cells without selection of higher affinity TCR. Nat Immunol. 2001;2:711–7.

    PubMed  CAS  Google Scholar 

  32. Appay V, Douek DC, Price DA. CD8+ T cell efficacy in vaccination and disease. Nat Med. 2008;14:623–8.

    PubMed  CAS  Google Scholar 

  33. Dunbar PR, et al. A shift in the phenotype of melan-A-specific CTL identifies melanoma patients with an active tumor-specific immune response. J Immunol. 2000;165:6644–52.

    PubMed  CAS  Google Scholar 

  34. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    PubMed  CAS  Google Scholar 

  35. La Gruta NL, Doherty PC, Turner SJ. A correlation between function and selected measures of T cell avidity in influenza virus-specific CD8+ T cell responses. Eur J Immunol. 2006;36:2951–9.

    PubMed  Google Scholar 

  36. Almeida JR, et al. Antigen sensitivity is a major determinant of CD8 + T-cell polyfunctionality and HIV-suppressive activity. Blood. 2009;113:6351–60.

    PubMed  CAS  Google Scholar 

  37. Lee PP, et al. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med. 1999;5:677–85.

    PubMed  CAS  Google Scholar 

  38. Prehn RT. Main JM Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst. 1957;18:769–78.

    PubMed  CAS  Google Scholar 

  39. Linard B, et al. A ras-mutated peptide targeted by CTL infiltrating a human melanoma lesion. J Immunol. 2002;168:4802–8.

    PubMed  CAS  Google Scholar 

  40. Ito D, et al. Immunological characterization of missense mutations occurring within cytotoxic T cell-defined p53 epitopes in HLA-A*0201 + squamous cell carcinomas of the head and neck. Int J Cancer. 2007;120:2618–24.

    PubMed  CAS  Google Scholar 

  41. Sjoblom T, et al. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314:268–74.

    PubMed  Google Scholar 

  42. Segal NH, et al. Epitope landscape in breast and colorectal cancer. Cancer Res. 2008;68:889–92.

    PubMed  CAS  Google Scholar 

  43. Beaudenon S, et al. A novel type of human papillomavirus associated with genital neoplasias. Nature. 1986;321:246–9.

    PubMed  CAS  Google Scholar 

  44. List AF, Greco FA, Vogler LB. Lymphoproliferative diseases in immunocompromised hosts: the role of Epstein-Barr virus. J Clin Oncol. 1987;5:1673–89.

    PubMed  CAS  Google Scholar 

  45. Tsukuma H, et al. Risk factors for hepatocellular carcinoma among patients with chronic liver disease. N Engl J Med. 1993;328:1797–801.

    PubMed  CAS  Google Scholar 

  46. Beasley RP, et al. Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22 707 men in Taiwan. Lancet. 1981;2:1129–33.

    PubMed  CAS  Google Scholar 

  47. Koutsky LA, et al. A controlled trial of a human papillomavirus type 16 vaccine. N Engl J Med. 2002;347:1645–51.

    PubMed  CAS  Google Scholar 

  48. Chang MH, et al. Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. Taiwan Childhood Hepatoma Study Group. N Engl J Med. 1997;336:1855–9.

    PubMed  CAS  Google Scholar 

  49. Speiser DE, Romero P. Molecularly defined vaccines for cancer immunotherapy, and protective T cell immunity. Semin Immunol. 2010;22:144–54.

    PubMed  CAS  Google Scholar 

  50. Sick Andersen R, et al. Dissection of T cell antigen specificity in human melanoma. Cancer Res. 2012;72:1642–50.

    Google Scholar 

  51. Hogquist KA, Baldwin TA, Jameson SC. Central tolerance: learning self-control in the thymus. Nat Rev Immunol. 2005;5:772–82.

    PubMed  CAS  Google Scholar 

  52. Kappler JW, Roehm N, Marrack P. T cell tolerance by clonal elimination in the thymus. Cell. 1987;49:273–80.

    PubMed  CAS  Google Scholar 

  53. Huang AY, et al. The immunodominant major histocompatibility complex class I-restricted antigen of a murine colon tumor derives from an endogenous retroviral gene product. Proc Natl Acad Sci USA. 1996;93:9730–5.

    PubMed  CAS  Google Scholar 

  54. McWilliams JA, et al. Age-dependent tolerance to an endogenous tumor-associated antigen. Vaccine. 2008;26:1863–73.

    PubMed  CAS  Google Scholar 

  55. Huijbers IJ, et al. Minimal tolerance to a tumor antigen encoded by a cancer-germline gene. J Immunol. 2012;188:111–21.

    PubMed  CAS  Google Scholar 

  56. de Visser KE, et al. Low-avidity self-specific T cells display a pronounced expansion defect that can be overcome by altered peptide ligands. J Immunol. 2001;167:3818–28.

    PubMed  Google Scholar 

  57. Zehn D, Bevan MJ. T cells with low avidity for a tissue-restricted antigen routinely evade central and peripheral tolerance and cause autoimmunity. Immunity. 2006;25:261–70.

    PubMed  CAS  Google Scholar 

  58. Mamula MJ. The inability to process a self-peptide allows autoreactive T cells to escape tolerance. J Exp Med. 1993;177:567–71.

    PubMed  CAS  Google Scholar 

  59. Colella TA, et al. Self-tolerance to the murine homologue of a tyrosinase-derived melanoma antigen: implications for tumor immunotherapy. J Exp Med. 2000;191:1221–32.

    PubMed  CAS  Google Scholar 

  60. Yu Z, et al. Poor immunogenicity of a self/tumor antigen derives from peptide-MHC-I instability and is independent of tolerance. J Clin Invest. 2004;114:551–9.

    PubMed  CAS  Google Scholar 

  61. Redmond WL, Sherman LA. Peripheral tolerance of CD8 T lymphocytes. Immunity. 2005;22:275–84.

    PubMed  CAS  Google Scholar 

  62. Casares N, et al. Immunization with a tumor-associated CTL epitope plus a tumor-related or unrelated Th1 helper peptide elicits protective CTL immunity. Eur J Immunol. 2001;31:1780–9.

    PubMed  CAS  Google Scholar 

  63. Casares N, et al. CD4 +/CD25 + regulatory cells inhibit activation of tumor-primed CD4 + T cells with IFN-gamma-dependent antiangiogenic activity, as well as long-lasting tumor immunity elicited by peptide vaccination. J Immunol. 2003;171:5931–9.

    PubMed  CAS  Google Scholar 

  64. Kemmler CB, et al. Elevated tumor-associated antigen expression suppresses variant Peptide vaccine responses. J Immunol. 2011;187:4431–9.

    PubMed  CAS  Google Scholar 

  65. Fletcher AL, Malhotra D, Turley SJ. Lymph node stroma broaden the peripheral tolerance paradigm. Trends Immunol. 2010;32:12–8.

    PubMed  Google Scholar 

  66. Cohen JN, et al. Lymph node-resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation. J Exp Med. 2010;207:681–8.

    PubMed  CAS  Google Scholar 

  67. Lund AW, et al. VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigens by lymph node lymphatics. Cell Rep. 2012;1:191–9.

    PubMed  CAS  Google Scholar 

  68. Kawakami Y, et al. Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci USA. 1994;91:6458–62.

    PubMed  CAS  Google Scholar 

  69. Dougan M, Dranoff G. Immune therapy for cancer. Annu Rev Immunol. 2009;27:83–117.

    PubMed  CAS  Google Scholar 

  70. Kantoff PW, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.

    PubMed  CAS  Google Scholar 

  71. Dutoit V, et al. Dissecting TCR-MHC/peptide complex interactions with A2/peptide multimers incorporating tumor antigen peptide variants: crucial role of interaction kinetics on functional outcomes. Eur J Immunol. 2002;32:3285–93.

    PubMed  CAS  Google Scholar 

  72. Klebanoff CA, et al. Therapeutic cancer vaccines: are we there yet? Immunol Rev. 2011;239:27–44.

    PubMed  CAS  Google Scholar 

  73. McMahan RH, et al. Relating TCR-peptide-MHC affinity to immunogenicity for the design of tumor vaccines. J Clin Invest. 2006;116:2543–51.

    PubMed  CAS  Google Scholar 

  74. Cole DK, et al. Modification of MHC anchor residues generates heteroclitic peptides that alter TCR binding and T cell recognition. J Immunol. 2010;185:2600–10.

    PubMed  CAS  Google Scholar 

  75. Kersh GJ, Allen PM. Structural basis for T cell recognition of altered peptide ligands: a single T cell receptor can productively recognize a large continuum of related ligands. J Exp Med. 1996;184:1259–68.

    PubMed  CAS  Google Scholar 

  76. Sloan-Lancaster J, Allen PM. Altered peptide ligand-induced partial T cell activation: molecular mechanisms and role in T cell biology. Annu Rev Immunol. 1996;14:1–27.

    PubMed  CAS  Google Scholar 

  77. Mason D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol Today. 1998;19:395–404.

    PubMed  CAS  Google Scholar 

  78. Wooldridge L, et al. A single autoimmune T cell receptor recognizes more than a million different peptides. J Biol Chem. 2011;287:1168–77.

    PubMed  Google Scholar 

  79. Parkhurst MR, et al. Improved induction of melanoma-reactive CTL with peptides from the melanoma antigen gp100 modified at HLA-A*0201-binding residues. J Immunol. 1996;157:2539–48.

    PubMed  CAS  Google Scholar 

  80. Borbulevych OY, et al. Increased immunogenicity of an anchor-modified tumor-associated antigen is due to the enhanced stability of the peptide/MHC complex: implications for vaccine design. J Immunol. 2005;174:4812–20.

    PubMed  CAS  Google Scholar 

  81. Zaremba S, et al. Identification of an enhancer agonist cytotoxic T lymphocyte peptide from human carcinoembryonic antigen. Cancer Res. 1997;57:4570–7.

    PubMed  CAS  Google Scholar 

  82. Salazar E, et al. Agonist peptide from a cytotoxic t-lymphocyte epitope of human carcinoembryonic antigen stimulates production of tc1-type cytokines and increases tyrosine phosphorylation more efficiently than cognate peptide. Int J Cancer. 2000;85:829–38.

    PubMed  CAS  Google Scholar 

  83. Wasserman HA, et al. MHC variant peptide-mediated anergy of encephalitogenic T cells requires SHP-1. J Immunol. 2008;181:6843–9.

    PubMed  CAS  Google Scholar 

  84. Katsara M, et al. The good, the bad and the ugly: how altered peptide ligands modulate immunity. Exp Opin Biol Ther. 2008;8:1873–84.

    CAS  Google Scholar 

  85. Tang Y, et al. An altered peptide ligand for naive cytotoxic T lymphocyte epitope of TRP-2(180–188) enhanced immunogenicity. Cancer Immunol Immunother. 2007;56:319–29.

    PubMed  CAS  Google Scholar 

  86. Mimura K, et al. Substitution analog peptide derived from HER-2 can efficiently induce HER-2-specific, HLA-A24 restricted CTLs. Cancer Immunol Immunother. 2006;55:1358–66.

    PubMed  CAS  Google Scholar 

  87. Iero M, et al. Modified peptides in anti-cancer vaccines: are we eventually improving anti-tumour immunity? Cancer Immunol Immunother. 2009;58:1159–67.

    PubMed  CAS  Google Scholar 

  88. Clay TM, et al. Changes in the fine specificity of gp100(209–217)-reactive T cells in patients following vaccination with a peptide modified at an HLA-A2.1 anchor residue. J Immunol. 1999;162:1749–55.

    PubMed  CAS  Google Scholar 

  89. Stuge TB, et al. Diversity and recognition efficiency of T cell responses to cancer. PLoS Med. 2004;1:e28.

    PubMed  Google Scholar 

  90. Tynan FE, et al. A T cell receptor flattens a bulged antigenic peptide presented by a major histocompatibility complex class I molecule. Nat Immunol. 2007;8:268–76.

    PubMed  CAS  Google Scholar 

  91. Tynan FE, et al. T cell receptor recognition of a ‘super-bulged’ major histocompatibility complex class I-bound peptide. Nat Immunol. 2005;6:1114–22.

    PubMed  CAS  Google Scholar 

  92. Iero M, et al. Low TCR avidity and lack of tumor cell recognition in CD8(+) T cells primed with the CEA-analogue CAP1-6D peptide. Cancer Immunol Immunother. 2007;56:1979–91.

    PubMed  CAS  Google Scholar 

  93. Speiser DE, et al. Unmodified self antigen triggers human CD8 T cells with stronger tumor reactivity than altered antigen. Proc Natl Acad Sci USA. 2008;105:3849–54.

    PubMed  CAS  Google Scholar 

  94. Sharma AK, et al. Class I major histocompatibility complex anchor substitutions alter the conformation of T cell receptor contacts. J Biol Chem. 2001;276:21443–9.

    PubMed  CAS  Google Scholar 

  95. Chen JL, et al. Ca2 + release from the endoplasmic reticulum of NY-ESO-1-specific T cells is modulated by the affinity of TCR and by the use of the CD8 coreceptor. J Immunol. 2010;184:1829–39.

    PubMed  CAS  Google Scholar 

  96. Chen JL, et al. Structural and kinetic basis for heightened immunogenicity of T cell vaccines. J Exp Med. 2005;201:1243–55.

    PubMed  CAS  Google Scholar 

  97. Pinilla-Ibarz J, et al. Improved human T-cell responses against synthetic HLA-0201 analog peptides derived from the WT1 oncoprotein. Leukemia. 2006;20:2025–33.

    PubMed  CAS  Google Scholar 

  98. Borbulevych OY, Do P, Baker BM. Structures of native and affinity-enhanced WT1 epitopes bound to HLA-A*0201: implications for WT1-based cancer therapeutics. Mol Immunol. 2010;47:2519–24.

    PubMed  CAS  Google Scholar 

  99. Borbulevych OY, et al. Structures of MART-126/27-35 Peptide/HLA-A2 complexes reveal a remarkable disconnect between antigen structural homology and T cell recognition. J Mol Biol. 2007;372:1123–36.

    PubMed  CAS  Google Scholar 

  100. Wieckowski S, et al. Fine structural variations of alphabetaTCRs selected by vaccination with natural versus altered self-antigen in melanoma patients. J Immunol. 2009;183:5397–406.

    PubMed  CAS  Google Scholar 

  101. Dietrich PY, et al. TCR analysis reveals significant repertoire selection during in vitro lymphocyte culture. Int Immunol. 1997;9:1073–83.

    PubMed  CAS  Google Scholar 

  102. Slansky JE, et al. Enhanced antigen-specific antitumor immunity with altered peptide ligands that stabilize the MHC-peptide-TCR complex. Immunity. 2000;13:529–38.

    PubMed  CAS  Google Scholar 

  103. Jordan KR, et al. Peptide vaccines prevent tumor growth by activating T cells that respond to native tumor antigens. Proc Natl Acad Sci USA. 2010;107:4652–7.

    PubMed  CAS  Google Scholar 

  104. Jordan KR, et al. Baculovirus-infected insect cells expressing peptide-MHC complexes elicit protective antitumor immunity. J Immunol. 2008;180:188–97.

    PubMed  CAS  Google Scholar 

  105. Stone JD, Chervin AS, Kranz DM. T-cell receptor binding affinities and kinetics: impact on T-cell activity and specificity. Immunology. 2009;126:165–76.

    PubMed  CAS  Google Scholar 

  106. Corse E, et al. Attenuated T cell responses to a high-potency ligand in vivo. PLoS Biol. 2010;8(9):e1000481.

    PubMed  Google Scholar 

  107. Jordan KR, et al. TCR hypervariable regions expressed by T cells that respond to effective tumor vaccines. Cancer Immunol Immunother. 2012;. doi:10.1007/s00262-012-1217-5.

    PubMed  Google Scholar 

  108. Crawford F, et al. Use of baculovirus MHC/peptide display libraries to characterize T-cell receptor ligands. Immunol Rev. 2006;210:156–70.

    PubMed  CAS  Google Scholar 

  109. Crawford F, et al. Detection of antigen-specific T cells with multivalent soluble class II MHC covalent peptide complexes. Immunity. 1998;8:675–82.

    PubMed  CAS  Google Scholar 

  110. Pinilla C, et al. Combinatorial peptide libraries as an alternative approach to the identification of ligands for tumor-reactive cytolytic T lymphocytes. Cancer Res. 2001;61:5153–60.

    PubMed  CAS  Google Scholar 

  111. Adams JJ, et al. T cell receptor signaling is limited by docking geometry to peptide-major histocompatibility complex. Immunity. 2011;35:681–93.

    PubMed  CAS  Google Scholar 

  112. Vetsika EK, et al. Sequential administration of the native TERT572 cryptic peptide enhances the immune response initiated by its optimized variant TERT(572Y) in cancer patients. J Immunother. 2011;34:641–50.

    PubMed  CAS  Google Scholar 

  113. Rosenberg SA, et al. Altered CD8(+) T-cell responses when immunizing with multiepitope peptide vaccines. J Immunother. 2006;29:224–31.

    PubMed  CAS  Google Scholar 

  114. Slingluff CL Jr, Engelhard VH, Ferrone S. Peptide and dendritic cell vaccines. Clin Cancer Res. 2006;12:2342s–5s.

    PubMed  CAS  Google Scholar 

  115. Chauvin JM, et al. HLA anchor optimization of the melan-A-HLA-A2 epitope within a long peptide is required for efficient cross-priming of human tumor-reactive T cells. J Immunol. 2012;188:2102–10.

    PubMed  CAS  Google Scholar 

  116. Slingluff CL Jr, et al. Randomized multicenter trial of the effects of melanoma-associated helper peptides and cyclophosphamide on the immunogenicity of a multipeptide melanoma vaccine. J Clin Oncol. 2011;29:2924–32.

    PubMed  CAS  Google Scholar 

  117. Valmori D, et al. Enhanced generation of specific tumor-reactive CTL in vitro by selected Melan-A/MART-1 immunodominant peptide analogues. J Immunol. 1998;160:1750–8.

    PubMed  CAS  Google Scholar 

  118. Gross DA, et al. High vaccination efficiency of low-affinity epitopes in antitumor immunotherapy. J Clin Invest. 2004;113:425–33.

    PubMed  CAS  Google Scholar 

  119. Keogh E, et al. Identification of new epitopes from four different tumor-associated antigens: recognition of naturally processed epitopes correlates with HLA-A*0201-binding affinity. J Immunol. 2001;167:787–96.

    PubMed  CAS  Google Scholar 

  120. Terasawa H, et al. Identification and characterization of a human agonist cytotoxic T-lymphocyte epitope of human prostate-specific antigen. Clin Cancer Res. 2002;8:41–53.

    PubMed  CAS  Google Scholar 

  121. Andersen MH, et al. Identification of a cytotoxic T lymphocyte response to the apoptosis inhibitor protein survivin in cancer patients. Cancer Res. 2001;61:869–72.

    PubMed  CAS  Google Scholar 

  122. Hou Y, Kavanagh B, Fong L. Distinct CD8 + T cell repertoires primed with agonist and native peptides derived from a tumor-associated antigen. J Immunol. 2008;180:1526–34.

    PubMed  CAS  Google Scholar 

  123. Le Gal FA, et al. Distinct structural TCR repertoires in naturally occurring versus vaccine-induced CD8 + T-cell responses to the tumor-specific antigen NY-ESO-1. J Immunother. 2005;28:252–7.

    PubMed  Google Scholar 

  124. Grabherr R, et al. Developments in the use of baculoviruses for the surface display of complex eukaryotic proteins. Trends Biotechnol. 2001;19:231–6.

    PubMed  CAS  Google Scholar 

  125. Sakihama T, et al. A simple detection method for low-affinity membrane protein interactions by baculoviral display. PLoS One. 2008;3:e4024.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by ACS RSG-08-184-01-L1B and CA109560. Jonathan D. Buhrman was supported by the Cancer Research Institute Pre-doctoral Emphasis Pathway in Tumor Immunology Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jill E. Slansky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buhrman, J.D., Slansky, J.E. Improving T cell responses to modified peptides in tumor vaccines. Immunol Res 55, 34–47 (2013). https://doi.org/10.1007/s12026-012-8348-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-012-8348-9

Keywords

Navigation