Skip to main content

Advertisement

Log in

Spontaneous and therapy-induced immunity to pluripotency genes in humans: clinical implications, opportunities and challenges

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Recent studies have suggested that the core pathways regulating pluripotency in embryonal stem cells bear considerable overlap with oncogenesis. Here, we discuss recent insights into the capacity of the human immune system to target some of the key pluripotency-associated genes. Immunity to these genes is also induced in humans in the context of chemotherapy-induced cell death in patients with germ cell tumors. Immunologic targeting of pathways associated with stemness has implications for both immune regulation of tumor growth as well as emerging regenerative therapies with embryonal stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ES:

Embryonal stem cells

MGUS:

Monoclonal gammopathy of undetermined significance

MM:

Multiple myeloma

DC:

Dendritic cells

CSC:

Cancer stem cells

GCT:

Germ cell tumor

TERT:

Telomerase reverse transcriptase

References

  1. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  2. Yamanaka S (2009) A fresh look at iPS cells. Cell 137:13–17

    Article  CAS  PubMed  Google Scholar 

  3. Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM, Khalil A, Rheinwald JG, Hochedlinger K (2009) Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 460:1145–1148

    Article  CAS  PubMed  Google Scholar 

  4. Krizhanovsky V, Lowe SW (2009) Stem cells: the promises and perils of p53. Nature 460:1085–1086

    Article  CAS  PubMed  Google Scholar 

  5. Banito A, Rashid ST, Acosta JC, Li S, Pereira CF, Geti I, Pinho S, Silva JC, Azuara V, Walsh M et al (2009) Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev 23:2134–2139

    Article  CAS  PubMed  Google Scholar 

  6. Li H, Collado M, Villasante A, Strati K, Ortega S, Canamero M, Blasco MA, Serrano M (2009) The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460:1136–1139

    Article  CAS  PubMed  Google Scholar 

  7. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507

    Article  CAS  PubMed  Google Scholar 

  8. Glinsky GV (2008) “Stemness” genomics law governs clinical behavior of human cancer: implications for decision making in disease management. J Clin Oncol 26:2846–2853

    Article  PubMed  Google Scholar 

  9. Schoenhals M, Kassambara A, De Vos J, Hose D, Moreaux J, Klein B (2009) Embryonic stem cell markers expression in cancers. Biochem Biophys Res Commun 383:157–162

    Article  CAS  PubMed  Google Scholar 

  10. Wong DJ, Liu H, Ridky TW, Cassarino D, Segal E, Chang HY (2008) Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2:333–344

    Article  CAS  PubMed  Google Scholar 

  11. Gidekel S, Pizov G, Bergman Y, Pikarsky E (2003) Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell 4:361–370

    Article  CAS  PubMed  Google Scholar 

  12. Bass AJ, Watanabe H, Mermel CH, Yu S, Perner S, Verhaak RG, Kim SY, Wardwell L, Tamayo P, Gat-Viks I et al (2009) SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet 41:1238–1242

    Article  CAS  PubMed  Google Scholar 

  13. Hussenet T, du Manoir S (2010) SOX2 in squamous cell carcinoma: amplifying a pleiotropic oncogene along carcinogenesis. Cell Cycle 9(8): epub

  14. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM (2006) Cancer stem cells–perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66:9339–9344

    Article  CAS  PubMed  Google Scholar 

  15. Landgren O, Kyle RA, Pfeiffer RM, Katzmann JA, Caporaso NE, Hayes RB, Dispenzieri A, Kumar S, Clark RJ, Baris D et al (2009) Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood 113:5412–5417

    Article  CAS  PubMed  Google Scholar 

  16. Fonseca R, Barlogie B, Bataille R, Bastard C, Bergsagel PL, Chesi M, Davies FE, Drach J, Greipp PR, Kirsch IR et al (2004) Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res 64:1546–1558

    Article  CAS  PubMed  Google Scholar 

  17. Dhodapkar MV, Krasovsky J, Olson K (2002) T cells from the tumor microenvironment of patients with progressive myeloma can generate strong, tumor-specific cytolytic responses to autologous, tumor-loaded dendritic cells. Proc Natl Acad Sci USA 99:13009–13013

    Article  CAS  PubMed  Google Scholar 

  18. Dhodapkar MV, Krasovsky J, Osman K, Geller MD (2003) Vigorous premalignancy-specific effector T cell response in the bone marrow of patients with monoclonal gammopathy. J Exp Med 198:1753–1757

    Article  CAS  PubMed  Google Scholar 

  19. Spisek R, Kukreja A, Chen LC, Matthews P, Mazumder A, Vesole D, Jagannath S, Zebroski HA, Simpson AJ, Ritter G et al (2007) Frequent and specific immunity to the embryonal stem cell-associated antigen SOX2 in patients with monoclonal gammopathy. J Exp Med 204:831–840

    Article  CAS  PubMed  Google Scholar 

  20. Kim PS, Ahmed R (2010) Features of responding T cells in cancer and chronic infection. Curr Opin Immunol 22:223–230

    Article  CAS  PubMed  Google Scholar 

  21. Gure AO, Stockert E, Scanlan MJ, Keresztes RS, Jager D, Altorki NK, Old LJ, Chen YT (2000) Serological identification of embryonic neural proteins as highly immunogenic tumor antigens in small cell lung cancer. Proc Natl Acad Sci USA 97:4198–4203

    Article  CAS  PubMed  Google Scholar 

  22. Comtesse N, Zippel A, Walle S, Monz D, Backes C, Fischer U, Mayer J, Ludwig N, Hildebrandt A, Keller A et al (2005) Complex humoral immune response against a benign tumor: frequent antibody response against specific antigens as diagnostic targets. Proc Natl Acad Sci USA 102:9601–9606

    Article  CAS  PubMed  Google Scholar 

  23. Blotta S, Tassone P, Prabhala RH, Tagliaferri P, Cervi D, Amin S, Jakubikova J, Tai YT, Podar K, Mitsiades CS et al (2009) Identification of novel antigens with induced immune response in monoclonal gammopathy of undetermined significance. Blood 114:3276–3284

    Article  CAS  PubMed  Google Scholar 

  24. Dhodapkar KM, Feldman D, Matthews P, Radfar S, Pickering R, Turkula S, Zebroski H, Dhodapkar MV (2010) Natural immunity to pluripotency antigen OCT4 in humans. Proc Natl Acad Sci USA 107:8718–8723

    Article  CAS  PubMed  Google Scholar 

  25. Jones TD, Ulbright TM, Eble JN, Baldridge LA, Cheng L (2004) OCT4 staining in testicular tumors: a sensitive and specific marker for seminoma and embryonal carcinoma. Am J Surg Pathol 28:935–940

    Article  PubMed  Google Scholar 

  26. Liedtke S, Stephan M, Kogler G (2008) Oct4 expression revisited: potential pitfalls for data misinterpretation in stem cell research. Biol Chem 389:845–850

    Article  CAS  PubMed  Google Scholar 

  27. Berg JS, Goodell MA (2007) An argument against a role for Oct4 in somatic stem cells. Cell Stem Cell 1:359–360

    Article  CAS  PubMed  Google Scholar 

  28. Lengner CJ, Camargo FD, Hochedlinger K, Welstead GG, Zaidi S, Gokhale S, Scholer HR, Tomilin A, Jaenisch R (2007) Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell Stem Cell 1:403–415

    Article  CAS  PubMed  Google Scholar 

  29. Liedtke S, Enczmann J, Waclawczyk S, Wernet P, Kogler G (2007) Oct4 and its pseudogenes confuse stem cell research. Cell Stem Cell 1:364–366

    Article  CAS  PubMed  Google Scholar 

  30. Wegner M, Stolt CC (2005) From stem cells to neurons and glia: a Soxist’s view of neural development. Trends Neurosci 28:583–588

    Article  CAS  PubMed  Google Scholar 

  31. Phi JH, Park SH, Kim SK, Paek SH, Kim JH, Lee YJ, Cho BK, Park CK, Lee DH, Wang KC (2008) Sox2 expression in brain tumors: a reflection of the neuroglial differentiation pathway. Am J Surg Pathol 32:103–112

    Article  PubMed  Google Scholar 

  32. Alcock J, Lowe J, England T, Bath P, Sottile V (2009) Expression of Sox1, Sox2 and Sox9 is maintained in adult human cerebellar cortex. Neurosci Lett 450:114–116

    Article  CAS  PubMed  Google Scholar 

  33. Guo Z, Packard A, Krolewski RC, Harris MT, Manglapus GL, Schwob JE (2010) Expression of pax6 and sox2 in adult olfactory epithelium. J Comp Neurol 518:4395–4418

    Article  PubMed  Google Scholar 

  34. Tompkins DH, Besnard V, Lange AW, Wert SE, Keiser AR, Smith AN, Lang R, Whitsett JA (2009) Sox2 is required for maintenance and differentiation of bronchiolar Clara, ciliated, and goblet cells. PLoS One 4:e8248

    Article  PubMed  Google Scholar 

  35. Basu-Roy U, Ambrosetti D, Favaro R, Nicolis SK, Mansukhani A, Basilico C (2010) The transcription factor Sox2 is required for osteoblast self-renewal. Cell Death Differ 17:1345–1353

    Article  CAS  PubMed  Google Scholar 

  36. Kondoh H, Kamachi Y (2010) SOX-partner code for cell specification: regulatory target selection and underlying molecular mechanisms. Int J Biochem Cell Biol 42:391–399

    Article  CAS  PubMed  Google Scholar 

  37. Lauwen MM, Zwaveling S, de Quartel L, Ferreira Mota SC, Grashorn JA, Melief CJ, van der Burg SH, Offringa R (2008) Self-tolerance does not restrict the CD4+ T-helper response against the p53 tumor antigen. Cancer Res 68:893–900

    Article  CAS  PubMed  Google Scholar 

  38. Offringa R, Vierboom MP, van der Burg SH, Erdile L, Melief CJ (2000) p53: a potential target antigen for immunotherapy of cancer. Ann NY Acad Sci 910:223–233 discussion 233–226

    Article  CAS  PubMed  Google Scholar 

  39. Vonderheide RH (2002) Telomerase as a universal tumor-associated antigen for cancer immunotherapy. Oncogene 21:674–679

    Article  CAS  PubMed  Google Scholar 

  40. Scanlan MJ, Simpson AJ, Old LJ (2004) The cancer/testis genes: review, standardization, and commentary. Cancer Immun 4:1

    PubMed  Google Scholar 

  41. Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ (2005) Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 5:615–625

    Article  CAS  PubMed  Google Scholar 

  42. Dhodapkar MV (2010) Immunity to stemness genes in human cancer. Curr Opin Immunol 22:245–250

    Article  CAS  PubMed  Google Scholar 

  43. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964

    Article  CAS  PubMed  Google Scholar 

  44. Bindea G, Mlecnik B, Fridman WH, Pages F, Galon J (2010) Natural immunity to cancer in humans. Curr Opin Immunol 22:215–222

    Article  CAS  PubMed  Google Scholar 

  45. Schmitz M, Temme A, Senner V, Ebner R, Schwind S, Stevanovic S, Wehner R, Schackert G, Schackert HK, Fussel M et al (2007) Identification of SOX2 as a novel glioma-associated antigen and potential target for T cell-based immunotherapy. Br J Cancer 96:1293–1301

    Article  CAS  PubMed  Google Scholar 

  46. Ueda R, Ohkusu-Tsukada K, Fusaki N, Soeda A, Kawase T, Kawakami Y, Toda M (2010) Identification of HLA-A2- and A24-restricted T-cell epitopes derived from SOX6 expressed in glioma stem cells for immunotherapy. Int J Cancer 126(4):919–929

    CAS  PubMed  Google Scholar 

  47. Pellegatta S, Poliani PL, Corno D, Menghi F, Ghielmetti F, Suarez-Merino B, Caldera V, Nava S, Ravanini M, Facchetti F et al (2006) Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas. Cancer Res 66:10247–10252

    Article  CAS  PubMed  Google Scholar 

  48. Li Y, Zeng H, Xu RH, Liu B, Li Z (2009) Vaccination with human pluripotent stem cells generates a broad spectrum of immunological and clinical response against colon cancer. Stem Cells 27:3103–3111

    CAS  PubMed  Google Scholar 

  49. Knoepfler PS (2009) Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells 27:1050–1056

    Article  CAS  PubMed  Google Scholar 

  50. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317

    Article  CAS  PubMed  Google Scholar 

  51. Shih CC, Forman SJ, Chu P, Slovak M (2007) Human embryonic stem cells are prone to generate primitive, undifferentiated tumors in engrafted human fetal tissues in severe combined immunodeficient mice. Stem Cells Dev 16:893–902

    Article  CAS  PubMed  Google Scholar 

  52. Brederlau A, Correia AS, Anisimov SV, Elmi M, Paul G, Roybon L, Morizane A, Bergquist F, Riebe I, Nannmark U et al (2006) Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson’s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells 24:1433–1440

    Article  CAS  PubMed  Google Scholar 

  53. Qu Q, Shi Y (2009) Neural stem cells in the developing and adult brains. J Cell Physiol 221:5–9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

MVD is supported by funds from the National Institutes of Health and Leukemia and Lymphoma Society. KMD is supported by funds from the National Institutes of Health, Dana Foundation and Doris Duke Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Madhav V. Dhodapkar or Kavita M. Dhodapkar.

Additional information

This paper is a Focussed Research Review based on a presentation given at the Eighth Annual Meeting of the Association for Cancer Immunotherapy (CIMT), held in Mainz, Germany, May 26–28, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhodapkar, M.V., Dhodapkar, K.M. Spontaneous and therapy-induced immunity to pluripotency genes in humans: clinical implications, opportunities and challenges. Cancer Immunol Immunother 60, 413–418 (2011). https://doi.org/10.1007/s00262-010-0944-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-010-0944-8

Keywords

Navigation