Skip to main content

Biology Trumps Management: Feedbacks and Constraints of Life-History Traits

  • Chapter
Coral Reefs in the Anthropocene

Abstract

The geologic record suggests a diverse array of reef-building corals will survive increasing CO2, but the relative prevalence of different types will shift and the reefs will become degraded and eroded. Although many corals may not go extinct, if pH decreases effectively, reef ecosystem services will deteriorate because bioerosion will accelerate and, for some coral species, net skeletal construction will require more energy when the aragonite saturation state decreases. A similar pattern of many genera of reef-building scleractinian corals surviving, but with relatively little reef accretion, was seen through the roughly 140 million years from the Late Jurassic to the late Paleogene when the calcite seas (Mg/Ca mole ratio <2) and pH <7.8 were unfavorable for aragonitic reef accretion. The geologic record suggests that the corals most vulnerable to extinction were the fast-growing branching species because the traits that provide fast growth have tradeoffs with traits that provide tolerance of stressful environments. Iteroparous animals such as corals are adapted for survival under stressful conditions at the expense of fecundity. Surveys have recorded widespread decreases in living coral cover, but the less visible decrease in fecundity from stress may be more insidious to population recovery. Reduced fecundity and less dense population distribution can act synergistically to produce Allee effects in sessile animals such as corals. Natural coral-reef ecosystems give the appearance of inverted trophic pyramids, but when fished down by about 80 %, recovery has usually not happened, possibly because the larger individuals in the populations were a major source of fecundity. Although biomass of eukaryotes appear to be in inverted trophic pyramids, the turnover and energy is in the form of standard pyramids and although large individuals in the upper trophic levels are especially sensitive to exploitation, subsistence economies can be maintained by harvesting the medium-sized individuals. Large individuals matter more than population biomass because of the distinct roles of large individuals in ecological processes maintaining coral-reef ecosystems and the relatively large reproductive potential of big fishes. The functional traits of both the coral-reef ecosystem and its component animals provide a greater potential for exploitation by globalization in a service-based economy than with an extractive economy, as exemplified by Palau.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abesamis RA, Green AL, Russ GR, Jadloc CRL (2014) The intrinsic vulnerability to fishing of coral reef fishes and their differential recovery to fishery closures. Rev Fish Biol Fisheries. doi:10.1007/s11160-014-9362-x

    Google Scholar 

  • Adjeroud M, Michonneau F, Edmunds PJ, Chancerelle Y, Lison de Loma T, Penin L, Thibaut L, Vidal-Dupiol J, Salvat B, Galzin R (2009) Recurrent disturbances, recovery trajectories, and resilience of coral assemblages on a South Central Pacific reef. Coral Reefs 28:775–780

    Article  Google Scholar 

  • Albright RA, Mason B, Langdon C (2008) Effect of aragonite saturation state on settlement and post-settlement growth of Porites astreoides larvae. Coral Reefs 27:485–490

    Article  Google Scholar 

  • Albright RA, Mason B, Miller M, Langdon C (2010) Ocean acidification compromises recruitment success of the threatened Caribbean coral, Acropora palmata. Proc Natl Acad Sci 107:20400–20404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alcala AC, Luchavez T (1982) Fish yields of the coral reef surrounding Apo Island, Negros Occidental, Central Visayas, Philippines. Proc 4th Internat Coral Reef Sym, Manila l: 69–73

    Google Scholar 

  • Almany GR, Berumen ML, Thorrold SR, Planes S, Jones GP (2007) Local replenishment of coral reef fish populations in a marine reserve. Science 316:742–744

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Filip L, Dulvy NK, Gill JA, Côté IM, Watkinson AR (2009) Flattening of Caribbeancoral reefs: region-wide declines in architectural complexity. Proc Roy Soc B 276:3019–3025

    Google Scholar 

  • Anonymous (2000) What price coral? Economist. Nov 4: 87–89

    Google Scholar 

  • Apprill A, Marlow HQ, Martindale MQ, Rappe MS (2009) The onset of microbial associations in the coral Pocillopora meandrina. ISME J 3:685–699

    Article  PubMed  Google Scholar 

  • Archer D, Brovkin V (2008) The millennial atmosphere lifetime of anthropogenic CO2. Clim Change 90:283–297

    Article  CAS  Google Scholar 

  • Aronson RB, Precht WF (2001) White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia 460:25–38

    Article  Google Scholar 

  • Babcock R (1990) Reproduction and development of the blue coral Heliopora coerulea (Alcyonaria: Coenothecalia). Mar Biol 104:475–481

    Article  Google Scholar 

  • Babcock R, Davies P (1991) Effects of sedimentation on settlement of Acropora millepora. Coral Reefs 9:205–208

    Article  Google Scholar 

  • Bambach RK, Knoll AH, Wang SC (2004) Origination, extinction, and mass depletion of marine diversity. Paleobiology 30:522–542

    Article  Google Scholar 

  • Banse K (1982) Cell volumes, maximal growth rates of unicellular algae and ciliates, and the role of ciliates in the marine pelagial. Limnol Oceanogr 27:1059–1071

    Article  Google Scholar 

  • Berkeley SA, Chapman C, Sogard SM (2004a) Maternal age as a determinant of larval growth and survival in a marine fish, Sebastes melanops. Ecology 85:1258–1264

    Article  Google Scholar 

  • Berkeley SA, Hixon MA, Larson RJ, Love MS (2004b) Fisheries sustainability via protection of age structure and spatial distribution of fish populations. Fisheries 29:23–32

    Article  Google Scholar 

  • Berkelmans R (2002) Time-integrated thermal bleaching thresholds of reefs and their variation on the Great Barrier Reef. Mar Ecol Prog Ser 237:309–310

    Google Scholar 

  • Berkelmans R, Willis BL (1999) Seasonal and local spatial patterns in the upper thermal limits of corals on the inshore Central Great Barrier Reef. Coral Reefs 18:219–228

    Article  Google Scholar 

  • Bernecker M, Weidlich O (2005) Azooxanthellate corals in the late Maastrichtian-early Paleocene of the Danish basin: bryozoan and coral mounds in a boreal shelf setting. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, pp 3–25

    Chapter  Google Scholar 

  • Berner RA, Kothavala Z (2001) GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am J Sci 301:182–204

    Article  CAS  Google Scholar 

  • Bice KL, Birgel D, Meyers PA, Dahl KA, Hinrichs K-U, Norris RD (2006) A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2 concentrations. Paleoceanography 21:PA2002. doi:10.1029/2005PA001203

    Article  Google Scholar 

  • Birkeland C (1977) The importance of rate of biomass accumulation in early successional stages of benthic communities to the survival of coral recruits. Proc 3rd Int Coral Reef Sym, Miami 1: 15–21

    Google Scholar 

  • Birkeland C (1997) Status of coral reefs in the Marianas. In: Grigg RW, Birkeland C (eds) Status of coral reefs in the Pacific. Univ Hawaii Sea Grant College Program, Honolulu, pp 91–100

    Google Scholar 

  • Birkeland C, Rowley D, Randall RH (1981) Coral recruitment patterns at Guam. Proc 4th Int Coral Reef Sym, Manila 2: 339–344

    Google Scholar 

  • Birkeland C, Miller MW, Piniak GA, Eakin CM, Weijerman M, McElhany P, Dunlap M, Brainard RE (2013) Safety in numbers? Abundance may not safeguard corals from increasing carbon dioxide. Bioscience 63:967–974

    Article  Google Scholar 

  • Birrell CL, McCook JL, Willis BL (2005) Effects of algal turfs and sediment on coral settlement. In: Hutchings PA, Haynes D (eds), Proceedings of catchment to reef: water quality issues in the Great Barrier Reef Region conference. Mar Poll Bull, doi: 10.1016/j.marpolbul.2004.10.022

  • Birrell CL, McCook LJ, Willis BL, Diaz-Pulido GA (2008) Effects of benthic algae on the replenishment of corals and the implications for the resilience of coral reefs. Oceanogr Mar Biol Ann Rev 46:25–63

    Google Scholar 

  • Bobko SJ, Berkeley SA (2004) Maturity, ovarian cycle, fecundity, and age-specific parturition of black rockfish (Sebastes melanops). Fish Bull US 80:881–884

    Google Scholar 

  • Bohnsack JA (1998) Application of marine reserves to reef fisheries management. Aust J Ecol 23:298–304

    Article  Google Scholar 

  • Bonaldo RM, Bellwood DR (2008) Size-dependent variation in the functional role of the parrotfish Scarus rivulatus on the Great Barrier Reef, Australia. Mar Ecol Prog Ser 360:237–244

    Article  Google Scholar 

  • Brown BE (1997a) Coral bleaching: causes and consequences. Coral Reefs 16:129–138

    Article  Google Scholar 

  • Brown BE (1997b) Disturbances to reefs in recent times. In: Birkeland C (ed) Life and death of coral reefs. Chapman & Hall, New York, pp 354–379

    Chapter  Google Scholar 

  • Brown BE, Cossins AR (2011) The potential for temperature acclimatization of reefcorals in the face of climate change. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer Science, New York, pp 421–433

    Chapter  Google Scholar 

  • Bruggemann JH, van Kessel AM, van Rooij JM, Breeman AM (1996) Bioerosion and sediment ingestion by the Caribbean parrotfish Scarus vetula and Sparisoma viride: implications of fish size, feeding mode and habitat use. Mar Ecol Prog Ser 134:59–71

    Article  Google Scholar 

  • Budd AF (2000) Diversity and extinction in the Cenozoic history of Caribbean reefs. Coral Reefs 19:25–35

    Article  Google Scholar 

  • Budd AF, Johnson KG, Stemann TA (1996) Plio-Pleistocene turnover and extinctions in the Caribbean reef-coral fauna. In: Jackson JBC, Budd AF, Coates AG (eds) Evolution and environment in tropical America. Univ Chicago Press, Chicago, pp 168–204

    Google Scholar 

  • Budd AF, Fukami H, Smith ND, Knowlton N (2012) Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linnean Soc 166:465–529

    Article  Google Scholar 

  • Buddemeier RW, Kinzie RA III (1998) Reef science: asking all the wrong questions in all the wrong places? Reef Encount 23:29–34

    Google Scholar 

  • Buston PM, Jones GP, Planes S, Thorrold SR (2011) Probability of successful larval dispersal declines fivefold over 1 km in a coral reef fish. Proc Roy Soc Lond B Biol Sci 279:1883–1888

    Article  Google Scholar 

  • Butler JN, Bulnzett-Blerkes J, Barnes JA, Ward J (1993) The Bermuda fisheries: a tragedy of the commons averted? Environment 35:7–41

    Article  Google Scholar 

  • Caruthers AH, Stanley GD Jr (2008) Systematic analysis of Upper Triassic silicified scleractinian corals from Wrangellia and the Alexander Terrane, Alaska and British Columbia. J Paleont 82:470–491

    Article  Google Scholar 

  • Ceccherelli VU, Rossi R (1984) Settlement, growth and production of the mussel Mytilus galloprovincialis. Mar Ecol Progr Ser 16:173–184

    Article  Google Scholar 

  • Choat JH, Robertson DR (2002) Age-based studies. In: Sale PF (ed) Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic, New York, pp 57–80

    Chapter  Google Scholar 

  • Cohen AL, Holcomb M (2009) Why corals care about ocean acidification: uncovering the mechanism. Oceanography 22:118–127

    Article  Google Scholar 

  • Cole LC (1954) The population consequences of life history phenomena. Q Rev Biol 29:103–137

    Article  CAS  PubMed  Google Scholar 

  • Cole AJ, Pratchett MS, Jones GP (2008) Diversity and functional importance of coral-feeding fishes on tropical coral reefs. Fish Fish 9:286–307

    Article  Google Scholar 

  • Coles SL (1997) Reef corals occurring in a highly fluctuating temperature environment at Fahal Island, Gulf of Oman (Indian Ocean). Coral Reefs 16:269–272

    Article  Google Scholar 

  • Coles SL, Brown BE (2003) Coral bleaching – capacity for acclimatization and adaptation. Adv Mar Biol 46:183–223

    Article  CAS  PubMed  Google Scholar 

  • Coles SL, Jokiel PL (1978) Synergistic effects of temperature, salinity and light on the hermatypic coral Montipora verrucosa. Mar Biol 49:187–195

    Article  Google Scholar 

  • Coley PD, Bryant JP, Chapin FS III (1985) Resource availability and plant antiherbivore defense. Science 230:895–899

    Article  CAS  PubMed  Google Scholar 

  • Colgan M (1984) The Cretaceous coral Heliopora (Octocorallia, Coenothecalia) – a common Indo-Pacific reef builder. In: Eldredge N (ed) Living fossils. A casebooks in earth sciences. Springer, Berlin/Heidelberg/New York, pp 266–271

    Google Scholar 

  • Comeau S, Edmunds PJ, Spindel NB, Carpenter RC (2014) Diel pCO2 oscillations modulate the response of the coral Acropora hyacinthus to ocean acidification. Mar Ecol Prog Ser 501:99–111

    Google Scholar 

  • Cortés J, Jiménez C (2003) Corals and coral reefs of the Pacific of Costa Rica: history, research and status. In: Cortés J (ed) Latin American coral reefs. Elsevier, Amsterdam, pp 361–385

    Chapter  Google Scholar 

  • Cowen RK, Lwiza KMM, Sponaugle S, Paris CB, Olson DB (2000) Connectivity of marine populations: open or closed? Science 287:857–859

    Article  CAS  PubMed  Google Scholar 

  • Cowen RK, Paris CB, Srinivasan A (2006) Scaling of connectivity in marine populations. Science 311:522–527

    Article  CAS  PubMed  Google Scholar 

  • Cox EF (1986) The effects of a selective corallivore on growth rates and competition for space between two species of Hawaiian corals. J Exp Mar Biol Ecol 101:167–174

    Article  Google Scholar 

  • Cox EF, Ward S (2002) Impact of elevated ammonium on reproduction in two Hawaiian scleractinian corals with different life history patterns. Mar Pollut Bull 44:1230–1235

    Article  CAS  PubMed  Google Scholar 

  • Craig P (1995) Life history and harvest of the surgeonfish Acanthurus lineatus in American Samoa, Biol Rept Ser No 77. Dept Mar Wildlife Res, American Samoa, 30 pp

    Google Scholar 

  • Craig P (2005) overfished coral reefs in American Samoa: no quick fix. Reef Encount 33:21–22

    Google Scholar 

  • Craig P, Green A, Saucerman S (1995) Coral reef troubles in American Samoa. SPC Fish Newsl 72:33–34

    Google Scholar 

  • Craig P, Birkeland C, Belliveau S (2001) High temperatures tolerated by a diverse assemblage of shallow-water corals in American Samoa. Coral Reefs 20:185–189

    Article  Google Scholar 

  • Darcy GH, Matlock GC (1999) Application of the precautionary approach in the national standard guidelines for conservation and management of fisheries in the United States. ICES J Mar Sci 56:853–859

    Article  Google Scholar 

  • Davis GW (1992) Biology of Mulloides flavolineatus. Study 3 in studies of Guam’s recreationally-important fish, Job Progress Report for Project No FW-2R-28, 10 pp

    Google Scholar 

  • Dawkins R (1982) The extended genotype. Oxford University Press, Oxford, p 307

    Google Scholar 

  • DeCarlo TM, Cohen AL, Barkley HC, Cobban Q, Young C, Shamberger KE, Brainard RE, Golbuu Y (2015) Coral macrobioerosion is accelerated by ocean acidification and nutrients. Geology 43:7–10

    Article  CAS  Google Scholar 

  • Dee AJ, Parrish JD (1994) Reproductive and trophic ecology of the soldierfish Myripristis amaena in tropical fisheries. Fish Bull 92:516–530

    Google Scholar 

  • DeMartini EE, Friedlander AM, Holzwarth SR (2005) Size at sex change in protogynous labroids, prey body size distributions, and apex predator densities at NW Hawaiian atolls. Mar Ecol Prog Ser 297:259–271

    Article  Google Scholar 

  • DeMartini EE, Friedlander AM, Sandin SA, Sala E (2008) Differences in fish-assemblage structure between fished and unfished atolls in the northern Line Islands, central Pacific. Mar Ecol Prog Ser 365:199–215

    Article  Google Scholar 

  • Denis V, Guillaume MMM, Goutx M, de Palmas S, Debreuil J, Baker AC, Boonstra RK, Bruggemann JH (2013) Fast growth may impair regeneration capacity in the branching coral Acropora muricata. PLoS ONE 8(8):e72618. doi:10.1371/journal.pone.0072618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Diekmann OE, Bak RPM, Stam WT, Olsen JL (2001) Molecular genetic evidence for reticulate speciation in the coral genus Madracis on a Caribbean fringing reef slope. Mar Biol 139:221–233

    Article  CAS  Google Scholar 

  • Dierking J (2007) Effects of the introduced predatory fish Cephalopholis argus on native reef fish populations in Hawaii. PhD dissertation, Univ Hawaii, 115 pp

    Google Scholar 

  • Dixson DL (2011) Risk assessment by larval fishes during settlement site selection. Coral Reefs 31:255–261

    Article  Google Scholar 

  • Dixson DL, Abrego D, Hay ME (2014) Chemically mediated behavior of recruiting corals and fishes: a tipping point that may limit reef recovery. Science 345:892–897

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dolan JR, Pérez MT (2000) Costs, benefits and characteristics of mixotrophy in marine oligotrichs. Freshw Biol 45:227–238

    Article  Google Scholar 

  • Doropoulos C, Ward S, Diaz-Pulido G, Hoegh-Guldberg O, Mumby PJ (2012) Ocean acidification reduces coral. Ecol Lett 15:338–346

    Article  PubMed  Google Scholar 

  • Dunne RP, Brown BE (2001) The influence of solar radiation on bleaching of shallow water reef corals in the Andaman Sea, 1993–1998. Coral Reefs 20:201–210

    Google Scholar 

  • Edinger EN, Risk MJ (1995) Preferential survivorship of brooding corals in a regional extinction. Paleobiology 21:200–219

    Google Scholar 

  • Eguchi M (1948) Fossil Helioporidae from Japan and the South Sea islands. J Paleontol 22:362–364

    Google Scholar 

  • Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Pollut Bull 50:125–146

    Article  CAS  PubMed  Google Scholar 

  • Fabricius KE, Metzner J (2004) Scleractinian walls of mouths: predation on coral larvae by corals. Coral Reefs 23:245–248

    Article  Google Scholar 

  • Fabricius K, Wild C, Wolanski E, Abele D (2003) Effects of transparent exopolymer particles (TEP) and muddy terrigenous sediments on the survival of hard coral recruits. Estuar Coast Shelf Sci 57:613–621

    Article  CAS  Google Scholar 

  • Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Chang 1:165–169. doi:10.1038/NCLIMATE1122

    Article  CAS  Google Scholar 

  • Fabricius KE, Cséke S, Humphrey C, De’ath G (2013) Does trophic status enhance or reduce the thermal tolerance of scleractinian corals? A review, experimental and conceptual framework. PLoS ONE 8(1):e54399. doi:10.1371/journal.pone.0054399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fenner D (2012) Challenges for managing fisheries on diverse coral reefs. Diversity 4:105–160

    Article  Google Scholar 

  • Fenner D (2014) Fishing down the largest coral reef fish species. Mar Pollut Bull. doi:10.1016/j.marpolbul.2014.04.049

    PubMed  Google Scholar 

  • Ferreira BP, Russ GR (1994) Age validation and estimation of growth rate of the coral trout Plectropomus leopardus (Lacepede 1802) from Lizard Island, Northern Great Barrier Reef. Fish Bull 92:46–57

    Google Scholar 

  • Frank U, Mokady O (2002) Coral biodiversity and evolution: recent molecular contributions. Can J Zool 80:1723–1734

    Article  Google Scholar 

  • Frank U, Oren U, Loya Y, Rinkevich B (1997) Alloimmune maturation in the coral Stylophora pistillata is achieved through three distinctive stages, 4 months postmetamorphosis. Proc R Soc B 264:99–104

    Article  PubMed Central  Google Scholar 

  • Friedlander AM, DeMartini EE (2002) Contrasts in density, size, and biomass of reef fishes between the northwestern and the main Hawaiian islands: the effects of fishing down apex predators. Mar Ecol Prog Ser 230:253–264

    Article  Google Scholar 

  • Gates RD, Edmunds PJ (1999) The physiological mechanisms of acclimatization in tropical reef corals. Am Zool 39:30–43

    Article  Google Scholar 

  • Gerlach G, Atema J, Kingsford MJ, Black KP, Miller-Sims V (2007) Smelling home can prevent larval dispersal of reef fish larvae. Proc Natl Acad Sci U S A 104:858–863

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gilmour J (1999) Experimental investigation into the effects of suspended sediment on fertilisation, larval survival and settlement in a scleractinian coral. Mar Biol 135:451–462

    Article  Google Scholar 

  • Gladfelter EH (1982) Skeletal development in Acropora cervicornis: I. Patterns of calcium carbonate accretion in the axial corallite. Coral Reefs 1:45–51

    Article  Google Scholar 

  • Gladfelter EH, Monahan RK, Gladfelter WB (1978) Growth rates of five reef-building corals in the northeastern Caribbean. Bull Mar Sci 28:728–734

    Google Scholar 

  • Glynn PW, Krupp DA (1986) Feeding biology of a Hawaiian sea star corallivore, Culcita novaeguineae Muller & Troschel. J Exp Mar Biol Ecol 96:75–96

    Article  Google Scholar 

  • Glynn PW, Mate JL, Baker AC, Calderon MO (2001) Coral bleaching and mortality in Panama and Ecuador during the 1997–1998 El Niño-Southern Oscillation Event: spatial/temporal patterns and comparisons with the 1982–1983 event. Bull Mar Sci 69:79–109

    Google Scholar 

  • Golbuu Y, Wolanski E, Idechong JW, Victor S, Isechal AL, Oldiais NW, Richmond RH, van Woesik R (2012) Predicting coral recruitment in Palau’s complex reef archipelago. PLoS ONE 7:e50998. doi:10.1371/journal.pone.0050998

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goldman B, Talbot FH (1976) Aspects of the ecology of coral reef fishes. In: Jones OA, Endean R (eds) Biology and geology of coral reefs. III. Biology 2. Academic, New York, pp 125–254

    Chapter  Google Scholar 

  • Götz S (2003) Biotic interaction and synecology in a Late Cretaceous coral-rudist biostrome of southeastern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 193:125–138

    Article  Google Scholar 

  • Graham EM, Baird AH, Connolly SR (2008) Survival dynamics of scleractinian coral larvae and implications for dispersal. Coral Reefs 27:529–539

    Article  Google Scholar 

  • Grigg RW, Polovina JJ, Atkinson MJ (1984) Model of a coral reef ecosystem. III. Resource limitation, community regulation, fisheries yield and resource management. Coral Reefs 3:23–27

    Article  Google Scholar 

  • Hallock P (1981) Algal symbiosis: a mathematical analysis. Mar Biol 62:249–255

    Article  Google Scholar 

  • Hallock P (1987) Fluctuations in the trophic resource continuum; a factor in global biodiversity cycles. Palaeoceanography 2:457–471

    Article  Google Scholar 

  • Hallock P (2001) Coral reefs, carbonate sediments, nutrients and global change. In: Stanley GD Jr (ed) The history and sedimentology of ancient reef systems. Kluwer Academic, New York, pp 388–427

    Google Scholar 

  • Hamilton RJ, Choat JH (2012) Bumphead parrotfish – Bolbometopon muricatum. In: de Mitcheson YS, Colin PL (eds) Reef fish spawning aggregations: biology, research and management. Fish & Fisheries Series 35. Springer, pp 490–496

    Google Scholar 

  • Hamilton RJ, Adams S, Choat JH (2008) Sexual development and reproductive demography of the green humphead parrot fish (Bolbometopon muricatum) in the Solomon Islands. Coral Reefs 27:153–163

    Article  Google Scholar 

  • Hamner WM, Jones MS, Carleton JH, Hauri IR, Williams DMB (1988) Zooplankton, planktivorous fish, and water currents on a windward reef face: Great Barrier Reef, Australia. Bull Mar Sci 42:459–479

    Google Scholar 

  • Handford P, Bell G, Reimchen T (1977) A gillnet fishery considered as an experiment in artificial selection. J Fish Res Board Can 34:954–961

    Article  Google Scholar 

  • Harman RF, Katekaru AZ (1988) Hawaii Commercial Fishing Survey 1987. Div Aquatic Resources, Dept Land and Natural Resources, State of Hawaii, 71 pp

    Google Scholar 

  • Harrigan JF (1972) The planula larva of Pocillopora damicornis, lunar periodicity of swimming and substratum selection behavior. PhD University of Hawai’i at Manoa, Honolulu, HI

    Google Scholar 

  • Harrison HB, Williamson DH, Evans RD, Almany GR, Thorrold SR, Russ GR, Feldheim K, van Herwerden L, Planes S, Srinivasan M, Berumen ML, Jones GP (2012) Larval export from marine reserves and the recruitment benefit for fish and fisheries. Curr Biol 22:1023–1028

    Article  CAS  PubMed  Google Scholar 

  • Hatcher BG (1997) Organic production and decomposition. In: Birkeland C (ed) Life and death of coral reefs. Chapman & Hall, New York, pp 140–174

    Chapter  Google Scholar 

  • Hatta M, Fukami H, Wang W, Omori M, Shimoike K, Hayashibara T, Ina Y, Sugiyama T (1999) Reproductive and genetic evidence for a reticulate evolutionary history of mass-spawning corals. Mol Biol Evol 16:1607–1613

    Article  CAS  PubMed  Google Scholar 

  • Hauser L, Adcock GJ, Smith PJ, Ramírez JHB, Carvalho GR (2002) Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus). Proc Natl Acad Sci U S A 99:11742–11747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hay WW, DeConto RM, Wold CN (1997) Climate: is the past the key to the future? Geol Rundsch 86:471–491

    Article  CAS  Google Scholar 

  • Heckel PH (1974) Carbonate buildups in the geologic record: a review. In: Laporte LF (ed), Reefs in time and space, SEPM Spec. Pub. 18. Society of Economic Paleontologists and Mineralogists, Tulsa, Oklahoma, pp 90–154

    Google Scholar 

  • Helm C, Schülke I (2000) Contact reactions and fusion of late Jurassic ramose coral Thamnasteria dendroica in a patch reef environment. Coral Reefs 19:89–92

    Article  Google Scholar 

  • Hernández-Delgado EA, Suleimán-Ramos SE (2014) E.S.A. coral species listing: a roadblock to community-based engagement in coral reef conservation and rehabilitation across the U.S. Caribbean? Reef Encount 29:11–15

    Google Scholar 

  • Hixon MA (1991) Predation as a process structuring coral reef fish communities. In: Sale PF (ed) The ecology of fishes on coral reefs. Academic, San Diego, pp 437–508

    Google Scholar 

  • Hixon MA, Beets JP (1993) Predation, prey refuges, and the structure of coral- reef fish assemblages. Ecol Monogr 63:77–101

    Article  Google Scholar 

  • Hixon MA, Carr MH (1997) Synergistic predation, density dependence, and population regulation in marine fish. Science 277:946–949

    Article  CAS  Google Scholar 

  • Hixon MA, Johnson DW, Sogard SM (2013) BOFFFFs: on the importance of conserving old-growth age structure in fishery populations. ICES J Mar Sci. doi:10.1093/icesjms/fst200

    Google Scholar 

  • Hodgson G (1990) Sediment and the settlement of larvae of the reef coral Pocillopora damicornis. Coral Reefs 9:41–43

    Article  Google Scholar 

  • Hoey AS, McCormick MI (2004) Selective predation for low body condition at the larval-juvenile transition of a coral reef fish. Oecologia 139:23–29

    Article  PubMed  Google Scholar 

  • Holbrook SJ, Schmitt RJ (2002) Competition for shelter space causes density-dependent predation mortality in damselfishes. Ecology 83:2855–2868

    Article  Google Scholar 

  • Holt RD (1984) Spatial heterogeneity, indirect interactions, and coexistence of prey species. Am Nat 124:377–406

    Article  Google Scholar 

  • Holt RD (1987) Prey communities in patchy environments. Oikos 50:276–290

    Article  Google Scholar 

  • Hönisch B, Ridgwell A, Schmidt DN, Thomas E, Gibbs SJ, Sluijs A, Zeebe R, Kump L, Martindale RC, Greene SE, Kiessling W, Ries J, Zachos JC, Royer DL, Barker S, Marchitto TM, Moyer R, Pelejero C, Ziveri P, Foster GL, Williams B (2012) The geological record of ocean acidification. Science 335:1058–1063

    Article  PubMed  CAS  Google Scholar 

  • Howard KG (2008) Community structure, life history, and movement patterns of parrotfishes: large protogynous hermaphrodite fishery species. PhD dissertation, Univ Hawaii, 112 pp

    Google Scholar 

  • Hughes TP, Connell JH (1999) Multiple stressors on coral reefs: a long-term perspective. Limnol Oceanogr 44:932–940

    Article  Google Scholar 

  • Hughes TP, Baird AH, Dinsdale EA, Moltschaniwskyj NA, Pratchett MS, Tanner JE, Willis BL (2000) Supply-side ecology works both ways: the link between benthic adults, fecundity, and larval recruits. Ecology 81:2241–2249

    Article  Google Scholar 

  • Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O, McCook L, Moltschaniwskyj N, Pratchett MS, Steneck RS, Willis B (2007) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol 17:360–365

    Article  CAS  PubMed  Google Scholar 

  • Hunte W, Wittenberg M (1992) Effects of eutrophication and sedimentation on juvenile corals. Mar Biol 114:625–631

    Article  Google Scholar 

  • Hutchings JA, Reynolds JD (2004) Marine fish population collapses: consequences for recovery and extinction risk. Bioscience 54:297–309

    Article  Google Scholar 

  • Jablonski D (2002) Survival without recovery after mass extinctions. Proc Natl Acad Sci U S A 99:8139–8144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jackson JBC (1997) Reefs since Columbus. Proc 8th Int Coral Reef Sym 1: 97–106

    Google Scholar 

  • Jackson JBC, McKinney FK (1991) Ecological processes and progressive macroevolution of marine clonal benthos. In: Ross RM, Allmon WD (eds) Causes of evolution. Univ Chicago Press, Chicago, pp 173–209

    Google Scholar 

  • Jennings S, Kaiser KJ, Reynolds JD (2001) Marine fisheries ecology. Blackwell, Oxford, p 417

    Google Scholar 

  • Jiménez CE, Cortés J, León A, Ruiz E (2001) Coral bleaching and mortality associated with the 1997–98 El Niño in an upwelling environment in the eastern Pacific (Gulf of Papagayo, Costa Rica). Bull Mar Sci 69:151–169

    Google Scholar 

  • Johannes RE (1981) Words of the lagoon. Univ Cal Berkeley Press, Berkeley, p 245

    Google Scholar 

  • Johannes RE (1998) The case for data-less marine resource management: example from tropical nearshore fisheries. Trends Ecol Evol 13:243–246

    Article  CAS  PubMed  Google Scholar 

  • Jokiel PL (1990) Transport of reef corals into the great Barrier Reef. Nature 347:665–667

    Article  Google Scholar 

  • Jones GP (1997) Relationships between recruitment and postrecruitment processes in lagoonal populations of two coral reef fishes. J Exp Mar Biol Ecol 213:231–246

    Article  Google Scholar 

  • Jones GP, Milicich MJ, Emslie MJ, Lunow C (1999) Self-recruitment in a coral reef fish population. Nature 402:802–804

    Article  CAS  Google Scholar 

  • Jones GP, Planes S, Thorrold SR (2005) Coral reef fish larvae settle close to home. Curr Biol 15:1314–1318

    Article  CAS  PubMed  Google Scholar 

  • Jones GP, Almany GR, Russ GR, Sale PF, Steneck RS, van Oppen MJH, Willis BL (2009) Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges. Coral Reefs 28:307–325

    Article  Google Scholar 

  • Keenan EE, Brainard RE, Basch LV (2006) Historical and present status of the pearl oyster, Pinctada margaritifera, at Pearl and Hermes Atoll, Northwestern Hawaiian Islands. Atoll Res Bull 543:333–344

    Google Scholar 

  • Kennedy EV, Perry CT, Halloran PR, Iglesias-Prieto R, Schönberg WM, Form AU, Carricart-Ganivet JP, Fine M, Eakin CM, Mumby PJ (2013) Avoiding coral reef functional collapse requires local and global action. Curr Biol 23:912–918

    Article  CAS  PubMed  Google Scholar 

  • Kenyon JC (1997) Models of reticulate evolution in the coral genus Acropora based on chromosome numbers: parallels with plants. Evolution 51:756–767

    Article  Google Scholar 

  • Kiessling W (2009) Geologic and biologic controls on the evolution of reefs. Ann Rev Ecol Evol Syst 40:173–192

    Article  Google Scholar 

  • Kiessling W, Baron-Szabo RC (2004) Extinction and recovery patterns of scleractinian corals at the Cretaceous-Tertiary boundary. Palaeogeogr Palaeoclimatol Palaeoecol 214:195–223

    Article  Google Scholar 

  • Kinsey DW, Davies PJ (1979) Effects of elevated nitrogen and phosphorus on coral reef growth. Limnol Oceanogr 2:935–940

    Article  Google Scholar 

  • Kleypas JA, Buddemeier RW, Archer D, Gattuso J-P, Langdon C, Opdyke BN (1999a) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120

    Article  CAS  PubMed  Google Scholar 

  • Kleypas JA, McManus JW, Menez LAB (1999b) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159

    Article  Google Scholar 

  • Kleypas JA, Buddemeier RW, Gattuso J-P (2001) The future of coral reefs in an age of global change. Int J Earth Sci (Geol Rundsch) 90:426–437

    Article  CAS  Google Scholar 

  • Kleypas JA, Danabasoglu G, Lough JM (2008) Potential role of the ocean thermostat in determining regional differences in coral reef bleaching events. Geophysical Research Letters 35:L03613. doi:10.1029/2007GL032257

    Article  Google Scholar 

  • Kline DI, Kuntz NM, Breitbart M, Knowlton N, Rohwer F (2006) Role of elevated organic carbon levels and microbial activity in coral mortality. Mar Ecol Prog Ser 314:119–125

    Article  CAS  Google Scholar 

  • Kojis BL, Quinn NJ (1984) Seasonal and depth variation in fecundity of Acropora palifera at two reefs in Papua New Guinea. Coral Reefs 3:165–172

    Article  Google Scholar 

  • Kojis BL, Quinn NJ (1985) Puberty in Goniastrea favulus. Age or size limited? Proc 5th Int Coral Reef Congr, Tahiti 4: 289–293

    Google Scholar 

  • Koop K, Booth D, Broadbent A, Brodie J, Bucher D, Capone D, Coll J, Dennison W, Erdmann M, Harrison P (2001) ENCORE: the effect of nutrient enrichment on coral reefs. Synthesis of results and conclusions. Mar Pollut Bull 42:91–120

    Article  CAS  PubMed  Google Scholar 

  • Koslow JA, Hanley F, Wicklund R (1988) Effects of fishing on reef fish communities at Pedro Bank and Port Royal Cays, Jamaica. Mar Ecol Prog Ser 43:201–212

    Article  Google Scholar 

  • Kuffner IB, Paul VJ (2004) Effects of the benthic cyanobacterium Lyngbya majuscula on larval recruitment of the reef corals Acropora surculosa and Pocillopora damicornis. Coral Reefs 23:455–458

    Article  Google Scholar 

  • Kuffner IB, Walters LJ, Becerro MA, Paul VJ, Ritson-Williams R, Beach KS (2006) Inhibition of coral recruitment by macroalgae and cyanobacteria. Mar Ecol Prog Ser 323:107–117

    Article  Google Scholar 

  • Kuffner IB, Andersson AJ, Jokiel PL, Rodgers KS, Mackenzie FT (2008) Decreased abundance of crustose coralline algae due to ocean acidification. Nat Geosci 1:114–117

    Article  CAS  Google Scholar 

  • Larkin PA (1978) Fisheries management–an essay for ecologists. Ann Rev Ecol Syst 9:57–73

    Article  Google Scholar 

  • Lathuilière B, Marchal D (2009) Extinction, survival and recovery of corals from the Triassic to Middle Jurassic time. Terra Nova 21:57–66

    Article  CAS  Google Scholar 

  • Lehodey P, Leroy B (1999) Age and growth of yellowfin tuna (Thunnus albacares) from the western and central Pacific Ocean as indicated by daily growth increments and tagging data. Secretariat of the Pacific Community, Noumea, 21 pp

    Google Scholar 

  • Leinfelder RR (2001) Jurassic reef ecosystems. In: Stanley GD Jr (ed) The history and sedimentology of ancient reef systems. Kluwer Academic/Plenum Publ, New York, pp 251–309

    Chapter  Google Scholar 

  • Leinfelder RR, Seemann J, Heiss GA, Struck U (2012) Could ‘ecosystem atavisms’ help reefs to adapt to the Anthropocene? Proc 12th Int Coral Reef Sym, Cairns, Australia 2

    Google Scholar 

  • Levitan DR, Fukami H, Jara J, Kline D, McGovern TM, McGhee KE, Swanson CA, Knowlton N (2004) Mechanisms of reproductive isolation among sympatric broadcast-spawning corals of the Montastraea annularis species complex. Evolution 58:308–323

    Article  PubMed  Google Scholar 

  • Levitan DR, Boudreau W, Jara J, Knowlton N (2014) Long-term reduced spawning in Orbicella coral species due to temperature stress. Mar Ecol Prog Ser 515:1–10

    Article  Google Scholar 

  • Lirman D (2000) Fragmentation in the branching coral Acropora palmata (Lamarck): growth, survivorship, and reproduction of colonies and fragments. J Exp Mar Biol Ecol 251:41–57

    Article  PubMed  Google Scholar 

  • Littler MM, Littler DS (1980) The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model. Am Nat 116:25–41

    Article  Google Scholar 

  • Littler MM, Littler DS (1997) Disease-induced mass mortality of crustose algae on coral reefs provides rationale for the conservation of herbivorous fish stocks. Proc 8th Int Coral Reef Sym 1:719–724

    Google Scholar 

  • Littler K, Robinson SA, Brown PR, Nederbragt AJ, Pancost RD (2011) High sea-surface temperatures during the early Cretaceous Epoch. Nat Geosci 4:169–172

    Article  CAS  Google Scholar 

  • Lokrantz J, Nyström M, Thyresson M, Johansson C (2008) The non-linear relationship between body size and function in parrotfishes. Coral Reefs 27:967–974

    Article  Google Scholar 

  • Longhurst A (2002) Murphy’s law revisited: longevity as a factor in recruitment to fish populations. Fish Res 56:125–131

    Article  Google Scholar 

  • López-Duarte PC, Carson HS, Cook GS, Fodrie FJ, Becker BJ, DiBacco C, Levin LA (2012) What controls connectivity? An empirical, multi-species approach. Integr Comp Biol 52:511–524

    Article  PubMed  Google Scholar 

  • López-Pérez RA (2005) The Cenozoic hermatypic corals in the eastern Pacific: history of research. Earth Sci Rev 72:67–87

    Article  Google Scholar 

  • Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, van Woesik R (2001) Coral bleaching: the winners and the losers. Ecol Lett 4:122–131

    Article  Google Scholar 

  • Ma TYH (1959) Effect of water temperature on growth rate of reef corals. Oceanographica Sinica Special Volume 1, pp 116 +320 plates

    Google Scholar 

  • Marhaver KL, Vermeij MJA, Rohwer F, Sandin SA (2013) Janzen-Connell effects in a broadcast-spawning Caribbean coral: distance-dependent survival of larvae and settlers. Ecology 94:146–160

    Article  CAS  PubMed  Google Scholar 

  • Marshall PA, Baird AH (2000) Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs 19:155–163

    Article  Google Scholar 

  • Mascarelli A (2014) Climate-change adaptation: designer reefs. Nature 508:444–446. doi:10.1038/508444a

    Article  CAS  PubMed  Google Scholar 

  • Maynard JA, Anthony KRN, Marshall PA, Masiri I (2008) Major bleaching events can lead to increased thermal tolerance in corals. Mar Biol 155:173–182

    Article  Google Scholar 

  • McClanahan TR (2014) Recovery of functional groups and trophic relationships in tropical fisheries closures. Mar Ecol Prog Ser 497:13–23

    Article  Google Scholar 

  • McClanahan TR, Ateweberhan M, Graham NAJ, Wilson SK, Sebastian CR, Guillaume MMM, Bruggemann JH (2007) Western Indian Ocean coral communities: bleaching responses and susceptibility to extinction. Mar Ecol Prog Ser 337:1–13

    Article  Google Scholar 

  • McManus JW, Nañola CL, Reyes RB Jr, Kesner KN (1992) Resource ecology of the Bolinao coral reef system. ICLARM Stud Rev 22:117

    Google Scholar 

  • Meekan MG, Ackerman JL, Wellington GM (2001) Demography and age structures of coral reef damselfishes in the tropical eastern Pacific Ocean. Mar Ecol Prog Ser 212:223–232

    Article  Google Scholar 

  • Meyer AL, Dierking J (2011) Elevated size and body condition and altered feeding ecology of the grouper Cephalopholis argus in non-native habitats. Mar Ecol Prog Ser 439: 203–212

    Google Scholar 

  • Michalek-Wagner K, Willis BL (2001) Impacts of bleaching on the soft coral Lobophytum compactum. I. Fecundity, fertilization and offspring viability. Coral Reefs 19:231–239

    Article  Google Scholar 

  • Mora C, Frazier AG, Longman RJ, Dacks RS, Walton MM, Tong EJ, Sanchez JJ, Kaiser LR, Stender YO, Anderson JM, Ambrosino CM, Fernandez-Silva I, Giuseffi LM, Giambelluca TW (2013) The projected timing of climate departure from recent variability. Nature 502:183–187

    Article  CAS  PubMed  Google Scholar 

  • Moran K et al (2006) The Cenozoic palaeoenvironment of the Arctic Ocean. Nature 441:601–605

    Article  CAS  PubMed  Google Scholar 

  • Morse DE, Hooker N, Morse ANC, Jensen RA (1988) Control of larval metamorphosis and recruitment in sympatric agariciid corals. J Exp Mar Biol Ecol 116:193–217

    Article  Google Scholar 

  • Muller-Parker G, D’Elia CF (1997) Interactions between corals and their symbiotic algae. In: Birkeland C (ed) Life and death of coral reefs. Chapman & Hall, New York, pp 96–113

    Chapter  Google Scholar 

  • Munro JL (ed) (1983) Caribbean coral reef fishery resources. ICLARM Stud Rev 7, 276 pp

    Google Scholar 

  • Murphy GI (1967) Vital statistics of the California sardine and the population consequences. Ecology 48:731–735

    Article  Google Scholar 

  • Nadon MO, Baum JK, Williams ID, McPherson JM, Zgliczynski BJ, Richards BL, Schroeder RE, Brainard RE (2012) Re-creating missing population baselines for Pacific reef sharks. Conserv Biol 26:493–503

    Article  PubMed Central  PubMed  Google Scholar 

  • Newman SJ, Williams DMB, Russ GR (1996) Age validation, growth and mortality rates of the tropical snappers (Pisces: Lutjanidae) Lutjanus adetii (Castelnau, 1873) and L. quinquelineatus (Bloch, 1790) from the central Great Barrier Reef, Australia. Mar Freshw Res 47:575–584

    Article  Google Scholar 

  • Nixon SW (1982) Nutrient dynamics, primary production and fisheries yields of lagoons. Oceanol Acta 5:357–371

    Google Scholar 

  • Nugues M, Delvoye L, Bak R (2004) Coral defense against macroalgae: differential effects of mesenterial filaments on the green alga Halimeda opuntia. Mar Ecol Prog Ser 278:103–114

    Article  Google Scholar 

  • Ogden JC (1997) Ecosystem interactions in the tropical coastal seascape. In: Birkeland C (ed) Life and death of coral reefs. Chapman & Hall, New York, pp 288–297

    Chapter  Google Scholar 

  • Oliver TA, Palumbi SR (2009) Distributions of stress-resistant coral symbionts match environmental patterns at local but not regional levels. Mar Ecol Prog Ser 378:93–103

    Google Scholar 

  • Oliver TA, Palumbi SR (2011) Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 30:429–440

    Article  Google Scholar 

  • Olsen EM, Heino M, Lilly GR, Morgan MJ, Brattey J, Ernande B, Dieckmann U (2004) Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature 428:932–935

    Article  CAS  PubMed  Google Scholar 

  • Omori M, Fukami H, Kobinata H, Hatta M (2001) Significant drop of fertilization of Acropora corals in 1999: an after-effect of heavy coral bleaching? Limnol Oceanogr 46:704–706

    Article  Google Scholar 

  • Ong L, Holland KN (2010) Bioerosion of coral reefs by two Hawaiian parrotfishes: species, size differences and fishery implications. Mar Biol. doi:10.1007/s00227-010-1411-y

    Google Scholar 

  • Page HM, Hubbard DM (1987) Temporal and spatial patterns of growth in mussels Mytilus edulis on an offshore platform: relationships to water temperature and food availability. J Exp Mar Biol Ecol 111:159–179

    Google Scholar 

  • Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA (2014) Mechanisms of reef coral resistance to future climate change. Science 344:895–898

    Article  CAS  PubMed  Google Scholar 

  • Pandolfi JM, Jackson JBC, Geister J (2001) Geologically sudden extinction of two widespread Late Pleistocene Caribbean reef corals. In: Jackson JBC, Lidgard S, McKinney FK (eds) Evolutionary patterns: growth, form, and tempo in the fossil record. Univ Chicago Press, Chicago, pp 120–158

    Google Scholar 

  • Pandolfi JM, Lovelock CE, Budd AF (2002) Character release following extinction in a Caribbean reef coral species complex. Evolution 56:479–501

    Article  PubMed  Google Scholar 

  • Paulay G (1997) Diversity and distribution of reef organisms. In: Birkeland C (ed) Life and death of coral reefs. Chapman & Hall, New York, pp 298–353

    Chapter  Google Scholar 

  • Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:695–699

    Article  CAS  PubMed  Google Scholar 

  • Planes S, Jones GP, Thorrold SR (2009) Larval dispersal connects fish populations in a network of marine protected areas. Proc Natl Acad Sci U S A 106:5693–5697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Podestá GP, Glynn PW (2001) The 1997–98 El Niño event in Panama and Galápagos: an update of thermal stress indices relative to coral bleaching. Bull Mar Sci 69:43–59

    Google Scholar 

  • Poulin E, Palma AT, Leiva G, Narvaez D, Pacheco R, Navarrete SA, Castilla JC (2002) Avoiding offshore transport of competent larvae during upwelling events: the case of the gastropod Concholepas concholepas in Central Chile. Limnol Oceanogr 47:1248–1255

    Article  Google Scholar 

  • Poulsen CJ, Barron EJ, Peterson WH, Wilson PA (1999) A reinterpretation of Cretaceous shallow marine temperatures through model-data comparison. Paleoceanography 14:679–697

    Article  Google Scholar 

  • Poulsen CJ, Barron EJ, Arthur MA, Peterson WH (2001) Response of the mid-Cretaceous global oceanic ocean circulation to tectonic and CO2 forcings. Paleoceanography 16:576–592

    Article  Google Scholar 

  • Prescott R, Bourne DG, Negri A, Schmidt-Roach S (2014) Negative cues drive settlement distribution of two corals from the Great Barrier Reef: new perspectives from networks (in review)

    Google Scholar 

  • Ramus J, Venable M (1987) Temporal ammonium patchiness and growth rate in Codium and Ulva (Ulvophyceae). J Phycol 23:518–523

    Article  CAS  Google Scholar 

  • Randall JE (1963) An analysis of the fish populations of artificial and natural reefs in the Virgin Islands. Carib J Sci 3:31–47

    Google Scholar 

  • Randall JE (1965) Grazing effects on seagrasses by herbivorous reef fishes in the West Indies. Ecology 46:255–260

    Article  Google Scholar 

  • Randall JE (2007) Reef and shore fishes of the Hawaiian Islands. Sea Grant College Program, Univ Hawaii, 546 pp

    Google Scholar 

  • Rawlinson KA, Stella JS (2012) Discovery of the corallivorous polyclad flatworm, Amakusaplana acroporae, on the Great Barrier Reef, Australia – the first report from the wild. PLoS ONE. doi:10.1371/journal.pone.0042240

    Google Scholar 

  • Ricker WE (1981) Changes in the average size and average age of Pacific salmon. Can J Fish Aquat Sci 38:1636–1656

    Article  Google Scholar 

  • Riegl BM, Purkis SJ, Al-Cibahy AS, Abdel-Moati MA, Hoegh-Guldberg O (2011) Present limits to heat-adaptability in corals and population-level responses to climate extremes. PLoS ONE. doi:10.1371/journal.pone.0024802

    PubMed Central  PubMed  Google Scholar 

  • Ritson-Williams R, Arnold SN, Fogarty ND, Steneck RS, Vermeij MJA, Paul VJ (2009) New perspectives on ecological mechanisms affecting coral recruitment on reefs. Smithson Contrib Mar Sci 38:437–457

    Article  Google Scholar 

  • Rizzari JR, Frisch AJ, Connolly SR (2014) How robust are estimates of coral reef shark depletion? Biol Conserv 176:39–47

    Article  Google Scholar 

  • Rose CS, Risk MJ (1985) Increase in Ciona deletrix infestation of Montastrea cavernosa heads on an organically polluted portion of the Grand Cayman fringing reef. Mar Ecol 6:345–363

    Article  Google Scholar 

  • Rosen BR (2000) Algal symbiosis, and the collapse and recovery of reef communities: Lazarus corals across the K–T boundary. In: Culver SJ, Rawson PF (eds) Biotic response to global change: the last 145 million years. Cambridge University Press, Cambridge, pp 164–180

    Chapter  Google Scholar 

  • Roughgarden J, Smith F (1996) Why fisheries collapse and what to do about it. Proc Natl Acad Sci U S A 93:5078–5083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Russ GR (1984) A review of coral reef fisheries. UNESCO Rep Mar Sci 27:74–92

    Google Scholar 

  • Ruttenberg BI, Hamilton SL, Walsh SM, Donovan MK, Friedlander A, DeMartini E, Sala E, Sandin SA (2011) Predator-induced demographic shifts in coral reef fish assemblages. PLoS ONE 6(6):e21062. doi:10.1371/journal.pone.0021062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ryther JH (1969) Photosynthesis and fish production in the sea. Science 166:72–76

    Article  CAS  PubMed  Google Scholar 

  • Sadovy Y (1993) The Nassau grouper, endangered or just unlucky? Reef Encount 13:10–12

    Google Scholar 

  • Sammarco PW, Andrews JC (1989) The Helix experiment; differential localized dispersal and recruitment patterns in Great Barrier Reef corals. Limnol Oceanogr 34:896–912

    Article  Google Scholar 

  • Sandin SA, Smith JE, DeMartini EE, Dinsdale EA, Donner SD, Friedlander AM, Konotchick T, Malay M, Maragos JE, Obura D, Pantos O, Paulay G, Richie M, Rohwer F, Schroeder RE, Walsh S, Jackson JBC, Knowlton N, Sala E (2008) Baselines and degradation of coral reefs in the northern Line Islands. PLoS ONE 3(2):11, e1548

    Article  CAS  Google Scholar 

  • Schaffer WM (1974) Optimal reproductive effort in fluctuating environments. Am Nat 108:783–790

    Article  Google Scholar 

  • Schouten S, Hopmans EC, Forster A, van Breugel Y, Kuypers MMM, Damsté JSS (2003) Extremely high sea-surface temperatures at low latitudes during the middle Cretaceous as revealed by archaeal membrane lipids. Geology 32:1069–1072

    Article  Google Scholar 

  • Sepkoski JJ (2002) A compendium of fossil marine animal genera. In: Jablonski D, Foote M (eds), Bull Am Paleon 363: 1–563

    Google Scholar 

  • Shanks AL, Shearman RK (2009) Paradigm lost? Cross-shelf distributions of intertidal invertebrate larvae are unaffected by upwelling or downwelling. Mar Ecol Prog Ser 385:189–204

    Article  Google Scholar 

  • Sharp KH, Ritchie KB, Schupp PJ, Ritson-Williams R, Paul VJ (2010) Bacterial acquisition in juveniles of several broadcast spawning coral species. PLoS ONE 5:e10898

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shomura RS (1987) Hawaii’s marine fishery resources: yesterday (1900) and today (1986). Southwest Fisheries Center Administrative Report H-87-21. 15 pp

    Google Scholar 

  • Smith CL (1972) A spawning aggregation of Nassau grouper, Epinephelus striatus (Bloch). Trans Am Fish Soc 2:257–261

    Article  Google Scholar 

  • Smith MK (1993) An ecological perspective on inshore fisheries on the Main Hawaiian Islands. Mar Fish Rev 55:34–49

    Google Scholar 

  • Smith JE, Shaw M, Edwards RA, Obura D, Pantos O, Sala E, Sandin SA, Smriga S, Hatay M, Rohwer FL (2006) Indirect effects of algae on coral: algae-mediated, microbe-induced coral mortality. Ecol Lett 9:835–845

    Article  PubMed  Google Scholar 

  • Solomon S, Plattner G-K, Knuttic R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci U S A 106:1704–1709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stanley SM, Hardie LA (1998) Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr Palaeoclimatol Palaeoecol 144:3–19

    Article  Google Scholar 

  • Stella JS, Pratchett MS, Hutchings PA, Jones GP (2011) Coral-associated invertebrates: diversity, ecological importance and vulnerability to disturbance. Oceanogr Mar Biol Ann Rev 49:43–104

    Google Scholar 

  • Steneck RS (2006) Staying connected in a turbulent world. Science 311:480–481

    Article  CAS  PubMed  Google Scholar 

  • Stoeker DK (1999) Mixotrophy among dinoflagellates. J Eukaryot Microbiol 46:397–401

    Article  Google Scholar 

  • Strathmann RR, Hughes TP, Kuris AM, Lindeman KC, Morgan SG, Pandolfi JM, Warner RR (2002) Evolution of local recruitment and its consequences for marine populations. Bull Mar Sci 70:377–396

    Google Scholar 

  • Swearer SE, Caselle JE, Lea DW, Warner RR (1999) Larval retention and recruitment in an island population of a coral-reef fish. Nature 402:799–802

    Article  CAS  Google Scholar 

  • Swearer SE, Shima JS, Hellberg ME, Thorrold SR, Jones GP, Robertson DR, Morgan SG, Selkoe KQ, Ruiz GM, Warner RR (2002) Evidence of self-recruitment in demersal marine populations. Bull Mar Sci 70:S251–S271

    Google Scholar 

  • Szmant AM (2002) Nutrient enrichment on coral reefs: is it a major cause of coral reef decline? Estuar Coasts 25:743–766

    Article  CAS  Google Scholar 

  • Szmant AM, Gassman NJ (1990) The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8:217–224

    Article  Google Scholar 

  • Thornhill DJ, Rotjan RD, Todd BD, Chilcoat GC, Iglesias-Prieto R et al (2011) A connection between colony biomass and death in Caribbean reef-building corals. PLoS ONE 6:e29535. doi:10.1371/journal.pone.0029535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tomascik T (1991) Settlement patterns of Caribbean scleractinian corals on artificial substrata along a eutrophication gradient, Barbados, West Indies. Mar Ecol Prog Ser 77:261–269

    Article  Google Scholar 

  • Tomascik T, Sander F (1987) Effects of eutrophication on reef-building corals. III. Reproduction of the reef-building coral Porites porites. Mar Biol 94:77–94

    Article  Google Scholar 

  • Tomascik T, van Woesik R, Mah AJ (1996) Rapid coral colonization of a recent lava flow following a volcanic eruption, Banda Islands, Indonesia. Coral Reefs 15:169–175

    Article  Google Scholar 

  • Underwood JN, Smith LD, van Oppen MJH, Gilmour JP (2009) Ecologically relevant dispersal of corals on isolated reefs: implications for managing resilience. Ecol Appl 19:18–29

    Article  PubMed  Google Scholar 

  • Uthicke S, Schaffelke B, Byrne M (2009) A boom-bust phylum? Ecological and evolutionary consequences of density variations in echinoderms. Ecol Monogr 79:3–24

    Article  Google Scholar 

  • Van Oppen MJH, McDonald BJ, Willis B, Miller DJ (2001) The evolutionary history of the coral genus Acropora (Scleractinia, Cnidaria) based on a mitochondrial and a nuclear marker: reticulation, incomplete lineage sorting, or morphological convergence? Mol Biol Evol 18:1315–1329

    Article  PubMed  Google Scholar 

  • Van Oppen MJH, Oliver JK, Putnam HM, Gates RD (2015) Building coral reef resilience through assisted evolution. Proc Nat Acad Sci USA. doi:10.1073/pnas.1422301112

    PubMed Central  PubMed  Google Scholar 

  • Van Veghel MLJ, Bak RPM (1994) Reproductive characteristics of the polymorphic Caribbean reef building coral Montastrea annularis. III. Reproduction in damaged and regenerating colonies. Mar Ecol Prog Ser 109:229–233

    Article  Google Scholar 

  • Van Woesik R, Franklin EC, O’Leary J, McClanahan TR, Klaus JS, Budd AF (2012) Hosts of the Plio-Pleistocene past reflect modern-day coral vulnerability. Proc Roy Soc B 279:2448–2456

    Article  Google Scholar 

  • Vermeij GJ (1987) Evolution and escalation. Princeton Univ Press, Princeton

    Google Scholar 

  • Vermeij MJA, Smith JE, Smith CM, Thurber RV, Sandin SA (2009) Survival and settlement success of coral planulae: independent and synergistic effects of macroalgae and microbes. Oecologia 159:325–336

    Article  CAS  PubMed  Google Scholar 

  • Veron JEN (1995) Corals in space and time. Cornell University Press, Ithaca, p 321

    Google Scholar 

  • Veron JEN (2000) Corals of the world, 3 vols. Australian Institute of Marine Science, Townsville, Australia

    Google Scholar 

  • Vianna GMS, Meekan MG, Pannel D, Marsh S, Meeuwig JJ (2010) Wanted dead or alive? The relative value of reef sharks as a fishery and an ecotourism asset in Palau. Australian Institute of Marine Science and University of Western Australia, Perth, p 34

    Google Scholar 

  • Villanueva RD, Edwards AJ (2010) Butterflyfishes feed on externally brooded larvae of the blue coral, Heliopora coerulea. Coral Reefs 29:105

    Article  Google Scholar 

  • Wallace CC, Rosen BR (2006) Diverse staghorn corals (Acropora) in high-latitude Eocene assemblages: implications for the evolution of modern diversity patterns of reef corals. Proc Roy Soc B Bio Sci 273:975–982

    Article  Google Scholar 

  • Walsh SM, Hamilton SL, Ruttenberg BI, Donovan MK, Sandin SA (2012) Fishing top predators indirectly affects condition and reproduction in a reef-fish community. J Fish Biol 80:519–537

    Article  CAS  PubMed  Google Scholar 

  • Ward S, Harrison P (1997) The effects of elevated nutrient levels on settlement of coral larvae during the ENCORE experiment, Great Barrier Reef, Australia. Proc 8th Int Coral Reef Sym, Panama 1: 891–896

    Google Scholar 

  • Ward S, Harrison P (2000) Changes in gametogenesis and fecundity of acroporid corals that were exposed to elevated nitrogen and phosphorus during the ENCORE experiment. J Exp Mar Biol Ecol 246:179–221

    Article  CAS  PubMed  Google Scholar 

  • Ward S, Harrison P, Hoegh-Guldberg O (2002) Coral bleaching reduces reproduction of scleractinian corals and increases susceptibility to future stress. Proc 9th Int Coral Reef Sym, Bali 2: 1123–1128

    Google Scholar 

  • Warner RR, Cowen RK (2002) Local retention of production in marine populations: evidence, mechanisms, and consequences. Bull Mar Sci 70:245–249

    Google Scholar 

  • Wass RC (1982) The shoreline fishery of American Samoa – past and present. In: Munro JL (ed.), Ecological aspects of coastal zone management. Proc Seminar on Marine and Coastal Processes in the Pacific, Motopore Island Research Center, UNESCO, pp 51–83

    Google Scholar 

  • Weber P (1993) Reviving coral reefs. In: Brown LR (ed) State of the world. WH Norton, New York, pp 42–60

    Google Scholar 

  • Webster NS, Uthicke S, Botté ES, Flores F, Negri AP (2013) Ocean acidification reduces induction of coral settlement by crustose coralline algae. Glob Chang Biol 19:303–315

    Article  PubMed Central  PubMed  Google Scholar 

  • Weersing K, Toonen RJ (2009) Population genetics, larval dispersal, and connectivity in marine systems. Mar Ecol Prog Ser 393:1–12

    Article  Google Scholar 

  • Wells JW (1956) Scleractinia. In: Moore RC (ed) Treatise on invertebrate paleontology, Part F, Coelenterata, Geological Society of America and University of Kansas Press, Lawrence, KS, pp 328–444

    Google Scholar 

  • Widdows J, Fieth P, Worrall CM (1979) Relationships between seston, available food and feeding activity in the common mussel Mytilus edulis. Mar Biol 50:195–207

    Article  CAS  Google Scholar 

  • Williams DMB, Hatcher AI (1983) Structure of fish communities on outer slopes of inshore, mid-shelf and outer shelf reefs of the Great Barrier Reef. Mar Ecol Prog Ser 10:239–250

    Article  Google Scholar 

  • Wilson PA, Norris RD, Cooper MJ (2002) Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropics on Demerara Rise. Geology 30:607–610

    Article  CAS  Google Scholar 

  • Wing SR, Wing ES (2001) Prehistoric fisheries in the Caribbean. Coral Reefs 20:1–8

    Article  Google Scholar 

  • Wisshak M, Schönberg CHL, Form A, Freiwald A (2012) Ocean acidification accelerates reef bioerosion. PLoS ONE 7:e45124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wittenberg M, Hunte W (1992) Effects of eutrophication and sediment on juvenile corals I. Abundance, mortality and community structure. Mar Biol 112:131–138

    Article  Google Scholar 

  • Wood R (1999) Reef evolution. Oxford Univ Press, Oxford, p 414

    Google Scholar 

  • Wooldridge SA (2009) A new conceptual model for the warm-water breakdown of the coral–algae endosymbiosis. Mar Freshw Res 60:483–496

    Article  CAS  Google Scholar 

  • Zachos JC, Röhl U, Schellenberg SA, Sluijs A, Hodell DA, Kelly DC, Thomas E, Nicolo M, Raffi I, Lourens LJ, McCarren H, Kroon D (2005) Rapid acidification of the ocean during the Paleocene-Eocene Thermal Maximum. Science 308:1611–1615

    Article  CAS  PubMed  Google Scholar 

  • Zapata FA, Vargas-Ángel B (2003) Corals and coral reefs of the Pacific coast of Colombia. In: Cortés J (ed) Latin American coral reefs. Elsevier, Amsterdam, pp 419–447

    Chapter  Google Scholar 

  • Zeebe RE (2001) Seawater pH and isotopic paleotemperatures of Cretaceous oceans. Palaeogeogr Palaeoclimatol Palaeoecol 170:49–57

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Birkeland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Birkeland, C. (2015). Biology Trumps Management: Feedbacks and Constraints of Life-History Traits. In: Birkeland, C. (eds) Coral Reefs in the Anthropocene. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7249-5_12

Download citation

Publish with us

Policies and ethics