Skip to main content

Quantum Mechanics: Structures, Axioms and Paradoxes

  • Chapter
Quantum Structures and the Nature of Reality

Abstract

In this article we present an analysis of quantum mechanics and its problems and paradoxes taking into account some of the results and insights that have been obtained during the last two decades by investigations that are commonly classified in the field of ‘quantum structures research’. We will concentrate on these aspects of quantum mechanics that have been investigated in our group at Brussels Free University1. We try to be as clear and self contained as possible: firstly because the article is also aimed at scientists not specialized in quantum mechanics, and secondly because we believe that some of the results and insights that we have obtained present the deep problems of quantum mechanics in a simple way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. von Neumann, J., Mathematische Grundlagen der Quanten-Mechanik, Springer-Verlag, Berlin, 1932.

    Google Scholar 

  2. Birkhoff, G. and von Neumann, J., “The logic of quantum mechanics”, Annals of Mathematics, 37, 1936, p. 823.

    Article  MathSciNet  Google Scholar 

  3. Foulis, D., “A Half-Century of Quantum Logic—What have we learned?” in Quantum Structures and the Nature of Reality, the Indigo Book of Einstein meets Magritte, eds.,Aerts, D. and Pykacz, J., Kluwer Academic, Dordrecht, 1998.

    Google Scholar 

  4. Jammer, M., The Philosophy of quantum mechanics, Wiley and Sons, New York, Sydney, Toronto, 1974.

    Google Scholar 

  5. Aerts, D. and Durt, T., “Quantum. Classical and Intermediate, an illustrative example”, Found. Phys. 24, 1994, p. 1353.

    Article  MathSciNet  MATH  Google Scholar 

  6. Aerts, D., “Foundations of Physics: a general realistic and operational approach”, to be published in International Journal of Theoretical Physics.

    Google Scholar 

  7. Aerts, D., “A possible explanation for the probabilities of quantum mechanics and example of a macroscopic system that violates Bell inequalities”, in Recent developments in quantum logic, (eds.), Mittelstaedt, P. and Stachow, E.W., Grundlagen der Exakten Naturwissenschaften, band 6, Wissenschaftverlag, Bibliografisches Institut, Mannheim, 1985.

    Google Scholar 

  8. Aerts, D., “A Possible Explanation for the Probabilities of quantum mechanics”, J. Math. Phys., 27, 1986, p. 202.

    Article  MathSciNet  Google Scholar 

  9. Aerts, D., “Quantum structures: an attempt to explain their appearance in nature”, Int. J. Theor. Phys., 34, 1995, p. 1165.

    Article  MathSciNet  MATH  Google Scholar 

  10. Gerlach, F. and Stern, O., “Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld”, Zeitschrift für Physik 9, 1922, p. 349.

    Article  Google Scholar 

  11. Bell, J.S., Rev. Mod. Phys., 38, 1966, p. 447.

    Article  MATH  Google Scholar 

  12. Jauch, J.M. and Piron, C., Helv. Phys. Acta, 36, 1963, p. 827.

    MathSciNet  MATH  Google Scholar 

  13. Gleason, A.M.J. Math. Mech., 6, 1957, p. 885.

    MathSciNet  MATH  Google Scholar 

  14. Kochen, S. and Specker, E.P., J. Math. Mech., 17, 1967, p. 59.

    MathSciNet  MATH  Google Scholar 

  15. Gudder, S.P., Rev. Mod. Phys., 40, 1968, p. 229.

    Article  Google Scholar 

  16. Accardi, L., Rend. Sera. Mat. Univ. Politech. Torino, 1982, p. 241.

    Google Scholar 

  17. Accardi, L. and Fedullo, A., Lett. Nuovo Cimento, 34, 1982, p. 161.

    Article  MathSciNet  Google Scholar 

  18. Aerts, D., “Example of a macroscopical situation that violates Bell inequalities”, Lett. Nuovo Cimento, 34, 1982, p. 107.

    Article  Google Scholar 

  19. Aerts, D., “The physical origin of the EPR paradox”, in Open questions in quantum physics, (eds.), Tarozzi, G. and van der Merwe, A., Reidel, Dordrecht, 1985.

    Google Scholar 

  20. Aerts, D., “The physical origin of the Einstein-Podolsky-Rosen paradox and how to violate the Bell inequalities by macroscopic systems”, in Proceedings of the Symposium on the Foundations of Modern Physics, (eds.), Lahti, P. and Mittelstaedt, P., World Scientific, Singapore, 1985.

    Google Scholar 

  21. Aerts, D., “Quantum Structures, Separated Physical Entities and Probability”, Found. Phys. 24, 1994, p. 1227.

    Article  MathSciNet  Google Scholar 

  22. Coecke, B., “Hidden Measurement Representation for Quantum Entities Described by Finite Dimensional Complex Hilbert Spaces”, Found. Phys., 25, 1995, p. 203.

    Article  MathSciNet  Google Scholar 

  23. Coecke, B., “Generalization of the Proof on the Existence of Hidden Measurements to Experiments with an Infinite Set of Outcomes”, Found. Phys. Lett., 8, 1995, p. 437.

    Article  MathSciNet  Google Scholar 

  24. Coecke, B., “New Examples of Hidden Measurement Systems and Outline of a General Scheme”, Tatra Mountains Mathematical Publications, 10, 1996, p. 203.

    Google Scholar 

  25. Aerts, D. and Durt, T., “Quantum, classical and intermediate: a measurement model”, in Montonen C. (ed.), Editions Frontieres, Gives Sur Yvettes, France, 1994.

    Google Scholar 

  26. Aerts, D., Durt, T. and Van Bogaert, B., “A physical example of quantum fuzzy sets, and the classical limit”, in the proceedings of the International Conference on Fuzzy Sets, Liptovsky, Tatra mountains, 1993, p. 5.

    Google Scholar 

  27. Aerts, D., Durt, T. and Van Bogaert, B., “Quantum Probability, the Classical Limit and Non-Locality”, in the proceedings of the International Symposium on the Foundations of Modern Physics 1992, Helsinki, Finland, ed. T. Hyvonen, World Scientific, Singapore, 1993, p. 35.

    Google Scholar 

  28. Randall, C. and Foulis, D., “ Properties and operational propositions in quantum mechanics”, Found. Phys., 13, 1983, p. 835.

    Article  Google Scholar 

  29. Foulis, D., Piron, C. and Randall, C., “Realism, operationalism, and quantum mechanics”, Found. Phys., 13, 1983, p. 813.

    Article  MathSciNet  Google Scholar 

  30. Aerts, D., Colebunders, E., Van der Voorde, A. and Van Steirteghem, B., “State property systems and closure spaces: a study of categorical equivalence”, Int. J. Theor. Phys., to appear 1998.

    Google Scholar 

  31. Aerts, D., Colebunders, E., Van der Voorde, A. and Van Steirteghem, B., “Categorical study of the state property systems and closure spaces”, preprint, FUND - TOPO, Brussels Free University.

    Google Scholar 

  32. Aerts, D. and Van Steirteghem, B., “Quantum Axiomatics and a Theorem of M.P. Solèr”, preprint, FUND, Brussels Free University.

    Google Scholar 

  33. Van Steirteghem, B., “Quantum Axiomatics: Investigation of the structure of the category of physical entities and Solér’s theorem”, graduation thesis, FUND, Brussels Free University.

    Google Scholar 

  34. Piron, C., “Axiomatique Quantique”, Helv. Phys. Acta, 37, 1964, p. 439.

    MathSciNet  MATH  Google Scholar 

  35. Amemiya, I. and Araki, H., “A remark of Piron’s paper”, Publ. Res. Inst. Math. Sci., A2, 1966, p. 423.

    Article  MathSciNet  MATH  Google Scholar 

  36. Zierler, N., “Axioms for non-relativistic quantum mechanics”, Pac. J. Math., 11, 1961, p. 1151.

    Article  MathSciNet  MATH  Google Scholar 

  37. Varadarajan, V., Geometry of Quantum Theory, Van Nostrand, Princeton, New Jersey, 1968.

    Google Scholar 

  38. Piron, C., Foundations of Quantum Physics, Benjamin, Reading, Massachusetts, 1976.

    Google Scholar 

  39. Wilbur, W., “On characterizing the standard quantum logics”, Trans. Am. Math. Soc., 233, 1977, p. 265.

    Article  MathSciNet  MATH  Google Scholar 

  40. Keller, H.A., “Ein nicht-klassicher Hilbertsher Raum”, Math. Z., 172, 1980, p. 41.

    Article  MathSciNet  MATH  Google Scholar 

  41. Aerts, D., “The one and the many”, Doctoral Thesis, Brussels Free University, Brussels, 1981.

    Google Scholar 

  42. Aerts, D., “Description of many physical entities without the paradoxes encountered in quantum mechanics”, Found. Phys., 12, 1982, p. 1131.

    Article  MathSciNet  Google Scholar 

  43. Aerts, D., “Classical theories and Non Classical Theories as a Special Case of a More General Theory”, J. Math. Phys., 24, 1983, p. 2441.

    Article  MathSciNet  Google Scholar 

  44. Valckenborgh, F., “Closure Structures and the Theorem of Decomposition in Classical Components”, Tatra Mountains Mathematical Publications, 10, 1997, p. 75.

    MathSciNet  MATH  Google Scholar 

  45. Aerts, D., “The description of one and many physical systems”, in Foundations of quantum mechanics, eds. C. Gruber, A.V.C.P., Lausanne, 1983, p. 63.

    Google Scholar 

  46. Aerts, D., “Construction of a structure which makes it possible to describe the joint system of a classical and a quantum system”, Rep. Math. Phys., 20, 1984, p. 421.

    Article  MathSciNet  Google Scholar 

  47. Piron, C., Mécanique Quantique: Bases et applications, Presse Polytechnique et Universitaire Romandes, Lausanne, 1990.

    MATH  Google Scholar 

  48. Pulmannovâ, S., “Axiomatization of Quantum Logics”, Int. J. Theor. Phys., 35, 1995, p. 2309.

    Article  Google Scholar 

  49. Solèr, M.P., “Characterization of Hilbert spaces with Orthomodular spaces”, Comm. Algebra, 23, 1995, p. 219.

    Article  MathSciNet  MATH  Google Scholar 

  50. Holland Jr, S.S., “Orthomodularity in Infinite Dimensions: a theorem of M. Solèr”, Bull. Aner. Math. Soc., 32, 1995, p. 205.

    Article  MathSciNet  MATH  Google Scholar 

  51. Aerts, D., “Construction of the tensor product for lattices of properties of physical entities”, J. Math. Phys., 25, 1984, p. 1434.

    Article  MathSciNet  Google Scholar 

  52. Aerts, D. and Daubechies, I., “Physical justification for using the tensor product to describe two quantum systems as one joint system”, Hely. Phys. Acta 51, 1978, p. 661.

    MathSciNet  Google Scholar 

  53. Jauch, J., Foundations of quantum mechanics, Addison-Wesley, Reading, Mass, 1968.

    Google Scholar 

  54. Cohen-Tannoudji, C., Diu, B. and Laloë, F., Mécanique Quantique, Tome I, Hermann, Paris, 1973.

    Google Scholar 

  55. Aerts, D., “A mechanistic classical laboratory situation violating the Bell inequalities with \, exactly in the same way’ as its violations by the EPR experiments”, Hely. Phys. Acta, 64, 1991, p. 1.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Aerts, D. (1999). Quantum Mechanics: Structures, Axioms and Paradoxes. In: Aerts, D., Pykacz, J. (eds) Quantum Structures and the Nature of Reality. Einstein Meets Magritte: An Interdisciplinary Reflection on Science, Nature, Art, Human Action and Society, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2834-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2834-8_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5243-8

  • Online ISBN: 978-94-017-2834-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics