Skip to main content
Log in

A hidden measurement representation for quantum entities described by finite-dimensional complex Hilbert spaces

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

It will be shown that the probability calculus of a quantum mechanical entity can be obtained in a deterministic framework, embedded in a real space, by introducing a lack of knowledge in the measurements on that entity. For all n ∃ ℕ we propose an explicit model in\(\mathbb{R}^{n^2 } \), which entails a representation for a quantum entity described by an n-dimensional complex Hilbert space þn, namely, the “þn,Euclidean hidden measurement representation.” This Euclidean hidden measurement representation is also in a more general sense equivalent with the orthodox Hilbert space formulation of quantum mechanics, since every mathematical ingredient of ordinary quantum mechanics can easily be translated into the framework of these representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Accardi and A. Fedullo,Nuovo Cimento 34, 161 (1982).

    Google Scholar 

  2. D. Aerts,J. Math. Phys. 27, 203 (1986).

    Google Scholar 

  3. D. Aerts, “The origin of the non-classical character of the quantum probability model,” inInformation, Complexity and Control in Quantum Physics, A. Blanquiereet al., eds. (Springer, New York, 1987).

    Google Scholar 

  4. D. Aerts, “A macroscopic classical laboratory situation with only macroscopic classical entities giving rise to a quantum mechanical probability model,” inQuantum Probability and Related Topics, Vol. VI, L. Accardi, ed. (World Scientific, Singapore, 1991).

    Google Scholar 

  5. D. Aerts,Helv. Phys. Acta 64, 1 (1991).

    Google Scholar 

  6. D. Aerts, T. Durt, A. A. Grib, B. Van Bogaert, and R. R. Zapatrin,Int. J. Theor. Phys. 32, 489 (1992).

    Google Scholar 

  7. D. Aerts,Int. J. Theor. Phys. 32, 2207 (1993).

    Google Scholar 

  8. D. Aerts, T. Durt, and B. Van Bogaert, “Quantum indeterminism, the classical limit and non-locality,” inSymposium on the Foundations of Modern Physics, Helsinki 1992 (World Scientific, Singapore, 1993).

    Google Scholar 

  9. D. Aerts,Found. Phys. 24, 1227 (1994).

    Google Scholar 

  10. D. Aerts, “Quantum structures: An attempt to explain the origin of their appearance in nature,” to be published inInt. J. Theor. Phys. 34(8), (1995).

  11. D. Aerts, B. Coecke, and F. Valckenborgh, “A mechanistic macroscopical physical entity with a three-dimensional Hilbert space quantum description,” Preprint TENA, Free University of Brussels. Submitted for publication, 1995.

  12. G. Birkhoff,Lattice Theory (Am. Math. Soc., New York, 1967).

    Google Scholar 

  13. B. Coecke, “Hidden measurement model for pure and mixed states of quantum physics in Euclidean space,” to be published inInt. J. Theor. Phys. 34(8), (1995).

  14. B. Coecke, “Generalization of the proof on the existence of hidden measurements to experiments with an infinite set of outcomes,” to be published inFound. Phys. Lett. 8(6), (1995).

  15. M. Czachor,Found. Phys. Lett. 5, 3, 249 (1922).

    Google Scholar 

  16. A. M. Gleason,J. Math. Mech. 6, 885 (1957).

    Google Scholar 

  17. S. P. Gudder,Rev. Mod. Phys. 40, 229 (1968).

    Google Scholar 

  18. S. Kochen and E. P. Specker,J. Math. Mech. 17, 59 (1967).

    Google Scholar 

  19. B. Mielnik,Commun. Math. Phys. 9, 55 (1968).

    Google Scholar 

  20. W. Pauli,Die Allgemeinen Principien der Wellenmechanik (Handbuch der Physik, Vol. V, Part 1) (Springer, Berlin; Benjamin, London, 1958).

    Google Scholar 

  21. C. Piron,Foundations of Quantum Physics (Benjamin, London, 1976).

    Google Scholar 

  22. J. Von Neumann,The Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Flanders' “Federale Dienst voor Wet., Techn. en Cult. Aang.,” in the framework of IUAP-III No. 9.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coecke, B. A hidden measurement representation for quantum entities described by finite-dimensional complex Hilbert spaces. Found Phys 25, 1185–1208 (1995). https://doi.org/10.1007/BF02055257

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02055257

Keywords

Navigation