Skip to main content
Log in

On the statistical meaning of complex numbers in quantum mechanics

  • Published:
Lettere al Nuovo Cimento (1971-1985)

Summary

Bell’s inequality is a necessary condition for the existence of a classical probabilistic model for a given set of correlation functions. This condition is not satisfied by the quantum-mechanical correlations of two-spin systems in a singlet state.

We give necessary and sufficient conditions, on the transition probabilities, for the existence of a classical probabilities model. We also give necessary and sufficient conditions for the existence of a complex (respectively real) Hilbert space model.

Our results apply to individual-spin systems hence they need no «locality» assumption. When applied to the quantum-mechanical transition probabilities, they prove not only the necessity of a nonclassical probabilities model, but also the necessity of using complex rather than real Hilbert spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Wightman:Hilbert’s sixth problem: mathematical treatment of the axioms of physics, inMathematical Developments Arising from Hilbert Problems. Proceedings Symposia in Pure Mathematics, Vol. 28 (Providence, 1976).

  2. L. Accardi:Topics in quantum probability, to appearRep. Phys.

  3. L. Accardi:Non-Kolmogorovian probabilities, inRendiconti del Seminario Matematico dell’Università e del Polilecnico di Torino.

  4. L. Accardi:Foundations of quantum, probability, invited address to theIII Vilnius Conference,Probability and Mathematical Statistics, Vilnius, June 1981 (to appear).

  5. J. M. Jauch:Foundations of Quantum Mechanics (Reading, Mass., 1968).

  6. G. Emch:Helv. Phys. Acta,36, 739, 770 (1963).

    MathSciNet  MATH  Google Scholar 

  7. D. Finkelstein, J. M. Jauch, S. Schiminovich andD. Speiser:J. Math. Phys. (N. F.),3, 207 (1962).

    Article  MathSciNet  ADS  Google Scholar 

  8. D. Finkelstein, J. M. Jauch, S. Schiminovich andD. Speiser:J. Math. Phys. (N. Y.),4, 788 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. E. C. G. Stueckelberg:Helv. Phys. Acta,33, 727 (1960);E. C. G. Stueckelberg andM. Guenin:Helv. Phys. Acta,34, 621 (1961);E. C. G. Stueckelberg,M. Guenin,C. Piron andH. Ruegg:Helv. Phys. Acta,34, 675 (1961);E. C. G. Stueckelberg andM. Guenin:Helv. Phys Acta,35, 673 (1962).

    MathSciNet  MATH  Google Scholar 

  10. E. P. Wigner:Am. J. Phys.,38, 1005 (1970).

    Article  ADS  Google Scholar 

  11. J. S. Bell:Physics,1, 195 (1964).

    Google Scholar 

  12. L. Accardi andA. Fedullo:Statistical invariants for the probabilistic models of finite-valued observables (in preparation).

  13. F. Enriquez andU. Amaldi:Elementi di geometria (Bologna, 1921).

  14. D. Gutkowski andG. Masotto:Nuovo Cimento D,22, 121 (1974).

    Article  MathSciNet  Google Scholar 

  15. G. Corleo, D. Gutkowski, G. Masotto andM. V. Valdes:Nuovo Cimento B,25, 413 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  16. A. Garuccio andF. Selleri:Found. Phys.,10, 209 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Accardi, L., Fedullo, A. On the statistical meaning of complex numbers in quantum mechanics. Lett. Nuovo Cimento 34, 161–172 (1982). https://doi.org/10.1007/BF02817051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02817051

Navigation