Skip to main content

Options for Genetic Engineering of Floral Sterility in Forest Trees

  • Chapter
Molecular Biology of Woody Plants

Part of the book series: Forestry Sciences ((FOSC,volume 64))

Abstract

Engineering of genetic sterility in transgenically modified trees destined for commercial uses will simplify compliance with regulatory guidelines and mitigate ecological concerns of transgene dispersal. It could also be a critical technology for reducing the rate of escape and invasive mobility of exotic plantation species. Added benefits may include increased biomass production by redirecting energy normally expended on reproduction, and elimination of nuisance pollen and fruits. We discuss the two basic strategies for genetically engineering reproductive sterility; 1) suppression of reproductive gene expression and 2) genetic cell ablation of floral structures through the use of cytotoxins or gene products whose overexpression is detrimental to cell function. We also discuss various cytotoxins and inhibitors thereof that could be used to reverse sterility and enable traditional breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Amasino, R.A., 1996. Control of flowering time in plants. Curr Opin Gen Dev 6: 480–487.

    Article  CAS  Google Scholar 

  • Aoyama, T. & N.-H. Chua, 1997. A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J 11: 605–612.

    Article  PubMed  Google Scholar 

  • Balandin, T., & C. Castresana, 1997. Silencing of a ß-1,3-glucanase transgene is overcome during seed Formation. Plant Mol Biol 34: 125–137.

    Article  PubMed  CAS  Google Scholar 

  • Beals, T.P., & R.B. Goldberg, 1997. A novel cell ablation strategy blocks tobacco anther dehiscence. Plant Cell 9: 1527–1545.

    PubMed  CAS  Google Scholar 

  • Blázquez, M., L. Soowal, I. Lee, & D. Weigel, 1997. LEAFY expression and flower initiation in Arabidopsis. Development 124: 3835–3844.

    PubMed  Google Scholar 

  • Block, M., & D. Debrouwer, 1993. Engineered fertility control in transgenic Brassica napus L.: histochemical analysis of anther development. Planta 189: 218–225.

    Article  Google Scholar 

  • Block, M., D. Debrouwer, & T. Moens, 1997. The development of a nuclear male sterility system in wheat. Expression of the bamase gene under the control of tapetum specific promoters. Theor Appl Genet 95: 125–131.

    Article  Google Scholar 

  • Hoes, T. & S.H. Strauss, 1994. Floral phenology and morphology of Populus trichocarpa (Salicaceae). Amer J Bot 81: 562–567.

    Article  Google Scholar 

  • Braun, C.J., J.N. Siedow, & C.S. Levings III, 1990. Fungal toxins bind to the URF13 protein in maize mitochondria and Escherichia coli. Plant Cell 2: 153–161.

    PubMed  CAS  Google Scholar 

  • Bradley, D., R. Carpenter, L. Copsey, C. Vincent, S. Rothstein, & E. Coen, 1996. Control of inflorescence architecture in Antirrhinum. Nature 379: 791–797.

    Article  PubMed  CAS  Google Scholar 

  • Bradley, D., O. Ratcliffe, C. Vincent, R. Carpenter, & E. Coen, 1997. Inflorescence commitment and architecture in Arabidopsis. Science 275: 80–82.

    Article  PubMed  CAS  Google Scholar 

  • Brunner, A.M., W.H. Rottmann, L.A. Sheppard, & S.H. Strauss, 1998. PTAGI and PTAG2: two closely related Populus trichocarpa genes homologous to AGAMOUS. (manuscript in preparation).

    Google Scholar 

  • Caddick, M.X., A.J. Greenland, I. Jepson, K.P. Krause, N. Qu, K.V. Riddell, M.G. Salter, W. Schuch, U. Sonnewald, & A.B. Tomsett, 1998. An ethanol inducible gene switch for plants used to manipulate carbon metabolism. Nature Biotech 16: 177–180.

    Google Scholar 

  • Cannon, M., J. Platz, M. O’Leary, C. Sookdeo, & F. Cannon, 1990. Organ-specific modulation of gene expression in transgenic plants using antisene RNA. Plant Mol Biol 15: 39–47.

    Article  PubMed  CAS  Google Scholar 

  • Cardon, G.H., S. Hohmann, K. Nettesheim, H. Saedler, & P. Huijser, 1997. Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition. Plant J 12: 367–377.

    Article  PubMed  CAS  Google Scholar 

  • Cigan, A.M., & M.C. Albertsen, 1997. Transgenic plant and method for producing male sterility using anther specific promoter 5126. US Patent 5689049.

    Google Scholar 

  • Coen, E.S., & E.M. Meyerowitz, 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353: 31–37.

    Article  PubMed  CAS  Google Scholar 

  • Colombo, L., J. Franken, A.R. van der Krol, P.E. Wittich, H.J.M. Dons, & G.C. Angenent, 1997. Downregulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development. Plant Cell 9: 703–715.

    PubMed  CAS  Google Scholar 

  • Czako, M., & G. An, 1991. Expression of DNA coding for diphtheria toxin chain A is toxic to plant cells. Plant Physiol 95: 687–692.

    Article  PubMed  CAS  Google Scholar 

  • Czako, M., J.C. Jang, J.M. Herr, & L. Marton, 1992. Differential manifestation of seed mortality induced by seed-specific expression of the gene for diphtheria toxin A chain in Arabidopsis and tobacco. Mol Gen Genet 235: 33–40.

    Article  PubMed  CAS  Google Scholar 

  • Day, C.D., B.F.C. Galgoci, & V.F. Irish, 1995. Genetic ablation of petal and stamen primordia to elucidate cell interactions during floral development. Development 121: 2887–2895.

    PubMed  CAS  Google Scholar 

  • Day, C.D., & V.F. Irish, 1997. Cell ablation and the analysis of plant development. Trends Plant Sci 2: 106–111.

    Google Scholar 

  • Domenighini, M., M. Pizza, & R. Rappuoli, 1995. Bacterial ADP-Ribosyltransferases. In: J. Moss, B. Iglewski, M. Vaughan, A. Tu (Eds.), Bacterial Toxins and Virulence Factors in Disease, pp. 59–80. Marcel Dekker. Inc., New York.

    Google Scholar 

  • Espeseth, A.S., A.L. Darrow, & E. Linney, 1993. Signal transduction systems: dominant negative strategies and mechanisms. Mol Cell Diff 1: 111–161.

    CAS  Google Scholar 

  • Flavell, R.B., 1994. Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc Natl Acad Sci USA 91: 3490–3496.

    Article  PubMed  CAS  Google Scholar 

  • Gallie, D.R., 1998. Controlling gene expression in transgenics. Curr Opin Plant Biol 1: 166–172.

    Article  PubMed  CAS  Google Scholar 

  • Gatz, C., C. Frohberg, & R. Wendenburg, 1992. Stringent repression and homogeneous de-repression by tetracycline of a modified CaMV 35S promoter in intact transgenic tobacco plants. Plant J 2: 397–404.

    PubMed  CAS  Google Scholar 

  • Gatz, C., 1996. Chemically inducible promoters in transgenic plants. Curr Opin Biotechnol 7: 168–172.

    Article  CAS  Google Scholar 

  • Gatz, C., & I. Lenk, 1998. Promoters that respond to chemical inducers. Trends Plant Sci 3: 352–358.

    Article  Google Scholar 

  • Goldman, M.H.S., R.B. Goldberg, & C. Mariani, 1994. Female sterile tobacco plants are produced by stigma-specific cell ablation. EMBO J 13: 2976–2984.

    PubMed  CAS  Google Scholar 

  • Greenfield, L., M.J. Bjorn, G. Horn, D. Fong, G.A. Buck, R.J. Collier, & D.A. Kaplan, 1983. Nucleotide sequence of the structural gene for diphtheria toxin carried by corynebacteriophage ß. Proc Natl Acad Sci USA 80: 6853–6857.

    Article  PubMed  CAS  Google Scholar 

  • Hackett, R.M., M.J. Lawrence, & C.H. Franklin, 1992. A Brassica S-locus related gene promoter directs expression in both pollen and pistil of tobacco. Plant J 2: 613–617.

    Article  CAS  Google Scholar 

  • Harrison, E.P., N.M. Willingham, J.C. Lloyd, & C.A. Raines, 1998. Reduced sedoheptulose-1,7-bisphosphatase levels in transgenic tobacco lead to decreased photosynthetic capacity and altered carbohydrate accumulation. Planta 204: 27–36.

    Article  CAS  Google Scholar 

  • Han, K.-H., M.P. Gordon, & S.H. Strauss, 1996. Cellular and molecular biology of Agrobacterium-mediated transformation of plants and its application to genetic transformation ofPopulus. In: R. F. Stealer, H.D. Bradshaw, P.E. Heilman, T.M. Hinckley (Eds.), Biology of Populus and its Implications for Management and Conservation, pp. 201–222. National Research Council of Canada, Ottawa.

    Google Scholar 

  • Hartley, R.W., 1988. Barnase and barstar: Expression of its cloned inhibitor permits expression of a cloned ribonuclease. J Mol Biol 202: 913–915.

    Article  PubMed  CAS  Google Scholar 

  • Haugn, G.W., E.A. Schulz, & J.M. Martinez-Zapater, 1995. The regulation of flowering in Arabidopsis thaliana: meristems, morphogenesis, and mutants. Can J Bot 73: 959–981.

    Article  Google Scholar 

  • Hill, T.A., C.D. Day, S.C. Zondlo, AG. Thackeray, & V.F. Irish, 1998. Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic geneAPETALA3. Development 125: 1711–1721.

    PubMed  CAS  Google Scholar 

  • Hughes, C.E., 1994. Risks of species introductions in tropical forestry. Comm For Rev 73: 243–252.

    Google Scholar 

  • Jack, T., L.L. Brockman, & E.M. Meyerowitz, 1992. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68: 683–697.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen, R.A., P.D. Cluster, J. English, Q. Que, & C.A. Napoli, 1996. Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant Mol Biol 31: 957–973.

    Article  PubMed  CAS  Google Scholar 

  • Kandasamy, M.K., M.K. Thorsness, S.J. Rundle, M.L. Goldberg, J.B. Nasrallah, & M.E. Nasrallah, 1993. Ablation of papillar cell function in Brassica flowers results in the loss of stigma receptivity to pollination. Plant Cell 5: 263–275.

    PubMed  CAS  Google Scholar 

  • Kania, T., D. Russenberger, S. Peng, K. Apel, & S. Melzer, 1997. FPF1 promotes flowering in Arabidopsis. Plant Cell 9: 1327–1338.

    PubMed  CAS  Google Scholar 

  • Keen, N.T., & S. Tamaki, 1986. Structure of two pectate lyase gene from Erwinia chrysanthemi EC 16 and their high-level expression in Escherichia coli. J Bact 168: 595–606.

    PubMed  CAS  Google Scholar 

  • Kilby, N.J., M.R. Snaith, & J.A.H. Murray, 1993. Site-specific recombinases: tools for genome engineering. Trends Genet 9: 413–421.

    Article  PubMed  CAS  Google Scholar 

  • Koning, A., A Jones, J.J. Fillatti, L. Cornai, & M.W. Lassner, 1992. Arrest of embryo development in Brassica napus mediated by modified Pseudomonas aeruginosa exotoxin A. Plant Mol Biol 18: 247–258.

    Article  PubMed  CAS  Google Scholar 

  • Koltunow, A.M., J. Truettner, K.H. Cox, M. Wallroth, & R.B. Goldberg, 1990. Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2: 1201–1224.

    PubMed  CAS  Google Scholar 

  • Kyozuka, J., R. Harcourt, W.J. Peacock, & E.S. Dennis, 1997. Eucalyptus has functional equivalents of the Arabidopsis API gene. Plant Mol Biol 35: 573–584.

    Article  PubMed  CAS  Google Scholar 

  • Ledig, F.T., & D.I.H. Linzer, 1978. Fuel crop breeding. Chemtech 8: 18–27.

    CAS  Google Scholar 

  • Lee, I., M.J. Aukerman, S.L. Gore, K.N. Lohman, S.D. Michaels, L.M. Weaver, M.C. John, K.A. Feldmann, & R.M. Amasino, 1994. Isolation ofLUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis. Plant Cell 6: 75–83.

    PubMed  CAS  Google Scholar 

  • Lee, H.S., B. Karunanandaa, A. McCubbin, S. Gilroy, & T.H. Kao, 1996. PRK1, a receptor-like kinase of Petunia inflata, is essential for postmeiotic development of pollen. Plant J 9: 613–624.

    Article  CAS  Google Scholar 

  • Liu, J.-J., & G.K. Podila, 1996. Characterization of a MADS box gene (Accession No. Y09611) from immature female cone of red pine. Plant Physiol 113: 665.

    Google Scholar 

  • Ma, H., 1994. The unfolding drama of flower development: recent results from genetic and molecular analyses. Genes Devel 8: 745–756.

    Article  PubMed  CAS  Google Scholar 

  • MacKnight, R., I. Bancroft, T. Page, C. Lister, R. Schmidt, K. Love, L. Westphal, G. Murphy, S. Sherson, C. Cobbett, & C. Dean, 1997. FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89: 737–745.

    Google Scholar 

  • Mariani, C., M. de Beuckeleer, J. Truettner, J. Leemans, & R.B. Goldberg, 1990. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347: 737–741.

    Article  CAS  Google Scholar 

  • Mariani, C., V. Gossele, M. de Beuckeleer, M. de Block, R.B. Goldberg, W. de Greef, & J. Leeman, 1992. A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature 357: 384–387.

    Article  CAS  Google Scholar 

  • McLean, K.M., & H.R. Whiteley, 1987. Expression in Escherichia coli of a cloned crystal protein gene of Bacillus thuringiensis subsp. israelensis. J Bacteriol 169: 1017–1023.

    PubMed  CAS  Google Scholar 

  • Men, V.L., L.P. Lochhead, & P.H.S. Reynolds, 1993. Copper-controllable gene expression system for whole plants. Proc Natl Acad Sci USA 90: 4567–4571.

    Article  Google Scholar 

  • Mett, V.L., E. Podivinsky, A.M. Tennant, L.P. Lochhead, W.T. Jones, & P.H.S. Reynolds, 1996. A system for tissue-specific copper-controllable gene expression in transgenic plants: nodule-specific antisense of asparate aminotransferase-P2. Trans Res 2: 105–113.

    Article  Google Scholar 

  • Mizukami, Y., H. Huang, M. Tudor, Y. Hu, & H. Ma, 1996. Functional domains of the floral regulator AGAMOUS: Characterization of the DNA binding domain and analysis of dominant negative mutations. Plant Cell 8: 831–845.

    PubMed  CAS  Google Scholar 

  • Maeser, S., & R. Kahmann, 1991. The Gin recombinase of phage Mu can catalyse site-specific recombination in plant protoplasts. Mol Gen Genet 230: 170–176.

    Article  PubMed  CAS  Google Scholar 

  • Mol, J.N.M., R. Van Blokland, P. De Lange, M. Stain, & J.M. Kooter, 1994. Post-transcriptional inhibition of gene expression: sense and antisense genes. In: Paszkowski, J, ed. Homologous Recombination and Gene Silencing in Plants. Dordrecht, The Netherlands: Kluwer Academic Publishers: 309–334.

    Chapter  Google Scholar 

  • Moore, I., L. Galweiller, D. Grosskopf, J. Schell, & K. Palme, 1998. A transcription activation system for regulated gene expression in transgenic plants. Proc Natl Acad Sci USA 95: 376–381.

    Article  PubMed  CAS  Google Scholar 

  • Mouradov, A., T.V. Glassick, B.A. Hamdorf, L.C. Murphy, S.S. Marla, Y. Yang, & R.D. Teasdale, 1998a. Family of MADS-box genes expressed early in male and female reproductive structures of Monterey pine. Plant Physiol 117: 55–61.

    Article  PubMed  CAS  Google Scholar 

  • Mouradov, A, T. Glassick, B. Hamdorf, L. Murphy, B. Fowler, S. Marla, & R.D. Teasdale 1998b. NEEDLY, a Pinus radiata ortholog ofFLORICAULAILEAFY genes, expressed in both reproductive and vegetative meristems. Proc Natl Acad Sci USA 95: 6537–6542.

    Google Scholar 

  • Nazarov, V., J. Botterman, P. Stanssens, & J. Sevcik, 1993. A novel ribonuclease and its inhibitor. European Patent 0 537 399 Al.

    Google Scholar 

  • Nilsson, O., E. Wu, D.S. Wolfe, & D. Weigel, 1998. Genetic ablation of flowers in transgenic plants. Plant J (Accepted for Publication).

    Google Scholar 

  • Nyers, L.S., AH. Doerksen, A.B. Krupkin, & S.H. Strauss, 1993. Floral MADS-box genes in poplar, pine, and Douglas-fir. J Cell Biochem s17: 22.

    Google Scholar 

  • Oliver, M.J., J.E. Quisenberry, N.L.G. Trolinder, & D.L. Keim, 1998. Control of plant gene expression. US Patent 5, 723–765.

    Google Scholar 

  • Palauqui, J.C., T. F.lmayan, F. Dorlhac de Borne, P. Crete, C. Charles, & H. Vaucheret, 1996. Frequencies, timing, and spatial patterns of co-suppression of nitrate reductase and nitrite reductase in transgenic tobacco plants. Plant Physiol 112: 1447–1450.

    Google Scholar 

  • Palmiter, R.D., R.R. Behringer, C.J. Quaife, F. Maxwell, I.H. Maxwell, & R.L. Brinster, 1987. Cell lineage ablation in transgenic mice by cell-specific expression of a toxin gene. Cell 50: 435–443.

    Article  PubMed  CAS  Google Scholar 

  • Park, Y.D., I. Papp, E.A. Moscone, V.A. Iglesias, H. Vaucheret, A.J.M. Matzke, & M.A. Matzke, 1996. Gene silencing mediated by promoter homology occurs at the level of transcription and results in meiotically heritable alterations in methylation and gene activity. Plant J 9: 183–194.

    Article  PubMed  CAS  Google Scholar 

  • Pnueli, L., D. Hareven, A.D. Rounsley, & M.F. Yanofsky, 1994. Isolation of the tomato Agamous gene TAGI and analysis of its homeotic role in transgenic plants. Plant Cell 6: 163–173.

    PubMed  CAS  Google Scholar 

  • Pnueli, L., D. Hareven, L. Broday, C. Hurwitz, & E. Lifshitz, 1994. The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers. Plant Cell 6: 175–186.

    PubMed  CAS  Google Scholar 

  • Putterill, J., F. Robson, K. Lee, R. Simon, & G. Coupland, 1995. The CONSTANS gene ofArabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription actors. Cell 80: 847–857.

    Article  PubMed  CAS  Google Scholar 

  • Quaas, R., Y. McKeown, P. Stanssens, R. Frank, H. Blocker, & U. Hahn, 1988. Expression of the chemically synthesized gene for ribonuclease Tl in Escherichia coli using a secretion cloning vector. Eur J Biochem 173: 617–622.

    Article  PubMed  CAS  Google Scholar 

  • Que, Q., H.Y. Wang, J.J. English, & R.A. Jorgensen, 1997. The frequency and degree of cosuppression by sense chalcone synthase transgenes are dependent on transgene promoter strength and are reduced by premature nonsense codons in the transgene coding sequence. Plant Cell 9: 1357–1368.

    PubMed  CAS  Google Scholar 

  • Richardson, D.M., 1998. Forestry trees as invasive aliens. Cons Biol 12: 18–26.

    Article  Google Scholar 

  • Roberts, M.R., E. Boyes, & R.J. Scott, 1995. An investigation of the role of the anther tapetum during microspore development using genetic cell ablation. Sex Plant Reprod 8: 299–307.

    Article  Google Scholar 

  • Rottmann, W.H., R.M. Meilan, L.A. Sheppard, A.M. Brunner, J.S. Skinner, C. Ma, L. Jouanin, G. Pillate, & S.H. Strauss, 1998. The Populus trichocarpa homolog of FLOILFY is vegetatively expressed and not sufficient for flowering. (manuscript in preparation).

    Google Scholar 

  • Rutledge, R., S. Regan, O. Nicolas, P. Fobert, C. Cote, W. Bosnich, C. Kauffeldt, G. Sunohara, A. Seguin, & D. Stewart, 1998. Characterization of an AGAMOUS homologue from the conifer black spruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis. Plant J 15: 625–634.

    Article  PubMed  CAS  Google Scholar 

  • Schmulling, T., H. Rohrig, S. Pilz, R. Walden, & J. Schell, 1993. Restoration of fertility by antisense RNA in genetically engineered male sterile tobacco plants. Mol Gen Genet 237: 385–394.

    PubMed  CAS  Google Scholar 

  • Sehnke, P.C., L. Pedrosa, A.L. Paul, A.E. Frankel, & R.J. Ferl, 1994. Expression of active, processed ricin in transgenic tobacco. J Biol Chem 269: 22473–22476.

    PubMed  CAS  Google Scholar 

  • Sheppard, L.A., 1997. PTD: a Populus trichocarpa gene with homology to floral homeotic transcription factors. Ph.D. Dissertation. Oregon State University.

    Google Scholar 

  • Sieburth, L.E., & E.M. Meyerowitz, 1997. Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cell 9: 355–365.

    PubMed  CAS  Google Scholar 

  • Smith, H.A., S.L. Swaney, T.D. Parks, E.A. Wemsman, & W.G. Dougherty, 1994. Transgenic plant virus resistance mediated by untranslatable sense RNAs: expression, regulation, and fate of non-essential RNAs. Plant Cell 6: 1441–1453.

    PubMed  CAS  Google Scholar 

  • Southerton, S.G., S.H. Strauss, M.R. Olive, R.L. Harcourt, V. Decroocq, X. Zhu, D.J. Llewellyn, W.J. Peacock, & E.S. Dennis, 1998a. Eucalyptus has a functional equivalent of the Arabidopsis floral meristem identity gene LEAFY. Plant Mol Biol 37: 897–910.

    Article  PubMed  CAS  Google Scholar 

  • Southerton, S.G., H. Marshall, A. Mouradov, & R.D. Teasdale, 1998b. Eucalypt MADS-box genes expressed in developing flowers. Plant Physiol 118: 365–372.

    Article  PubMed  CAS  Google Scholar 

  • Spena, A., E. Prinsen, M. Fladung, S.C. Schulze, & H. Van Onckelen, 1991. The indoleacetic acid-lysine synthase gene of Pseudomonas syringae subsp. savastanoi induce developmental alterations in transgenic tobacco and potato plants. Mol Gen Genet 227: 205–212.

    Article  PubMed  CAS  Google Scholar 

  • Strauss, S.H., W.H. Rottmann, A.M. Brunner, & L.A. Sheppard, 1995. Genetic engineering of reproductive sterility in forest trees. Mol Breed 1: 5–26.

    Article  CAS  Google Scholar 

  • Strauss, S.H., R. James, A. Brunner, S. DiFazio, & R. Meilan, 1997. Tree Genetic Engineering Research Cooperative Annual Report 1996–1997.

    Google Scholar 

  • Sundâs, A., K. Tandre, M. Nilsson, & P. Engstrom, 1993. A gymnosperm homologue to the maize KNOTTED-1 gene. J Cell Biochem S17: 37.

    Google Scholar 

  • Tandre, K., V.A. Albert, A. Sunds, & P. Engström, 1995. Conifer homologues to genes that control floral development in angiosperms. Plant Mol Biol 27: 69–78.

    Google Scholar 

  • Tandre, K., M. Svenson, M.E. Svensson, & P. Engström, 1998. Conservation of gene structure and activity in the regulation of reproductive organ development of conifers and angiosperms. Plant J 15: 615–623.

    Google Scholar 

  • Thorsness, M.K., M.K. Kandasamy, M.E. Nasrallah, & J.B. Nasrallah, 1991. ABrassica S-locus gene promoter targets toxic gene expression and cell death to the pistil and pollen of transgenic Nicotiana. Devel Biol 143: 173–184.

    Article  CAS  Google Scholar 

  • Thorsness, M.K., M.K. Kandasamy M E Nasrallah, & J.B. Nasrallah, 1993. Genetic ablation of floral cells in Arabidopsis. Plant Cell 5: 253–261.

    Google Scholar 

  • Thorsness, M.K., & J.B. Nasrallah, 1995. Cell specific ablation in plants. Meth Cell Biol 50: 439–448.

    Article  CAS  Google Scholar 

  • Tilly, J.J., D.W. Allen, & T. Jack, 1998. The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects. Development 125: 1647–1657.

    PubMed  CAS  Google Scholar 

  • Twell, D., 1995. Diphtheria toxin-mediated cell ablation in developing pollen: vegetative cell ablation blocks generative cell migration. Protoplasma 187: 144–154.

    Article  CAS  Google Scholar 

  • Tzfira, T., A. Zucker, & A. Altman, 1998. Forest-tree biotechnology: Genetic transformation and its application to future forests. Trends Biotech 16: 439–445.

    Article  CAS  Google Scholar 

  • van der Geest, A.H.M., D.A. Frisch, J.D. Kemp, & T.C. Hall, 1995. Cell ablation reveals that expression from the phaseolin promoter is confined to embryogenesis and microsporogenesis. Plant Physiol 109: 1151–1158.

    Google Scholar 

  • van der Meer, I.M., M.E. Stain, Ai. van Tunen, J.N.M. Mol, & A.R. Stuitje, 1992. Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell 4: 253–262.

    PubMed  Google Scholar 

  • Wang, H., H.M. Wu, & A.Y. Cheng, 1993. Development and pollination regulated accumulation and glycosylation of a stylar transmitting tissue-specific proline-rich protein. Plant Cell 5: 1639–1650.

    PubMed  CAS  Google Scholar 

  • Wang, D.Y., R.E. Bradshaw, C. Walter, M.B. Connett, & D.W. Fountain, 1997. Structural characterisation of Pinus radiata MADS-box DNA sequences isolated by PCR cloning. New Zealand J For Sci 27: 3–10.

    CAS  Google Scholar 

  • Weigel, D., 1995. The genetics of flowering: From floral induction to ovule morphogenesis. Annu Rev Genetics 29: 19–39.

    Article  CAS  Google Scholar 

  • Weigel, D., J. Alvarez, D.R. Smyth, M.F. Yanofsky, & E.M. Meyerowitz, 1992. LEAFY controls floral meristem identity in Arabidopsis. Cell 69: 843–859.

    Article  PubMed  CAS  Google Scholar 

  • Weigel, D., & E.M. Meyerowitz, 1994. The ABCs of floral homeotic genes. Cell 78: 203–209.

    Article  PubMed  CAS  Google Scholar 

  • Worrall, D., D.L. Hird, R. Hodge, W. Paul, J. Draper, & R. Scott, 1992. Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell 4: 759–771.

    PubMed  CAS  Google Scholar 

  • Wright, L.L., 1994. Production technology status of woody and herbaceous crops. Biomass & Bioenergy 6: 191–209.

    Article  Google Scholar 

  • Yamaizumi, M., E. Mekada, T. Uchida, & Y. Okada 1978. One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell 15: 245–250.

    Article  PubMed  CAS  Google Scholar 

  • Yanofsky, M.F., 1995. Floral meristems to floral organs: genes controlling early events in Arabidopsis flower development. Ann Rev Plant Physiol Plant Mol Biol 46: 167–188.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Skinner, J.S., Meilan, R., Brunner, A.M., Strauss, S.H. (2000). Options for Genetic Engineering of Floral Sterility in Forest Trees. In: Jain, S.M., Minocha, S.C. (eds) Molecular Biology of Woody Plants. Forestry Sciences, vol 64. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2311-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2311-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5338-1

  • Online ISBN: 978-94-017-2311-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics