Skip to main content

Aging and Lysosomal Degradation of Cellular Constituents

  • Chapter
Aging at the Molecular Level

Part of the book series: Biology of Aging and Its Modulation ((BIMO,volume 1))

Abstract

Biological structures are continuously renewed through degradation and resynthesis of their worn-out/damaged constituents. Cells possess a number of mechanisms to degrade their components. Many cytosolic proteins, mainly short-lived ones, are decomposed by calcium-dependent cysteine proteases, calpains [1], as well as by multicatalytic proteinase complexes, proteasomes [2]. Most long-lived proteins, lipids, other biomolecules, and all organelles are, however, degraded by lysosomes, acidic vacuolar organelles containing several dozens lytic enzymes [3, 4]. Initially, the material to be degraded is sequestered and wrapped up in an autophagosome, a vacuolar structure surrounded by a specific membrane. Autophagosomes then fuse with lysosomes [5, 6]. This process is called macroautophagy. Besides, the material can enter lysosomes through invagination of the membrane (microautophagy) [7] or by selective chaperone-mediated autophagy [6]. Within lysosomes, the material is decomposed into simple molecules, such as amino acids, fatty acids and monosaccharides, which are carried into the cytosol and reutilized in anabolic activities. A failure to synthesize even a single lysosomal enzyme results in serious, often fatal, disorders, known as lysosomal storage diseases [8, 9]. Normally, lysosomes efficiently degrade most autophagocytosed macromolecules and organelles, providing for their successful recycling. The role of lysosomes, along with other recycling systems, is particularly important for postmitotic cells, which cannot renew themselves by cell division. In contrast, proliferating cells, such as intestinal epitheliocytes or bone marrow cells, continuously dilute their worn-out/damaged constituents during successive divisions, normally associated with intense de novo formation of macromolecules and organelles [10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sorimachi H, Ishiura S, Suzuki K (1997). Structure and physiological function of calpains. Biochem J. 328 (Pt 3): 721–32.

    PubMed  CAS  Google Scholar 

  2. Myung J, Kim KB, Crews CM (2001). The ubiquitin-proteasome pathway and proteasome inhibitors. Med Res Rev. 21 (4): 245–73.

    Article  PubMed  CAS  Google Scholar 

  3. Mortimore GE, Miotto G, Venerando R, Kadowaki M (1996). Autophagy. Subcell Biochem. 27: 93–135.

    Article  PubMed  CAS  Google Scholar 

  4. Klionsky DJ, Emr SD (2000). Autophagy as a regulated pathway of cellular degradation. Science 290 (5497): 1717–21.

    Article  PubMed  CAS  Google Scholar 

  5. Seglen PO, Bohley P (1992). Autophagy and other vacuolar protein degradation mechanisms. Experientia 48 (2): 158–72.

    Article  PubMed  CAS  Google Scholar 

  6. Dice JF (2000). Lysosomal Pathways of Protein Degradation. Georgetown, Texas: Eurekah.com/Landes Bioscience.

    Google Scholar 

  7. Marzella L, Ahlberg J, Glaumann H (1981). Autophagy, heterophagy, microautophagy and crinophagy as the means for intracellular degradation. Virchows Archiv B, Cell Pathol Mol Pathol. 36 (2–3): 219–34.

    Article  CAS  Google Scholar 

  8. Armstrong D, Koppang N (1981). Ceroid-lipofuscinosis, a model for aging. In: RS Sohal, ed. Age Pigments. Amsterdam: Elsevier, pp. 355–82.

    Google Scholar 

  9. Neufeld EF (1991). Lysosomal storage diseases. Annu Rev Biochem. 60: 257–80.

    Article  PubMed  CAS  Google Scholar 

  10. Terman A (2001). Garbage catastrophe theory of aging: imperfect removal of oxidative damage? Redox Rep. 6 (1): 15–26.

    Article  PubMed  CAS  Google Scholar 

  11. Halliwell B, Gutteridge JMC (1999). Free Radicals in Biology and Medicine, 3rd edn. New York: Oxford University Press.

    Google Scholar 

  12. de Grey ADNJ (1999). The Mitochondria) Free Radical Theory of Aging. Austin, TX: RG Landes Company.

    Google Scholar 

  13. Stadtman ER (2001). Protein oxidation in aging and age-related diseases. Ann NY Acad Sci. 928: 22–38.

    Article  PubMed  CAS  Google Scholar 

  14. Harman D (1956). Aging: a theory based on free radical and radiation chemistry. J Gerontol. 211: 298–300.

    Article  Google Scholar 

  15. Harman D (1996). Aging and disease: extending functional life span. Ann NYAcad Sci. 786: 321–36.

    Article  CAS  Google Scholar 

  16. Brownlee M (1995). Advanced protein glycosylation in diabetes and aging. Annu Rev Med. 46: 223–34.

    Article  PubMed  CAS  Google Scholar 

  17. Lee AT, Cerami A (1992). Role of glycation in aging. Ann NYAcad Sci. 663: 63–70.

    Article  CAS  Google Scholar 

  18. Orgel LE (1973). Ageing of clones of mammalian cells. Nature 243 (5408): 441–5.

    Article  PubMed  CAS  Google Scholar 

  19. Burnet FM (1973). A genetic interpretation of ageing. Lancet 2 (7827): 480–83.

    Article  PubMed  CAS  Google Scholar 

  20. Kirkwood,TB (1989). DNA, mutations and aging. Mutat Res. 219 (1): 1–7.

    Article  PubMed  CAS  Google Scholar 

  21. Brunk UT, Terman A (2002). The mitochondrial-lysosomal axis theory of aging: Accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem. 269: 1996–2002.

    Article  PubMed  CAS  Google Scholar 

  22. Kowald A, Kirkwood TB (1996). A network theory of ageing: the interactions of defective mitochondria, aberrant proteins, free radicals and scavengers in the ageing process. Mutat Res. 316 (5–6): 209–36.

    PubMed  CAS  Google Scholar 

  23. Beckman KB, Ames BN (1998). The free radical theory of aging matures. Physiol Rev. 78 (2): 547–81.

    PubMed  CAS  Google Scholar 

  24. Friguet B (2002). Aging of proteins and the proteasome. Prog Mol Subcell Biol. 29: 17–33.

    Article  PubMed  CAS  Google Scholar 

  25. Cadenas E, Davies KJ (2000). Mitochondrial free radical generation, oxidative stress, and aging. Free Rad Biol Med. 29 (3–4): 222–30.

    Article  PubMed  CAS  Google Scholar 

  26. Richter C (1995). Oxidative damage to mitochondrial DNA and its relationship to ageing. Int JBiochem Cell Biol. 27 (7): 647–53.

    Article  CAS  Google Scholar 

  27. Ozawa T (1997). Genetic and functional changes in mitochondria associated with aging. Physiol Rev. 77 (2): 425–64.

    PubMed  CAS  Google Scholar 

  28. Tate EL, Herbener GH (1976). A morphometric study of the density of mitochondrial cristae in heart and liver of aging mice. J Gerontol. 31 (2): 129–34.

    Article  PubMed  CAS  Google Scholar 

  29. Vanneste J, van den Bosch de Aguilar P (1981). Mitochondrial alterations in the spinal ganglion neurons in ageing rats. Acta Neuropathol. 54 (1): 83–7.

    Article  PubMed  CAS  Google Scholar 

  30. Sachs HG, Colgan JA, Lazarus ML (1977). Ultrastructure of the aging myocardium: a morphometric approach. Am JAnat. 150 (1): 63–71.

    CAS  Google Scholar 

  31. Yamada K, Sugiyama S, Kosaka K, Hayakawa M, Ozawa T (1995). Early appearance of age-associated deterioration in mitochondrial function of diaphragm and heart in rats treated with doxorubicin. Exp Gerontol. 30 (6): 581–93.

    Article  PubMed  CAS  Google Scholar 

  32. de Grey AD (1997). A proposed refinement of the mitochondrial free radical theory of aging. BioEssays 19 (2): 161–6.

    Article  PubMed  Google Scholar 

  33. Coller HA, Bodyak ND, Khrapko K (2002). Frequent intracellular clonal expansions of somatic mtDNA mutations: significance and mechanisms. Ann NYAcad Sci. 959: 434–47.

    Article  CAS  Google Scholar 

  34. Aiken J, Bua E, Cao Z, et al. (2002). Mitochondrial DNA deletion mutations and sarcopenia. Ann NYAcad Sci. 959: 412–23.

    Article  CAS  Google Scholar 

  35. Terman A, Brunk UT (1998). On the degradability and exocytosis of ceroid/lipofuscin in cultured rat cardiac myocytes. Mech Ageing Dev. 100 (2): 145–56.

    Article  PubMed  CAS  Google Scholar 

  36. Brunk UT, Terman A (2002). Lipofuscin: mechanisms of age-related accumulation and influence on cell functions. Free Rad Biol Med. 33 (5): 611–19.

    Article  PubMed  CAS  Google Scholar 

  37. Porta EA (1991). Advances in age pigment research. Arch Gerontol Geriatr. 212 (2–3): 303–20.

    Article  Google Scholar 

  38. Monserrat AJ, Benavides SH, Berra A, Farina S, Vicario SC, Porta EA (1995). Lectin histochemistry of lipofuscin and certain ceroid pigments. Histochem Cell Biol. 103 (6): 435–45.

    Article  PubMed  CAS  Google Scholar 

  39. Brun A, Brunk U (1970). Histochemical indications for lysosomal localization of heavy metals in normal rat brain and liver. J Histochem Cytochem. 18 (11): 820–7.

    Article  PubMed  CAS  Google Scholar 

  40. Jolly RD, Douglas BV, Davey PM, Roiri JE (1995). Lipofuscin in bovine muscle and brain: a model for studying age pigment. Gerontology 41 (Suppl 2): 283–95.

    Article  PubMed  CAS  Google Scholar 

  41. Glaumann H, Ericsson JL, Marzella L (1981). Mechanisms of intralysosomal degradation with special reference to autophagocytosis and heterophagocytosis of cell organelles. Int Rev Cytol. 73: 149–82.

    Article  PubMed  CAS  Google Scholar 

  42. Burke JM, Skumatz CM (1998). Autofluorescent inclusions in long-term postconfluent cultures of retinal pigment epithelium. Invest Ophthalmol Visual Sci. 39 (8): 1478–86.

    CAS  Google Scholar 

  43. Kikugawa K, Kato T, Beppu M, Hayasaka A (1989). Fluorescent and cross-linked proteins formed by free radical and aldehyde species generated during lipid oxidation. Adv Exp Med Biol. 266: 345–57.

    PubMed  CAS  Google Scholar 

  44. Brunk UT, Jones CB, Sohal RS (1992). A novel hypothesis of lipofuscinogenesis and cellular aging based on interactions between oxidative stress and autophagocytosis. Mutat Res. 275 (3–6): 395–403.

    PubMed  CAS  Google Scholar 

  45. Terman A, Brunk UT (1998). Ceroid/lipofuscin formation in cultured human fibroblasts: the role of oxidative stress and lysosomal proteolysis. Mech Ageing Dey. 104, 277–91.

    Article  CAS  Google Scholar 

  46. Collins VP, Arborgh B, Brunk U, Schellens JP (1980). Phagocytosis and degradation of rat liver mitochondria by cultivated human glial cells. Lab Invest. 42 (2): 209–16.

    PubMed  CAS  Google Scholar 

  47. Knecht E, Martinez-Ramon A, Grisolia S (1988). Autophagy of mitochondria in rat liver assessed by immunogold procedures. J Histochem Cytochem. 36 (11): 1433–40.

    Article  PubMed  CAS  Google Scholar 

  48. Elleder M, Sokolova J, Hrebicek M (1997). Follow-up study of subunit c of mitochondrial ATP synthase (SCMAS) in Batten disease and in unrelated lysosomal disorders. Acta Neuropathol. 93 (4): 379–90.

    Article  PubMed  CAS  Google Scholar 

  49. Schutt F, Ueberle B, Schnolzer MGHF, Kopitz J (2002). Proteome analysis of lipofuscin in human retinal pigment epithelial cells. FEBSLett. 528 (1–3): 217–21.

    Article  CAS  Google Scholar 

  50. Treff WM (1974). Das involutionsmuster des nucleus dentatus cerebelli. In: D Platt, ed. Altern. Stuttgart: Schattauer, pp. 37–54.

    Google Scholar 

  51. Terman A, Dalen H, Brunk UT (1999). Ceroid/lipofuscin-loaded human fibroblasts show decreased survival time and diminished autophagocytosis during amino acid starvation. Exp Gerontol. 34 (8): 943–57.

    Article  PubMed  CAS  Google Scholar 

  52. Sundelin S, Wihlmark U, Nilsson SEG, Brunk UT (1998). Lipofuscin accumulation of cultured retinal pigment epithelial cells reduces their phagocytic capacity. Curr Eye Res. 17 (8): 851–7.

    Article  PubMed  CAS  Google Scholar 

  53. Shamsi FA, Boulton M (2001). Inhibition of RPE lysosomal and antioxidant activity by the age pigment lipofuscin. Invest Ophthalmol Visual Sci. 42 (12): 3041–6.

    CAS  Google Scholar 

  54. Sitte N, Huber M, Grune T, et al. (2000). Proteasome inhibition by lipofuscin/ceroid during postmitotic aging of fibroblasts. FASEB J. 14 (11): 1490–8.

    Article  PubMed  CAS  Google Scholar 

  55. Cuervo AM, Palmer A, Rivett AJ, Knecht E (1995). Degradation of proteasomes by lysosomes in rat liver. Eur JBiochem. 227 (3): 792–800.

    Article  CAS  Google Scholar 

  56. Essner E, Novikof, AV (1960). Human hepatocellular pigments and lysosomes. J Ultrastruct Res. 3: 374–91.

    Article  PubMed  CAS  Google Scholar 

  57. Brunk U, Ericsson JLE (1972). Electron microscopical studies of rat brain neurons. Localization of acid phosphatase and mode of formation of lipofuscin bodies. J Ultrastruct Res. 38: 1–15.

    Article  PubMed  CAS  Google Scholar 

  58. Terman A, Abrahamsson N, Brunk UT (1999). Ceroid/lipofuscin-loaded human fibroblasts show increased susceptibility to oxidative stress. Exp Gerontol. 34 (6): 755–70.

    Article  PubMed  CAS  Google Scholar 

  59. Wihlmark U, Wrigstad A, Roberg K, Nilsson SE, Brunk UT (1997). Lipofuscin accumulation in cultured retinal pigment epithelial cells causes enhanced sensitivity to blue light irradiation. Free Rad Biol Med. 22 (7): 1229–34.

    Article  PubMed  CAS  Google Scholar 

  60. Rozanowska M, Jarvis-Evans J, Korytowski W, Boulton ME, Burke JM, Sarna T (1995). Blue light-induced reactivity of retinal age pigment. In vitro generation of oxygen-reactive species. JBiol Chem. 270 (32): 18825–30.

    Article  CAS  Google Scholar 

  61. Davies S, Elliott MH, Floor E, et al. (2001). Photocytotoxicity of lipofuscin in human retinal pigment epithelial cells. Free Rad Biol Med. 31 (2): 256–65.

    Article  PubMed  CAS  Google Scholar 

  62. Beal MF (1996). Mitochondria, free radicals, and neurodegeneration. Curr Opin Neurobiol. 6 (5): 661–6.

    Article  PubMed  CAS  Google Scholar 

  63. Busciglio J, Andersen JK, Schipper HM, et al. (1998). Stress, aging, and neurodegenerative disorders. Molecular Mechanisms. Ann NYAcad Sci. 851: 429–43.

    Article  CAS  Google Scholar 

  64. Adamec E, Mohan PS, Cataldo AM, Vonsattel JP, Nixon RA (2000). Up-regulation of the lysosomal system in experimental models of neuronal injury: implications for Alzheimer’s disease. Neuroscience 100 (3): 663–75.

    Article  PubMed  CAS  Google Scholar 

  65. Misonou H, Morishima-Kawashima M, Ihara Y (2000). Oxidative stress induces intracellular accumulation of amyloid beta-protein (Abeta) in human neuroblastoma cells. Biochemistry 39 (23): 6951–9.

    Article  PubMed  CAS  Google Scholar 

  66. Mielke JG, Murphy MP, Maritz J, Bengualid KM, Ivy GO (1997). Chloroquine administration in mice increases beta-amyloid immunoreactivity and attenuates kainateinduced blood-brain barrier dysfunction. Neurosci Lett. 227 (3): 169–72.

    Article  PubMed  CAS  Google Scholar 

  67. Nakanishi H, Amano T, Sastradipura DF, et al. (1997). Increased expression of cathepsins E and D in neurons of the aged rat brain and their colocalization with lipofuscin and carboxy-terminal fragments of Alzheimer amyloid precursor protein. JNeurochem. 68 (2): 739–49.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Terman, A., Brunk, U.T. (2003). Aging and Lysosomal Degradation of Cellular Constituents. In: von Zglinicki, T. (eds) Aging at the Molecular Level. Biology of Aging and Its Modulation, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0667-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0667-4_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6482-0

  • Online ISBN: 978-94-017-0667-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics