Skip to main content

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 29))

Abstract

The progressive and irreversible decline of the different physiological functions of the organism during the last part of its life, a phenomenon commonly referred to as aging, is a complex process that is under some genetic control but is also linked to influences from the environment. Accumulation of damaged protein is a common feature of cellular aging (Berlett and Stadtman 1997; Beckman and Ames 1998). Proteins are indeed the target for different post-translational modifications (oxidation, glycation, glycoxidation, conjugation with lipid peroxidation products) that increase with age (Stadtman 1992). These modifications, which directly alter their biological function, are strongly believed to be implicated in the aging process. The role of several genes is involved in the stress response (e.g., oxidative stress), their overexpression leads to increased longevity (Larsen 1993; Vanfleteren 1993; Orr and Sohal 1994; Hekimi et al. 1998), and the observed age-related increase of damaged cellular components indicates a crucial importance of “maintenance” systems in the aging process. The accumulation of altered proteins with age raises the problem of the efficacy of the proteolytic systems in charge of eliminating these damaged proteins, in particular the efficacy of the proteasomal system, which is implicated not only in the removal of altered proteins, but also in the continuous renewal of intracellular proteins (Coux et al. 1996; Grune et al. 1997; Voges et al. 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal S, Sohal RS (1994) Aging and proteolysis of oxidized proteins. Arch Biochem Biophys 309:24–28

    Article  PubMed  CAS  Google Scholar 

  • Anselmi B, Conconi M, Veyrat-Durebex C, Turlin E, Biville F, Alliot J, Friguet B (1998) Dietary self-selection can compensate an age-related decrease of rat liver 20S proteasome activity observed with standard diet. J Gerontol A Biol Sci Med Sci 53:B173-179

    Google Scholar 

  • Arendt CS, Hochstrasser M (1997) Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active-site formation. Proc Nati Acad Sci USA 94: 7156–7161

    Article  CAS  Google Scholar 

  • Baumeister W, Dahlmann B, Hegerl R, Kopp F, Kuehn L, Pfeifer G (1988) Electron microscopy and image analysis of the multicatalytic proteinase. FEBS Lett 241:239–245

    Article  PubMed  CAS  Google Scholar 

  • Baumeister W, Walz J, Zuhl F, Seemuller E (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92:367–380

    Article  PubMed  CAS  Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    PubMed  CAS  Google Scholar 

  • Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316

    Article  PubMed  CAS  Google Scholar 

  • Brot N, Weissbach H (1983) Biochemistry and physiological role of methionine sulfoxide residues in proteins. Arch Biochem Biophys 223:271–281

    Article  PubMed  CAS  Google Scholar 

  • Brot N, Fliss H, Coleman T, Weissbach H (1984) Enzymatic reduction of methionine sulfoxide residues in proteins and peptides. Methods Enzymol 107:352–360

    Article  PubMed  CAS  Google Scholar 

  • Brunk UT, Jones CB, Sohal RS (1992) A novel hypothesis of lipofuscinogenesis and cellular aging based on interactions between oxidative stress and autophagocytosis. Mutat Res 275:395–403

    Article  PubMed  CAS  Google Scholar 

  • Bulteau A, Petropoulos I, Friguet B (2000) Age-related alterations of proteasome structure and function in aging epidermis. Exp Gerontol 35:767–777

    Article  PubMed  CAS  Google Scholar 

  • Bulteau AL, Lundberg KC, Humphries KM, Sadek HA, Szweda PA, Friguet B, Szweda LI (2001) Oxidative modification and inactivation of the proteasome during occlusion/reperfusion. J Biol Chem 276:30057–30063

    Article  PubMed  CAS  Google Scholar 

  • Carney JM, Starke-Reed PE, Oliver CN, Landum RW, Cheng MS, Wu JF, Floyd RA (1991) Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone. Proc Nati Acad Sci USA 88:3633–3636

    Article  CAS  Google Scholar 

  • Chio KS, Tappel AL (1969) Synthesis and characterization of the fluorescent products derived from malonaldehyde and amino acids. Biochemistry 8:2821–2826

    Article  PubMed  CAS  Google Scholar 

  • Chondrogianni N, Petropoulos I, Franceschi C, Friguet B, Gonos ES (2000) Fibroblast cultures from healthy centenarians have an active proteasome. Exp Gerontol 35:721–728

    Article  PubMed  CAS  Google Scholar 

  • Cohn JA, Tsai L, Friguet B, Szweda LI (1996) Chemical characterization of a protein-4-hydroxy-2-nonenal cross-link: immunochemical detection in mitochondria exposed to oxidative stress. Arch Biochem Biophys 328:158–164

    Article  PubMed  CAS  Google Scholar 

  • Conconi M, Friguet B (1997) Proteasome inactivation upon aging and on oxidation-effect of HSP 90. Mol Biol Rep 24:45–50

    Article  PubMed  CAS  Google Scholar 

  • Conconi M, Szweda LI, Levine RL, Stadtman ER, Friguet B (1996) Age-related decline of rat liver multicatalytic proteinase activity and protection from oxidative inactivation by heat-shock protein 90. Arch Biochem Biophys 331:232–240

    Article  PubMed  CAS  Google Scholar 

  • Conconi M, Petropoulos I, Emod I, Turlin E, Biville F, Friguet B (1998) Protection from oxidative inactivation of the 20S proteasome by heat-shock protein 90. Biochem J 333:407–415

    PubMed  CAS  Google Scholar 

  • Conconi M, Djavadi-Ohaniance L, Uerkvitz W, Hendil KB, Friguet B (1999) Conformational changes in the 20S proteasome upon macromolecular ligand binding analyzed with monoclonal antibodies. Arch Biochem Biophys 362:325–328

    Article  PubMed  CAS  Google Scholar 

  • Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65:801–847

    Article  PubMed  CAS  Google Scholar 

  • Davies KJ (1987) Protein damage and degradation by oxygen radicals. I. general aspects. J Biol Chem 262:9895–9901

    PubMed  CAS  Google Scholar 

  • Davies KJ, Delsignore ME, Lin SW (1987) Protein damage and degradation by oxygen radicals. II. Modification of amino acids. J Biol Chem 262:9902–9907

    PubMed  CAS  Google Scholar 

  • Dawson SP, Arnold JE, Mayer NJ, Reynolds SE, Billett MA, Gordon C, Colleaux L, Kloetzel PM, Tanaka K, Mayer RJ (1995) Developmental changes of the 26S proteasome in abdominal inter-segmental muscles of Manduca sexta during programmed cell death. J Biol Chem 270: 1850–1858

    Article  PubMed  CAS  Google Scholar 

  • DeMartino GN, Slaughter CA (1999) The proteasome, a novel protease regulated by multiple mechanisms. J Biol Chem 274:22123–22126

    Article  PubMed  CAS  Google Scholar 

  • Djaballah H, Rowe AJ, Harding SE, Rivett AJ (1993) The multicatalytic proteinase complex (proteasome): structure and conformational changes associated with changes in proteolytic activity. Biochem J 292:857–862

    PubMed  CAS  Google Scholar 

  • Dubiel W, Pratt G, Ferrell K, Rechsteiner M (1992) Purification of an US regulator of the multi-catalytic protease. J Biol Chem 267:22369–22377

    PubMed  CAS  Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radie Biol Med 11:81–128

    Article  CAS  Google Scholar 

  • Falkenburg PE, Kloetzel PM (1989) Identification and characterization of three different sub-populations of the Drosophila multicatalytic proteinase (proteasome). J Biol Chem 264: 6660–6666

    PubMed  CAS  Google Scholar 

  • Ferrington DA, Sun H, Murray KK, Costa J, Williams TD, Bigelow DJ, Squier TC (2001) Selective degradation of oxidized calmodulin by the 20S proteasome. J Biol Chem 276:937–943

    Article  PubMed  CAS  Google Scholar 

  • Fisher MT, Stadtman ER (1992) Oxidative modification of Escherichia coli glutamine synthetase. Decreases in the thermodynamic stability of protein structure and specific changes in the active site conformation. J Biol Chem 267:1872–1880

    PubMed  CAS  Google Scholar 

  • Friguet B, Szweda LI (1997) Inhibition of the multicatalytic proteinase (proteasome) by 4-hydroxy-2-nonenal cross-linked protein. FEBS Lett 405:21–25

    Article  PubMed  CAS  Google Scholar 

  • Friguet B, Stadtman ER, Szweda LI (1994a) Modification of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal. Formation of cross-linked protein that inhibits the multicatalytic protease. J Biol Chem 269:21639–21643

    PubMed  CAS  Google Scholar 

  • Friguet B, Szweda LI, Stadtman ER (1994b) Susceptibility of glucose-6-phosphate dehydrogenase modified by 4-hydroxy-2-nonenal and metal-catalyzed oxidation to proteolysis by the multi-catalytic protease. Arch Biochem Biophys 311:168–173

    Article  PubMed  CAS  Google Scholar 

  • Fu MX, Requena JR, Jenkins AJ, Lyons TJ, Baynes JW, Thorpe SR (1996) The advanced glycation end product, Nepsilon-(carboxymethyl)lysine, is a product of both lipid peroxidation and gly-coxidation reactions. J Biol Chem 271:9982–9986

    Article  PubMed  CAS  Google Scholar 

  • Fukuda A, Osawa T, Oda H, Tanaka T, Toyokuni S, Uchida K (1996) Oxidative stress response in iron-induced acute nephrotoxicity: enhanced expression of heat shock protein 90. Biochem Biophys Res Commun 219:76–81

    Article  PubMed  CAS  Google Scholar 

  • Giulivi C, Pacifici RE, Davies KJ (1994) Exposure of hydrophobic moieties promotes the selective degradation of hydrogen peroxide-modified hemoglobin by the multicatalytic proteinase complex, proteasome. Arch Biochem Biophys 311:329–341

    Article  PubMed  CAS  Google Scholar 

  • Glickman MH, Rubin DM, Fu H, Larsen CN, Coux O, Wefes I, Pfeifer G, Cjeka Z, Vierstra R, Baumeister W, Fried V, Finley D (1999) Functional analysis of the proteasome regulatory particle. Mol Biol Rep 26:21–28

    Article  PubMed  CAS  Google Scholar 

  • Goldberg AL, Rock KL (1992) Proteolysis, proteasomes and antigen presentation. Nature 357: 375–379

    Article  PubMed  CAS  Google Scholar 

  • Goldberg AL, Stein R, Adams J (1995) New insights into proteasome function: from archaebacte-ria to drug development. Chem Biol 2:503–508

    Article  PubMed  CAS  Google Scholar 

  • Goldberg AL, Akopian TN, Kisselev AF, Lee DH, Rohrwild M (1997) New insights into the mechanisms and importance of the proteasome in intracellular protein degradation. Biol Chem 378:131–140

    PubMed  CAS  Google Scholar 

  • Gracy RW, Yuksel KU, Chapman ML, Dimitrijevich SD (1990) Isoprotein changes in aging: biochemical basis and physiological consequences. Prog Clin Biol Res 344:787–817

    PubMed  CAS  Google Scholar 

  • Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik HD, Huber R (1997) Structure of 20S proteasome from yeast at 2.4 A resolution (see comments). Nature 386:463–471

    Article  PubMed  CAS  Google Scholar 

  • Grune T, Reinheckel T, Joshi M, Davies KJ (1995) Proteolysis in cultured liver epithelial cells during oxidative stress. Role of the multicatalytic proteinase complex, proteasome. J Biol Chem 270:2344–2351

    Article  PubMed  CAS  Google Scholar 

  • Grune T, Reinheckel T, Davies KJA (1996) Degradation of oxidized proteins in K562 human hematopoietic cells by proteasome. J Biol Chem 271:15504–15509

    Article  PubMed  CAS  Google Scholar 

  • Grune T, Reinheckel T, Davies KJ (1997) Degradation of oxidized proteins in mammalian cells. FASEB J 11:526–534

    PubMed  CAS  Google Scholar 

  • Grziwa A, Baumeister W, Dahlmann B, Kopp F (1991) Localization of subunits in proteasomes from Thermoplasma acidophilum by immunoelectron microscopy. FEBS Lett 290:186–190

    Article  PubMed  CAS  Google Scholar 

  • Haass C, Kloetzel PM (1989) The Drosophila proteasome undergoes changes in its subunit pattern during development. Exp Cell Res 180:243–252

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Goto S (1998) Age-related changes in the 20S and 26S proteasome activities in the liver of male F344 rats. Mech Aging Dev 102:55–66

    Article  PubMed  CAS  Google Scholar 

  • Hekimi S, Lakowski B, Barnes TM, Ewbank JJ (1998) Molecular genetics of life span in C. elegans: how much does it teach us.? Trends Genet 14:14–20

    CAS  Google Scholar 

  • Holmgren A (1989) Thioredoxin and glutaredoxin systems. J Biol Chem 264:13963–13966

    PubMed  CAS  Google Scholar 

  • Hough R, Pratt G, Rechsteiner M (1987) Purification of two high molecular weight proteases from rabbit reticulocyte lysate. J Biol Chem 262:8303–8313

    PubMed  CAS  Google Scholar 

  • Ivy GO, Kanai S, Ohta M, Sato Y, Otsubo K, Kitani K (1991) Leupeptin causes an accumulation of lipofuscin-like substances in liver cells of young rats. Mech Ageing Dev 57:213–231

    Article  PubMed  CAS  Google Scholar 

  • Keller TN, Huang FF, Zhu T, Yu T, Ho YS, Kindy TS (2000) Oxidative stress-associated impairment of proteasome activity during ischemia-reperfusion injury. J Cereb Blood Flow Metab 20: 1467–1473

    Article  PubMed  CAS  Google Scholar 

  • Kirkwood TB (1987) Immortality of the germ-line versus disposability of the soma. Basic Life Sci 42:209–218

    PubMed  CAS  Google Scholar 

  • Kleinschmidt JA, Hugle B, Grund C, Franke WW (1983) The 22S cylinder particles of Xenopus laevis. I. Biochemical and electron microscopic characterization. Eur J Cell Biol 32: 143–156

    PubMed  CAS  Google Scholar 

  • Kristal BS, Yu BP (1992) An emerging hypothesis: synergistic induction of aging by free radicals and Maillard reactions. J Gerontol 47:B107–B114

    Article  PubMed  CAS  Google Scholar 

  • Kroll M, Conconi M, Desterro MJ, Marin A, Thomas D, Friguet B, Hay RT, Virelizier JL, Arenzana-Seisdedos F, Rodriguez MS (1997) The carboxy-terminus of I kappaB alpha determines susceptibility to degradation by the catalytic core of the proteasome. Oncogene 15:1841–1850

    Article  PubMed  CAS  Google Scholar 

  • Kuehn L, Dahlmann B (1996) Proteasome activator PA28 and its interaction with 20S proteasomes. Arch Biochem Biophys 329:87–96

    Article  PubMed  CAS  Google Scholar 

  • Larsen PL (1993) Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Nati Acad Sci USA 90:8905–8909

    Article  CAS  Google Scholar 

  • Lee CK, Klopp RG, Weindruch R, Prolla TA (1999) Gene expression profile of aging and its retardation by caloric restriction (see comments). Science 285:1390–1393

    Article  PubMed  CAS  Google Scholar 

  • Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER, Sanjay TW (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  PubMed  CAS  Google Scholar 

  • Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357

    Article  PubMed  CAS  Google Scholar 

  • Lowe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution (see comments). Science 268:533–539

    Article  PubMed  CAS  Google Scholar 

  • Ly DH, Lockhart DJ, Lerner RA, Schultz PG (2000) Mitotic misregulation and human aging (see comments). Science 287:2486–2492

    Article  PubMed  CAS  Google Scholar 

  • Ma CP, Slaughter CA, DeMartino GN (1992) Identification, purification, and characterization of a protein activator (PA28) of the 20S proteasome (macropain). J Biol Chem 267: 10515–10523

    PubMed  CAS  Google Scholar 

  • McGuire MJ, McCullough ML, Croall DE, DeMartino GN (1989) The high molecular weight multicatalytic proteinase, macropain, exists in a latent form in human erythrocytes. Biochim Biophys Acta 995:181–186

    Article  PubMed  CAS  Google Scholar 

  • Mehlen P, Preville X, Chareyron P, Briolay J, Klemenz R, Arrigo AP (1995) Constitutive expression of human hsp27, Drosophila hsp27, or human alpha B-crystallin confers resistance to TNF-and oxidative stress-induced cytotoxicity in stably transfected murine L929 fibroblasts. J Immunol 154:363–374

    PubMed  CAS  Google Scholar 

  • Monnier VM, Sell DR, Nagaraj RH, Miyata S (1991) Mechanisms of protection against damage mediated by the Maillard reaction in aging. Gerontology 37:152–165

    Article  PubMed  CAS  Google Scholar 

  • Moskovitz J, Berlett BS, Poston JM, Stadtman ER (1999) Methionine sulfoxide reductase in anti-oxidant defense. Methods Enzymol 300:239–244

    Article  PubMed  CAS  Google Scholar 

  • Nagaraj RH, Sell DR, Prabhakaram M, Ortwerth BJ, Monnier VM (1991) High correlation between pentosidine protein crosslinks and pigmentation implicates ascorbate oxidation in human lens senescence and cataractogenesis. Proc Nati Acad Sci USA 88:10257–10261

    Article  CAS  Google Scholar 

  • Okada K, Wangpoengtrakul C, Osawa T, Toyokuni S, Tanaka K, Uchida K (1999) 4-Hydroxy-2-nonenal-mediated impairment of intracellular proteolysis during oxidative stress. Identification of proteasomes as target molecules. J Biol Chem 274:23787–23793

    Article  PubMed  CAS  Google Scholar 

  • Oliver CN, Ahn BW, Moerman EJ, Goldstein S, Stadtman ER (1987) Age-related changes in oxidized proteins. J Biol Chem 262:5488–5491

    PubMed  CAS  Google Scholar 

  • Orlowski M (1990) The multicatalytic proteinase complex, a major extralysosomal proteolytic system. Biochemistry 29:10289–10297

    Article  PubMed  CAS  Google Scholar 

  • Orr WC, Sohal RS (1994) Extension of life-span by overexpression of Superoxide dismutase and catalase in Drosophila melanogaster. Science 263:1128–1130

    Article  PubMed  CAS  Google Scholar 

  • Pacifici RE, Salo DC, Davies KJ (1989) Macroxyproteinase (MOP): a 670 kDa proteinase complex that degrades oxidatively denatured proteins in red blood cells (published erratum appears in Free Radic BioI Med 1990,8(2):211-2). Free Radic BioI Med 7:521-536

    Google Scholar 

  • Palombella VJ, Rando OJ, Goldberg AL, Maniatis T (1994) The ubiquitin-proteasome pathway is required for processing the NF-kappa Bl precursor protein and the activation of NF-kappa B. Cell 78:773–785

    Article  PubMed  CAS  Google Scholar 

  • Petropoulos I, Conconi M, Wang X, Hoenel B, Bregegere F, Milner Y, Friguet B (2000) Increase of oxidatively modified protein is associated with a decrease of proteasome activity and content in aging epidermal cells. J Gerontol A Biol Sci Med Sci 55:B220-227

    Google Scholar 

  • Petropoulos I, Mary J, Perichon M, Friguet B (2001) The rat protein methionine sulphoxide reductase: cloning of the cDNA and down regulation of gene expression and enzyme activity during ageing. Biochem J 355:819–825

    PubMed  CAS  Google Scholar 

  • Puhler G, Weinkauf S, Bachmann L, Muller S, Engel A, Hegerl R, Baumeister W (1992) Subunit stoichiometry and three-dimensional arrangement in proteasomes from Thermoplasma aci-dophilum. EMBO J 11:1607–1616

    PubMed  CAS  Google Scholar 

  • Reinheckel T, Sitte N, Ullrich O, Kuckelkorn U, Davies KJ, Gruñe T (1998) Comparative resistance of the 20S and 26S proteasome to oxidative stress. Biochem J 335:637–642

    PubMed  CAS  Google Scholar 

  • Rivett AJ (1985a) Preferential degradation of the oxidatively modified form of glutamine syn-thetase by intracellular mammalian proteases. J Biol Chem 260:300–305

    PubMed  CAS  Google Scholar 

  • Rivett AJ (1985b) Purification of a liver alkaline protease which degrades oxidatively modified glutamine synthetase. Characterization as a high molecular weight cysteine proteinase. J Biol Chem 260:12600–12606

    PubMed  CAS  Google Scholar 

  • Rivett AJ (1989) The multicatalytic proteinase. Multiple proteolytic activities. J Biol Chem 264: 12215–12219

    PubMed  CAS  Google Scholar 

  • Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:761–771

    Article  PubMed  CAS  Google Scholar 

  • Saitoh Y, Yokosawa H, Ishii S (1989) Sodium dodecyl sulfate-induced conformational and enzymatic changes of multicatalytic proteinase. Biochem Biophys Res Commun 162:334–339

    Article  PubMed  CAS  Google Scholar 

  • Seemuller E, Lupas A, Stock D, Lowe J, Huber R, Baumeister W (1995) Proteasome from Thermoplasma acidophilum: a threonine protease (see comments). Science 268:579–582

    Article  PubMed  CAS  Google Scholar 

  • Sell DR, Monnier VM (1990) End-stage renal disease and diabetes catalyze the formation of a pentose-derived crosslink from aging human collagen. J Clin Invest 85:380–384

    Article  PubMed  CAS  Google Scholar 

  • Shang F, Taylor A (1995) Oxidative stress and recovery from oxidative stress are associated with altered ubiquitin conjugating and proteolytic activities in bovine lens epithelial cells. Biochem J 307:297–303

    PubMed  CAS  Google Scholar 

  • Shibatani T, Nazir M, Ward WF (1996) Alterations of rat liver 20S proteasome activities by age and food restriction. J Gerontol Biol Sei 51A:B316–B322

    Article  CAS  Google Scholar 

  • Sitte N, Huber M, Grune T, Ladhoff A, Doecke WD, VonZglinicki T, Davies KJ (2000a) Proteasome inhibition by lipofuscin/ceroid during postmitotic aging of fibroblasts. FASEB J 14:1490–1498

    Article  PubMed  CAS  Google Scholar 

  • Sitte N, Merker K, VonZglinicki T, Grune T, Davies KJ (2000b) Protein oxidation and degradation during cellular senescence of human BJ fibroblasts: part I-effects of proliferative senescence. FASEB J 14:2495–2502

    Article  PubMed  CAS  Google Scholar 

  • Smith CD, Carney JM, Starke-Reed PE, Oliver CN, Stadtman ER, Floyd RA, Markesbery WR (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Nati Acad Sci USA 88:10540–10543

    Article  CAS  Google Scholar 

  • Sohal RS (1981) Relationship between metabolic rate, lipofuscin accumulation and lysosomal enzyme activity during aging in the adult housefly, Musca domestica. Exp Gerontol 16: 347–355

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS, Agarwal S, Dubey A, Orr WC (1993) Protein oxidative damage is associated with life expectancy of houseflies. Proc Nati Acad Sci USA 90:7255–7259

    Article  CAS  Google Scholar 

  • Stadtman ER (1992) Protein oxidation and aging. Science 257:1220–1224

    Article  PubMed  CAS  Google Scholar 

  • Stadtman ER (1993) Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem 62:797–821

    Article  PubMed  CAS  Google Scholar 

  • Starke-Reed PE, Oliver CN (1989) Protein oxidation and proteolysis during aging and oxidative stress. Arch Biochem Biophys 275:559–567

    Article  PubMed  CAS  Google Scholar 

  • Strack PR, Waxman L, Fagan JM (1996) Activation of the multicatalytic endopeptidase by oxidants. Effects on enzyme structure. Biochemistry 35:7142–7149

    Article  PubMed  CAS  Google Scholar 

  • Szweda LI, Uchida K, Tsai L, Stadtman ER (1993) Inactivation of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal. Selective modification of an active-site lysine. J Biol Chem 268:3342–3347

    PubMed  CAS  Google Scholar 

  • Tanaka K (1998) Molecular biology of the proteasome. Biochem Biophys Res Commun 247: 537–541

    Article  PubMed  CAS  Google Scholar 

  • Tokumoto T, Ishikawa K (1993) A novel “active” form of proteasomes from Xenopus laevis ovary cytosol. Biochem Biophys Res Commun 192:1106–1114

    Article  PubMed  CAS  Google Scholar 

  • Tsai L, Szweda PA, Vinogradova O, Szweda LI (1998) Structural characterization and immuno-chemical detection of a fluorophore derived from 4-hydroxy-2-nonenal and lysine. Proc Nati Acad Sci USA 95:7975–7980

    Article  CAS  Google Scholar 

  • Uchida K, Stadtman ER (1992a) Modification of histidine residues in proteins by reaction with 4-hydroxynonenal. Proc Nati Acad Sci USA 89:4544–4548

    Article  CAS  Google Scholar 

  • Uchida K, Stadtman ER (1992b) Selective cleavage of thioether linkage in proteins modified with 4-hydroxynonenal. Proc Nati Acad Sci USA 89:5611–5615

    Article  CAS  Google Scholar 

  • Uchida K, Stadtman ER (1993) Covalent attachment of 4-hydroxynonenal to glyceraldehyde-3-phosphate dehydrogenase. A possible involvement of intra-and intermolecular cross-linking reaction. J Biol Chem 268:6388–6393

    PubMed  CAS  Google Scholar 

  • Vanfleteren JR (1993) Oxidative stress and ageing in Caenorhabditis elegans. Biochem J 292: 605–608

    PubMed  CAS  Google Scholar 

  • Vlassara H, Bucala R, Striker L (1994) Pathogenic effects of advanced glycosylation: biochemical, biologic, and clinical implications for diabetes and aging. Lab Invest 70:138–151

    PubMed  CAS  Google Scholar 

  • Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068

    Article  PubMed  CAS  Google Scholar 

  • Wagner BJ, Margolis JW (1995) Age-dependent association of isolated bovine lens multicatalytic proteinase complex (proteasome) with heat-shock protein 90, an endogenous inhibitor. Arch Biochem Biophys 323:455–462

    Article  PubMed  CAS  Google Scholar 

  • Yan LJ, Sohal RS (1998) Mitochondrial adenine nucleotide translocase is modified oxidatively during aging. Proc Nati Acad Sci USA 95:12896–12901

    Article  CAS  Google Scholar 

  • Yan LJ, Levine RL, Sohal RS (1997) Oxidative damage during aging targets mitochondrial aconitase (published erratum appears in Proc Nati Acad Sci USA 1998, 95(4):1968). Proc Nati Acad Sci USA 94:11168–11172

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Friguet, B. (2002). Aging of Proteins and the Proteasome. In: Reboud-Ravaux, M. (eds) Protein Degradation in Health and Disease. Progress in Molecular and Subcellular Biology, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56373-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56373-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62714-9

  • Online ISBN: 978-3-642-56373-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics