Skip to main content

Tuning Function of Tandemly Repeating Sequences: A Molecular Device for Fast Adaptation

  • Chapter
Evolutionary Theory and Processes: Modern Horizons

Abstract

Dispersed and tandemly repeating sequences of various types are the most polymorphic components of genomes, especially of eukaryotic genomes. The tandem repeats are also least stable due to frequent changes in the numbers of repeating units in the runs. One may associate this fluid type of genomic polymorphism with individual phenotypic variations and, perhaps, with fast adaptation to a changing environment. A “modulation (or fast adaptation) code” was suggested in 1989 (by the author) that attributed to tandem repeats the function of tuning gene expression by spontaneous changes in the copy numbers of the repeating elements associated with the gene, with subsequent selection. This potentially powerful mechanism of fast adaptation without any changes in the genes themselves was originally illustrated by only a few examples. Since then several researchers have developed similar thoughts, and numerous new supporting examples have appeared in the literature. The changes in copy numbers of tandem repeats are found to influence nearby gene expression. The variable runs of the repeats may, thus, serve as tuners of the gene expression in response to environmental pressures. The same mechanism could serve for differentiation (adaptation of individual cells to a changing cellular environment) and for gradual changes in quantitative traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison L.A., Wong J.K.C., Fitzpatrick V.D., Moyle M. and Ingles C.J. 1988. The C-terminal domain of the largest subunit of RNA polymerase II of Saccharomyces cerevisiae, Drosophila melanogaster, and mammals: A conserved structure with an essential function. Mol Cell Biol. 8, 321–329.

    Google Scholar 

  2. Angell R.R. 1973. The chromosomes of Australian aborigines. In: The Human Biology Of Aborigines in Cape York, Kirk R.L. (Ed.), A.C.T., Canberra, pp. 103–109.

    Google Scholar 

  3. Antonovics J. 1971. The effects of a heterogeneous environment on the genetics of natural populations. Amer Scient. 59, 593–599.

    CAS  Google Scholar 

  4. Appels R. 1982. The molecular cytology of wheat-rye hybrids. Int Rev Cytol. 80, 93–132. Bartolomei M.S., Halden N.F., Cullen C.R. and Corden J.L. 1988. Genetic analysis of the

    Google Scholar 

  5. repetitive carboxyl-terminal domain of the largest subunit of mouse RNA polymerise II.

    Google Scholar 

  6. Mol Cell Biol. 8, 330–339.

    Google Scholar 

  7. Bell G.I., Selby M.J. and Rutter W.J. 1982. The highly polymorphic region near the human

    Google Scholar 

  8. insulin gene is composed of simple tandemly repeating sequences. Nature 295, 31–35. Bennett S.T., Lucassen A.M., Gough S.C.L., Powell E.E., Undlien D.E., Pritchard L.E.

    Google Scholar 

  9. Merriman M.E., Kawaguchi Y., Dronsfield M.J., Pociot F., Nerup J., Bouzekri N.

    Google Scholar 

  10. Cambon-Thomsen A., Ronningen K.S., Barnett A.H., Bain S.C. and Todd J.A. 1995.

    Google Scholar 

  11. Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat Gene. 9, 284–291.

    Google Scholar 

  12. Birshtein V.Y. 1987. Cytogenetic and molecular aspects of evolution of vertebrates. Nauka, Moscow (in Russian).

    Google Scholar 

  13. Boerwinkle E., Xiong W., Fourest E. and Chan L. 1989. Rapid typing of tandemly repeated hypervariable loci by the polymerase chain reaction: application to the apolipoprotein B 3’ hypervariable region. Proc Natl Acad Sci USA 86, 212–216.

    Article  PubMed  CAS  Google Scholar 

  14. Bostock C.J., Clark E.M., Harding N.G.L., Mounts P.M., Tyler-Smith C., van Heyningen V. and Walker P.M.B. 1979. The development of resistance to methotrexate in a mouse melanoma cell line. I. Characterization of the dihydrofolate reductases and chromosomes in sensitive and resistant cells. Chromosoma 74, 153–177.

    Google Scholar 

  15. Bradshaw A.D., McNeilly T.S. and Gregory R.P.G. 1965. Industrialization, evolution and the development of heavy metal tolerance in plants. Brit Ecol Soc Symp. 6, 327–343.

    Google Scholar 

  16. Brais B., Bouchard J-P., Xie Y-G., Rochefort D.L., Chretien N., Tome F.M.S., Lafreniere R.G., Rommens J.M., Uyama E., Nohira O., Blumen S., Korcyn A.D., Heutink P., Mathieu J., Duranceau A., Codere F., Fardeau M. and Rouleau G.A. 1998. Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat Gene. 18, 164–167.

    Article  CAS  Google Scholar 

  17. Britten R.J. and Davidson E.H. 1969. Gene regulation for higher cells: a theory. Science 165, 349–357.

    Article  PubMed  CAS  Google Scholar 

  18. Britten R.J. and Davidson E.H. 1971. Repetitive and non-repetitive DNA sequences and a

    Google Scholar 

  19. speculation on the origins of evolutionary novelty. Quart Rev Biol. 46, 111–133. Britten R.J. and Kohne D.E. 1968. Repeated sequences in DNA. Science 161, 529–540.

    Google Scholar 

  20. Burns J.A. and Gerstel D.U. 1973. The formation of megachromosomes from heterochromatic

    Google Scholar 

  21. blocks of Nicotiana tomentosiformis. Gene. 75, 497–502.

    Google Scholar 

  22. Chamberlin M. and Berg P. 1962. Deoxyribonucleic acid-directed synthesis of ribonucleic acid by an enzyme from Escherichia coli. Proc Natl Acad Sci, USA 48, 81–94.

    Article  CAS  Google Scholar 

  23. Chang D.K., Metzgar D., Wills C. and Boland C.R. 2001. Microsatellites in the eukaryotic DNA mismatch repair genes as modulators of evolutionary mutation rate. Genome Res. 11, 1145–1146.

    Article  PubMed  CAS  Google Scholar 

  24. Chen T.R. and Shaw M.W. 1973. Stable chromosome changes in a human malignant melanoma. Cancer Res. 33, 2042–2047.

    PubMed  CAS  Google Scholar 

  25. Cohen M.M., Shaw M. and MacCluer J.W. 1966. Racial differences in the length of the human Y chromosomes. Cytogenetics 5, 34–52.

    Article  PubMed  CAS  Google Scholar 

  26. Cochran E.J., Bennett D.A., Cervenakova L., Kenney K., Bernard B., Foster N.L., Benson D.F., Goldfarb L.G. and Brown P. 1996. Familial Creutzfeldt-Jakob disease with a five-repeat octapeptide insert mutation. Neurol. 47, 727–733.

    Article  CAS  Google Scholar 

  27. Company M. and Errede B. 1988. A Tyl cell-type specific regulatory sequence is a recognition element for a constitutive binding factor. Mol Cell Biol. 8, 5299–5309.

    PubMed  CAS  Google Scholar 

  28. Craig-Holmes A.P. 1977. C-band polymorphism in human populations. In: Population Cytogenetics, Studies in Humans, Hook E.B. and Porter I.H. (Eds.), Acad. Press, New York.

    Google Scholar 

  29. Craig-Holmes A.P., Moore F.B. and Shaw M.W. 1973. Polymorphism of human C-band heterochromatin. I. Frequency of variants. Amer J Hum Gene. 25, 181–192.

    Google Scholar 

  30. Cullis C.A. 1986. Phenotypic consequences of environmentally induced changes in plant DNA. Trends Gene. 2, 307–309.

    Article  CAS  Google Scholar 

  31. Delot E., King L.M., Briggs M.D., Wilcox W.R. and Cohn D.H. 1999. Trinucleotide expansion mutations in the cartilage oligomeric matrix protein ( COMP) gene. Hum Mol Gene. 8, 123–128.

    Google Scholar 

  32. Dobzhansky T. and Spassky B. 1962. Genetic drift and natural selection in experimental populations of Drosophila pseudoobscura. Proc Natl Acad Sci, USA 48, 148–156.

    Article  CAS  Google Scholar 

  33. Doolittle W.F. and Sapienza C. 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature 284, 601–603.

    Article  PubMed  CAS  Google Scholar 

  34. Dover G. 1980. Ignorant DNA? Nature 285, 618–620.

    Article  CAS  Google Scholar 

  35. Dover G. 1982. Molecular drive: a cohesive mode of species evolution. Nature 299, 111–117. Dover G. 1986. Molecular drive in multigene families: how biological novelties arise, spread and are assimilated. Trends Gene. 2, 159–165.

    Google Scholar 

  36. Edwards Y.J.K., Elgar G., Clark M.C. and Bishop M.J. 1998. The identification and characterization of microsatellites in the compact genome of the Japanese pufferfish, Fugu rubripes: perspectives in functional and comparative genomic analyses. J Mol Biol. 278, 843–854.

    Article  PubMed  CAS  Google Scholar 

  37. Gall J.G. and Atherton D.D. 1974. Satellite DNA sequences in Drosophila virilis. J Mol Biol. 85, 633–664.

    Article  CAS  Google Scholar 

  38. Georgiev G.P. 1969. On the structural organization of operon and the regulation of RNA synthesis in animal cells. J Theor Biol. 25, 473–490.

    Article  PubMed  CAS  Google Scholar 

  39. Goldschmidt R.B. 1955. Theoretical Genetics. Univ. California Press, Berkeley.

    Google Scholar 

  40. Gosden J.R., Laurie S.S. and Cooke H.J. 1981. A cloned repeat DNA sequence in human chromosome heteromorphisms. Cytogenet Cell Gene. 29, 32–39.

    Article  CAS  Google Scholar 

  41. Grisvard J. and Tuffet-Anghileri A. 1980. Variations in the satellite DNA content of Cucumis melo in relation to dedifferentiation and hormone concentration. Nucl Acids Res. 8, 28432858.

    Google Scholar 

  42. Gustafson J.P., Lukaszewski A.J. and Bennet M.D. 1983. Somatic deletion and redistribution

    Google Scholar 

  43. of telomeric heterochromatin in the genus Secale and Triticale. Chromosoma 88, 293–298. Halbrecht L and Shabtay F. 1976. Human chromosome polymorphism and congenital

    Google Scholar 

  44. malformations. Clin Genetm. 10, 113–122.

    Google Scholar 

  45. Hamada H., Seidman M., Howard B.H. and Gorman C.M. 1984. Enhanced gene expression by the poly(dT-dG)poly(dC-dA) sequence. Mol Cell Biol. 4, 2622–2630.

    PubMed  CAS  Google Scholar 

  46. Hara K., Oya Y. and Yogo Y. 1985. Enhancement of the transforming capacity of BK virus by partial deletion of the 68-base-pair tandem repeats. J Virol. 55, 867–869.

    PubMed  CAS  Google Scholar 

  47. Hardman N. 1986. Structure and function of repetitive DNA in eukaryotes. Biochem. J 234, 1–11.

    PubMed  CAS  Google Scholar 

  48. Hinegardner R. 1976. Evolution of genome size. In: Molecular Evolution, Ayala F.J. (Ed.), Sinauer Assoc Inc, Sunderland, pp. 179–199.

    Google Scholar 

  49. Holliday R. 1991. Quantitative genetic variation and developmental clocks. J Theor Biol. 151, 351–358.

    Article  PubMed  CAS  Google Scholar 

  50. Holmquist G. 1975. Organization and evolution of Drosophila virilis heterochromatin. Naturem. 257, 503–505.

    Article  CAS  Google Scholar 

  51. Hood D.W, Deadman M.E., Jennings M.P., Bisercic M., Fleischmann R.D., Venter J.C. and Moxon E.R. 1996. DNA repeats identify novel virulence genes in Haemophilus influenzae. Proc Natl Acad Sci USA 93, 11121–11125.

    Article  PubMed  CAS  Google Scholar 

  52. Howell A.B. 1944. Speed in Animals. Univ. Chicago Press, Chicago.

    Google Scholar 

  53. Hsu T.C. 1975. A possible function of constitutive heterochromatin: the bodyguard hypothesis. Gene Suppl. 79, 137–150.

    Google Scholar 

  54. Jabs E.W., Goble C.A. and Cutting G.R. 1989. Macromolecular organization of human centromeric regions reveals high-frequency, polymorphic macro DNA repeats. Proc Natl Acad Sci, USA 86, 202–206.

    Google Scholar 

  55. Jackson A.L., Chen R. and Loeb L.A. 1998. Induction of microsatellite instability by oxidative DNA damage. Proc Natl Acad Sci USA 95, 12468–12473.

    Article  PubMed  CAS  Google Scholar 

  56. Jeffreys A.J., Wilson V. and Thein S.L. 1985. Hypervariable “minisatellite” regions in human DNA. Nature 314, 67–73.

    Article  PubMed  CAS  Google Scholar 

  57. Jelinek W.R. and Schmid C.W. 1982. Repetitive sequences in eukaryotic DNA and their expression. Ann Rev Bioch. 51, 813–844.

    Article  CAS  Google Scholar 

  58. John B. 1988. In: Heterochromatin, Molecular and Structural Aspects, Verma R.S. (Ed.), Cambridge Univ. Press, Cambridge.

    Google Scholar 

  59. John B., Appels R. and Contreras N. 1986. Population cytogenetics of Atractomorpha similis. II. Molecular characterization of the distal C-band polymorphisms. Chromosoma 94, 4558.

    Google Scholar 

  60. John B. and King M. 1983. Population cytogenetics of Atractomorpha similis. I. C-band variations. Chromosoma 88, 57–68.

    Article  Google Scholar 

  61. John B. and Miklos G.L. 1979. Functional aspects of satellite DNA and heterochromatin. hit Rev Cytol. 58, 1–114.

    CAS  Google Scholar 

  62. Kashi Y., King D. and Soller M. 1997. Simple sequence repeats as a source of quantitative genetic variation. Trends Gene. 13, 74–78.

    Article  CAS  Google Scholar 

  63. Kato A. and Tanifuji S. 1986. Early replication of highly repeated DNA sequences during dedifferentiation of carrot. Plant Cell Physiol. 27, 261–264.

    CAS  Google Scholar 

  64. Kaufman R.J., Brown P.C. and Schimke R.T. 1979. Amplified dihydrofolate reductase genes in unstable methhotrexate-resistant cells are associated with double minute chromosomes. Proc Natl Acad Sci USA 76, 5669–5673.

    Article  PubMed  CAS  Google Scholar 

  65. Kennedy G.C., German M.S. and Rutter W.J. 1995. The minisatellite in the diabetes

    Google Scholar 

  66. susceptibility locus IDDM2 regulates insulin transcription. Nat Gene. 9, 293–298.

    Google Scholar 

  67. King D.G. 1994. Triple repeat DNA as a highly mutable regulatory mechanism. Science 263

    Google Scholar 

  68. Iple repeat DNA as

    Google Scholar 

  69. King D.G., Soller M. and Kashi Y. 1997. Evolutionary tuning knobs. Endeavor 21, 36–40. Kopnin B.P., Massino J.S. and Gudkov A.V. 1985. Regular pattern of karyotypic alterations

    Google Scholar 

  70. accompanying gene amplification in Djungarian hamster cells: study of colchicine

    Google Scholar 

  71. adriablastin, and methotrexate resistance. Chromosoma 92, 25–36.

    Google Scholar 

  72. Koschinsky M.L., Beisiegel U., Henne-Bruns D., Eaton D.L. and Lawn R.M. 1990. Apolipoprotein(a) size heterogeneity is related to variable number of repeat sequences in its mRNA. Biochem. 29, 640–644.

    Article  CAS  Google Scholar 

  73. Künzler P., Matsuo K. and Schaffner W. 1995. Pathological, physiological, and evolutionary aspects of short unstable DNA repeats in the human genome. Biol Chem Hoppe-Seyler 376, 201–211.

    Article  PubMed  Google Scholar 

  74. Kumit D.M. 1979. Satellite DNA and heterochromatin variants: the case for unequal mitotic crossing over. Hum Gene. 47, 169–186.

    Article  Google Scholar 

  75. Lalioti M.D., Scott H.S., Buresi C., Rossier C., Bottani A., Morris M.A., Malafosse A. and Antonarakis S.E. 1997. Dodecamer repeat expansion in cystatin B gene in progressive myoclonus epilepsy. Nature 386, 847–851.

    Article  PubMed  CAS  Google Scholar 

  76. Lerner I.M. 1954. Genetic Homeostasis. Oliver and Boyd, Edinburgh.

    Google Scholar 

  77. Li Y-C., Röder M.S., Fahima T., Kirzhner V.M., Beiles A., Korol A.B. and Nevo E. 2000a. Natural selection causing microsatellite divergence in wild emmer wheat at the ecologically variable microsite at Ammiad, Israel. Theor Appl Gene. 100, 985–999.

    Google Scholar 

  78. Li Y., Fahima T., Korol A.B., Peng J., Röder M.S., Kirzhner V., Beiles A. and Nevo E. 2000b. Microsatellite diversity correlated with ecological-edaphic and genetic factors in three microsites of wild emmer wheat in North Israel. Mol Biol Evol. 17, 851–862.

    Article  PubMed  CAS  Google Scholar 

  79. Lindahl G., Gersdorf E., Menzel H.J., Seed M., Humphries S. and Utermann G. 1990. Variation in the size of human apolipoprotein(a) is due to a hypervariable region in the gene. Hum Gene. 84, 563–567.

    Article  CAS  Google Scholar 

  80. Liquori C.L., Ricker K., Moseley M.L., Jacobsen J.F., Kress W., Naylor S.L., Day J.W. and Ranum L.P.W. 2001. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293, 864–867.

    Article  PubMed  CAS  Google Scholar 

  81. Macgregor H.C. and Sessions S.K. 1986. The biological significance of variation in satellite DNA and heterochromatin in newts of the genus Triturus: an evolutionary perspective. Phil Trans Roy Soc Lond. B. 312, 243–259.

    CAS  Google Scholar 

  82. Maniatis T., Goodbourn S. and Fischer J.A. 1987. Regulation of inducible and tissue-specific gene expression. Science 236, 1237–1245.

    Article  PubMed  CAS  Google Scholar 

  83. Mather K. and Harrison B.J. 1949a. The manifold effect of selection. Part I. Hered. 3, 1–52. Mather K. and Harrison B.J. 1949b. The manifold effect of selection. Part II. Hered. 3, 131162.

    Google Scholar 

  84. Matsuura T., Yamagata T., Burgess D.L., Rasmussen A., Grewal R.P., Watase K., Khajavi M., McCall A.E., Davis C.F., Zu L., Achari M., Pulst S.M., Alonso E., Noebels J.L., Nelson D.L., Zoghbi H.Y. and Ashizawa T. 2000. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Gene. 26, 191–194.

    Article  CAS  Google Scholar 

  85. Mayr E. 1963. Animal Species and Evolution. Harvard Univ. Press, Cambridge.

    Google Scholar 

  86. Mazrimas J.A. and Hatch F.T. 1972. A possible relationship between satellite DNA and the evolution of kangaroo rat species (genus Dipodomys). Nature New Biol. 240, 102–105.

    Article  PubMed  CAS  Google Scholar 

  87. McClintock B. 1951. Chromosome organization and genic expression, Cold Spring Harbor Symp Quant Biol. 16, 13–47.

    Article  PubMed  CAS  Google Scholar 

  88. McClintock B. 1984. The significance of responses of the genome to challenge. Science 226, 792–801.

    Article  PubMed  CAS  Google Scholar 

  89. Miklos G.L.G. 1985. Localized highly repetitive DNA sequences in vertebrate and invertebrate genomes. hi: Molecular Evolutionary Genetics, Maclntyre R.J. (Ed.), Plenum Press, New York, pp. 241–321.

    Google Scholar 

  90. Nagl W. 1976. Nuclear organization. Ann Rev Plant Physiol. 27, 39–69.

    Article  CAS  Google Scholar 

  91. Nakamura Y., Leppert M., O’Connell P., Wolff R., Holm T., Culver M., Martin C., Fujimoto E., Hoff M., Kumlin E. and White R. 1987. Variable number of tandem repeat ( VNTR) markers for human gene mapping. Science 235, 1616–1622.

    Google Scholar 

  92. Nevo E. 1998. Molecular evolution and ecological stress at global, regional and local scales: the Israeli perspective. J Exp Zool. 28, 95–119.

    Article  Google Scholar 

  93. Ogata N. and Miura T. 1998a. Creation of genetic information by DNA polymerase of the archaeon Thermococcus litoralis: influences of temperature and ionic strength. Nucl Acid Res. 26, 4652–4656.

    Article  CAS  Google Scholar 

  94. Ogata N. and Miura T. 1998b. Creation of genetic information by DNA polymerase of the

    Google Scholar 

  95. thermophilic bacterium Thermus thermophilus. Nucl Acid Res. 26, 4657–4661.

    Google Scholar 

  96. Olmo S. 1970. So much junk DNA in our genome. In Evolution of Genetic Systems, Smith

    Google Scholar 

  97. H.H. (Ed.), Gordon and Breach, New York, v. 23. pp. 366–370.

    Google Scholar 

  98. Orgel L.E. and Crick F.H.C. 1980. Selfish DNA: the ultimate parasite. Nature 284, 604–607. Pâques F., Leung W-Y. and Haber J.E. 1998. Expansions and contractions in a tandem repeat induced by double-strand break repair. Mol Cell Biol. 18, 2045–2054.

    Google Scholar 

  99. Parenti R., Guille E., Grisvard J., Durante M., Giorgi L. and Buiatti M. 1973. Transient DNA satellite in dedifferentiating pith tissue. Nature New Biol. 246, 237–239.

    PubMed  CAS  Google Scholar 

  100. Phelan C.M., Rebbeck T.R., Weber B.L., Devilee P., Ruttledge M.H., Lynch H.T., Lenoir G.M., Stratton M.R., Easton D.F., Ponder B.A.J., Cannon-Albright L., Larsson C., Goldgar D.E. and Narod S.A. 1996. Ovarian cancer risk in BRCA1 carriers is modified by the HRAS 1 variable number of tandem repeat ( VNTR) locus. Nat Gene. 12, 309–311.

    Google Scholar 

  101. Ponder B. 1988. Gene losses in human tumors. Nature 335, 400–402.

    Article  PubMed  CAS  Google Scholar 

  102. Richards R.I. and Sutherland G.R. 1992a. Dynamic mutations: a new class of mutations causing human disease. Cell 70, 709–712.

    Article  PubMed  CAS  Google Scholar 

  103. Richards R.I. and Sutherland G.R. 1992b. Heritable unstable DNA sequences. Nat Gene. 1, 7–9.

    Article  CAS  Google Scholar 

  104. Rubinstein R., Schoonakker B.C.A. and Harley E.H. 1991. Recurring theme of changes in the transcriptional control region of BK virus during adaptation to cell culture. J Virol. 65, 1600–1604.

    PubMed  CAS  Google Scholar 

  105. Sawyer L.A., Hennessy J.M., Peixoto A.A., Rosato E., Parkinson H., Costa R. and Kyriacou C.P. 1997. Natural variation in a Drosophila clock gene and temperature compensation. Science 278, 2117–2120.

    Article  PubMed  CAS  Google Scholar 

  106. Schachman H.K., Adler J., Radding C.M., Lehman I.R. and Komberg A. 1960. Enzymatic synthesis of deoxyribonucleic acid. VII. Synthesis of a polymer of deoxyadenylate and deoxythymidilate. J Biol Chem. 235, 3242–3249.

    Google Scholar 

  107. Schaffner G., Schirm S., Muller-Baden B., Weber F. and Schaffner W. 1988. Redundancy of information in enhancers as a principle of mammalian transcription control. J Mol Biol. 201, 81–90.

    Article  PubMed  CAS  Google Scholar 

  108. Schlötterer C. and Taut D. 1992. Slippage synthesis of simple sequence DNA. Nucleic Acid Res. 20, 211–215.

    Article  PubMed  Google Scholar 

  109. Setzer H.W. 1949. Univ Kansas Publ Museum Nat Hist. 1, pp. 473.

    Google Scholar 

  110. Seuanez H.N. 1979. The phylogeny of human chromosomes. Springer-Verlag, Berlin.

    Book  Google Scholar 

  111. Sinha A.K. and Pathak S. 1973. Distribution of constitutive heterochromatin in HeLa and HEp-2 cell lines. Humangenetik 18, 47–54.

    Google Scholar 

  112. Smith G.P. 1976. Evolution of repeated DNA sequences by unequal crossover. Science 191, 528–535.

    Article  PubMed  CAS  Google Scholar 

  113. Stern C. 1927. Ein genetischer und zytologischer Beweis fir Verebung in Y-Chromosome von Drosophila melanogaster. Z Induktive Abst Vererbungslehre 44, 187–231.

    Google Scholar 

  114. Tavis J.E., Walker D.L., Gardner S.D. and Frisque R.J. 1989. Nucleotide sequence of the human polyomavirus AS virus, an antigenic variant of BK virus. J Virol 63, 901–911.

    PubMed  CAS  Google Scholar 

  115. Trifonov E.N. 1989. The multiple codes of nucleotide sequences. Bull Math Biol. 51, 417432.

    Google Scholar 

  116. Trifonov E.N. 1990. Making sense of the human genome. In: Structure and Methods, vol. 1, Human Genome Initiative and DNA Recombination, Sarma R.H. and Sarma M.H. (Eds.), Adenine Press, New York, pp. 69–77.

    Google Scholar 

  117. Trifonov E.N. 1999. Elucidating sequence codes: three codes for evolution. Ann NY Acad Sci. 870, 330–338.

    Article  PubMed  CAS  Google Scholar 

  118. Usdin K. and Grabczyk E. 2000. DNA repeat expansions and human disease. Cell Mol Life Sci. 57, 914–931.

    Article  PubMed  CAS  Google Scholar 

  119. van Deutekom J.C.T., Mijmenga C., van Tienhofen E.A.E., Gruter A.M., Hewitt J.E., Padberg G.W., van Ommen G-J.B., Hofker M.H. and Frants R.R. 1993. FSHD associated DNA rearrangements are due to deletions of integral copies of a 3.2 kb tandemly repeating unit. Hum Mol Gene. 2, 2037–2042.

    Article  Google Scholar 

  120. Verma R.S. 1988. Heteromoiphisms of heterochromatin. In: Heterochromatin. Molecular and structural aspects, Verma R.S. (Ed.), Cambridge Univ Press, Cambridge. Pp. 276–292.

    Google Scholar 

  121. Virtaneva K., D’Amato E., Miao J., Koskiniemi M., Norio R., Avanzini G., Franceschetti S., Michelucci R., Tassinari C.A., Orner S., Pennacchio L.A., Myers R.M., Dieguez-Lucena J.L., Krahe R., de la Chapelle A. and Lehesjoki A-E. 1997. Unstable minisatellite expansion causing recessively inherited myoclonus epilepsy, EPM1. Nat Gene. 15, 393–396.

    Article  CAS  Google Scholar 

  122. Watanabe S. and Yoshiike K. 1985. Decreasing the number of 68-base-pair tandem repeats in the BK-virus transcriptional control region reduces plaque size and enhances transforming capacity. J Virol. 55, 823–825.

    PubMed  CAS  Google Scholar 

  123. Waters E.R. and Schaal B.A. 1996. Heat shock induces a loss of rRNA-encoding DNA repeats in Brassica nigra. Proc Natl Acad Sci, USA 93, 1449–1452.

    Article  CAS  Google Scholar 

  124. Zacharias H. 1986. Tissue-specific schedule of selective replication in Drosophila nasutoides. Roux’s Arch Dev Biol. 195, 378–388.

    Article  Google Scholar 

  125. Zuckerkandl E. 1974. A possible role of “inert” heterochromatin in cell differentiation. Action of and competition for “locking” molecules. Biochem. 56, 937–954.

    Article  CAS  Google Scholar 

  126. Zuckerkandl E. 1986. Polite DNA: Functional density and functional compatibility in genomes. J Mol Evol. 24, 12–27.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Trifonov, E.N. (2004). Tuning Function of Tandemly Repeating Sequences: A Molecular Device for Fast Adaptation. In: Wasser, S.P. (eds) Evolutionary Theory and Processes: Modern Horizons. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0443-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0443-4_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6457-8

  • Online ISBN: 978-94-017-0443-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics