Skip to main content

Transgenic Approaches to Control Epidemic Spread of Diseases

  • Chapter
Mechanisms of Resistance to Plant Diseases

Summary

To feed the growing world population in the future yield and quality of crops need to be enhanced drastically. One way to increase yield is to minimize losses due pathogen infections. Traditional approaches to control epidemic spread of diseases are no longer sufficient and hence the development of pathogen resistance traits has become an important target in plant biotechnology. Using molecular techniques various natural disease resistance genes have been isolated during the last five years. However, their use in molecular breeding programs is limited since they code for resistance to one specific race of a pathogen only. To engineer broad spectrum resistance traits very different strategies are being pursued. The first concept for virus resistance implied the constitutive expression of viral coat protein genes in transgenic plants. Engineered resistance based on this concept is documented very well and the first product (virus resistant squash) is about to enter the market in the USA. In the mean time it has become clear that expression of other viral sequences as well can bring about resistance. Published strategies for the engineering of bacterium resistance are limited in number and as yet not successful. The most wide-spread approach for fungus resistance is the expression of genes encoding proteins inhibiting fungus growth. Many of these proteins appear to act synergistically both in vitro and in planta. First results of field trials with plants expressing antifungal proteins indicate that levels of resistance are high enough to be commercially interesting. In the last few years strategies for fungus resistance have been explored based on the induction by pathogens of cell death at the site of infection. One of the concepts being pursued successfully to engineer nematode resistance implies the production in transgenic plants of compounds that directly affect nematode development. An alternative strategy aims at disruption of nematode feeding structures in the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alexander D, Goodman RM, Gut-Rella M, Glascock C, Weymann K, Friedrich L, Maddox D, Ahl-Goy P, Luntz T, Ward E and Ryals J (1993) Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proc Natl Acad Sci USA 90 7327–7331

    Article  PubMed  CAS  Google Scholar 

  • Anderson PA, Lawrence GJ, Morrish BC, Ayliffe MA, Finnegan EJ and Ellis JG (1997) Inactivation of the flax rust gene M associated with loss of a repeated unit within the leucine-rich repeat coding region. Plant Cell 9 641–651

    PubMed  CAS  Google Scholar 

  • Baulcombe DC (1996) Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8 1833–1844

    PubMed  CAS  Google Scholar 

  • Baum TJ, Hiatt A, Parrot H and Hussey RS (1996) Expression in tobacco of a functional monoclonal antibody specific to stylet secretions of the root-knot nematode. Mol Plant-Microbe Interact 9 382–387

    Article  CAS  Google Scholar 

  • Beintema JJ (1994) Structural features of plant chitinases and chitin-binding proteins. FEBS Lett 350 159–163

    Article  PubMed  CAS  Google Scholar 

  • Bent AF (1996) Plant disease resistance genes: function meets structure. Plant Cell 8 1757–1771

    PubMed  CAS  Google Scholar 

  • Bent AF, Kunkel BN, Dahlbeck D, Brown, KL, Schmidt R, Giraudat J, Leung J and Staskawicz BJ (1994) Rps2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science 265 1856–1860

    Article  PubMed  CAS  Google Scholar 

  • Bisgrove SR, Simonich MT, Smith NM, Sattler A and Innes RW (1994) A disease resistance gene in Arabidopsis with specificity for two different avirulence genes. Plant Cell 6 927–933

    PubMed  CAS  Google Scholar 

  • De Bolle MFC, Osborn RW, Goderis IJ, Noe L, Acland D, Hart CA, Torrekens S, van Leuven F and Broekaert WF (1996) Antimicrobial peptides from Mirabilis jalapa and Amaranthus caudatus: expression, processing, localization and biological activity in transgenic tobacco. Plant Mol Biol 31 993–1008

    Article  PubMed  Google Scholar 

  • Bonas U and Van den Ackerveken G (1997) Recognition of bacterial avirulence proteins occurs inside the plant cell: a general phenomenon in resistance to bacterial diseases? Plant J 12: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Broekaert WF, Van Parijs J, Leyns F, Joos H and Peumans WJ (1989) A chitin-binding lectin from stinging nettle rhizomes with antifungal activity. Science 245 1100–1102

    Article  PubMed  CAS  Google Scholar 

  • Broekaert WF, Terras FRG, Cammue BPA and Osborn RW (1995) Plant defensins: novel antimicrobial peptides as components of the host defence system. Plant Physiol 108 1353–1358

    Article  PubMed  CAS  Google Scholar 

  • Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ and Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254 11941197

    Google Scholar 

  • Burrows PR and De Waele D (1997) Engineering resistance against plant parasitic nematodes using antinematode genes. In: Fenoll C, Grundler FMW and Ohl SA (eds.) Cellular and Molecular Aspects of Plant-Nematode Interactions, pp 217–236, Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • BĂ¼schges R, Hollricher K, Panstruga R, Somins G, Frijters A, Van Daelen R, Van der Lee T, Diergaarde P, Groenendijk J, Topsch S, Vos P, Salamini F and Schulze-Levert P (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88 695–705

    Article  PubMed  Google Scholar 

  • Cai D, Kleine M, Kilfe S, Harloff HJ, Sandal NN, Marcker KA, Klein-Lankhorst RM, Salentijn EMJ, Lange W, Stiekema WJ, Wyss U, Grundler FMW and Jung C (1997) Positional cloning of a gene for nematode resistance in sugar beet. Science 275 832–834

    Article  PubMed  CAS  Google Scholar 

  • Carmona MJ, Molina A, Fernandez JA, Lopez-Fando JJ and Garcia-Olmedo F (1993) Expression of the alfa-thionin gene from barley in tobacco confers enhanced resistance to bacterial pathogens. Plant J 3 457–462

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen BJC, Does M and Melchers LS (1996) Strategies for molecular resistance breeding (& transgenic plants). In: Sneh B, Jabaji-Hare S, Neate S and Deist G (eds.) Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Control, pp 529–536, Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Cuozzo M, O’Connell KM, Kaniewski WK, Fang R-X, Chua N-H and Turner NE (1988) Viral protection in transgenic tobacco plants expressing the cucumber mosaic virus coat protein or its antisense RNA. Bio/Technology 6 549–557

    Article  CAS  Google Scholar 

  • Dixon MS, Jones DA, Keddie JS, Thomas CM, Harrison K and Jones JDG 1996 The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeats proteins. Cell 84 451–459

    Article  PubMed  CAS  Google Scholar 

  • DĂ¼ring K, Porsch P, Fladung M and Lörz H (1993) Transgenic potato plants resistant to the phytopathogenic bacterium Erwinia carotovora. Plant J 3 587–598

    Article  Google Scholar 

  • Van den Elzen PJM, Jongedijk E, Melchers LS and Cornelissen BJC (1993) Virus and fungal resistance: from laboratory to field. PhilosTrans R Soc Lond Biol Sci 342 835–838

    Google Scholar 

  • Van Engelen FA, Schouten A, Molthoff JW, Roosien J, Salinas J, Dirkse WG, Schots A, Bakker J, Gommers FJ, Jongsma MA, Bosch D and Stiekema WJ (1994) Coordinate expression of antibody subunit genes yield high levels of functional antibodies in roots of transgenic tobacco. Plant Mol Biol 26 1701–1710

    Article  PubMed  Google Scholar 

  • Epple P, Apel K and Bohlmann H (1997) Overexpression of an endogenous thionin enhances resistance of Arabidopsis against Fusarium oxysporum. Plant Cell 9 509–520

    PubMed  CAS  Google Scholar 

  • Flor HH (1956) The complementary genetic systems in flax and flax rust. Adv Genet 8 29–54

    Article  Google Scholar 

  • Flor HH (1971) The current status of the gene-for-gene concept. Annu Rev Phytopathol 9 275–296

    Article  Google Scholar 

  • Florack DEA and Stiekema WJ (1994) Thionins: properties, possible biological roles and mechanisms of action. Plant Mol Biol 26 25–37

    Article  PubMed  CAS  Google Scholar 

  • Florack DEA, Dirkse WG, Visser B, Heidekamp F and Stiekema WJ (1994) Expression of biologically active hordothionin in tobacco. Effects of pre-and pro-sequences at the amino and carboxyl termini of the hordothionin precursor on mature protein expression and sorting. Plant Mol Biol 24 83–96

    CAS  Google Scholar 

  • Fuchs M and Gonsalves D (1995) Resistance of transgenic hybrid squash ZW-20 expressing the coat protein genes of zucchini yellow mosaic virus and watermelon mosaic virus 2 to mixed infections by both potyviruses. Bio/Technology 13 1466–1473

    Article  CAS  Google Scholar 

  • Goddijn OJM, Lindsey K, Van der Lee, FM, Klap JC and Sijmons PC (1993) Differential gene expression in nematode-induced feeding structures of transgenic plants harbouring promoter-gusA fusion constructs. Plant J 4 863–873

    Article  PubMed  CAS  Google Scholar 

  • Gonsalves D, Chee P, Provvidenti R, Seem R and Slightom JL (1992) Comparison of coat protein-mediated and genetically-derived resistance in cucumbers to infection by cucumber mosaic virus under field conditions with natural challenge inoculations by vectors. Bio/Technology 10 1562–1570

    Article  CAS  Google Scholar 

  • Grant MR, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, Innes RW and Dangl JL (1995) Structure of the, Arabidopsis Rmp1 gene enabling dual specificity disease resistance. Science 269 843–846

    Article  PubMed  CAS  Google Scholar 

  • Grison R, Grezes-Besset B, Schneider M, Lucante N, Olsen L, Leguay J-J and Toppan A (1996) Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene. Nature Biotechnol 4 643–646

    Article  Google Scholar 

  • Hain R, Reif H-J, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stöcker RH and Stenzel K (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361 153–156

    Article  PubMed  CAS  Google Scholar 

  • Hakala BE, White C and Recklies AD (1993) Human cartilage gp-39, a major secretory product of articular chondrocytes and synovial cells, is a mammalian member of a chitinase protein family. J Biol Chem 268 25802–25810

    Google Scholar 

  • Hammond-Kosack KE and Jones JDG (1997) Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol 48 575–607

    Article  PubMed  CAS  Google Scholar 

  • Handelsman J and Stabb EV (1996) Biocontrol of soilborne plant pathogens. Plant Cell 8 1855–1869

    PubMed  CAS  Google Scholar 

  • Hawtin RE, Arnold K, Ayers MD, Zanotto PM, Howard SC, Gooday GW, Chapell LH, Kitts PA, King LA and Possee RD (1995) Identification and preliminary characterization of a chitinase gene in the Autographa californica nuclear polyhedrosis virus genome. Virology 212 673–685

    Article  PubMed  CAS  Google Scholar 

  • Hejgaard J, Jacobsen S, Bjorn SE and Kragh KM (1992) Antifungal activity of chitin-binding PR-4 type proteins from barley grain and stressed leaf. FEBS Lett 307 389–392

    Article  PubMed  CAS  Google Scholar 

  • Hemenway C, Fang R-X, Kaniewski W, Chua N-H and Turner NE (1988) Analysis of the mechanism of protection in transgenic plants expressing the potato virus X coat protein or its antisense RNA, EMBOJ 7 1273–1280

    CAS  Google Scholar 

  • Hepher A and Atkinson HJ (1992) Nematode control with proteinase inhibitors. European patent application number 9230 1890.7; publication number 0 492 730 Al

    Google Scholar 

  • Hiatt A, Cafferkey R and Bowdish K (1989) Production of antibodies in transgenic plants. Nature 342 76–68

    Article  PubMed  CAS  Google Scholar 

  • Hilder VA, Powell KS, Gatehouse AMR, Gatehouse JA, Gatehouse LN, Shi Y, Hamilton WDO, Merryweather A, Newell CA, Timans JC, Peumans WJ, Van Damme E and Boulter D (1995) Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids. Transgenic Res 4 18–25

    Article  CAS  Google Scholar 

  • HonnĂ©e G, Stuiver M, Weide R, Tigelaar H, Melchers LS and De Wit PJGM (1997) Infection induced expression of the avirulence gene Avr9 in transgenic CF9 tomato plants confers resistance to fungal pathogen attack. 5th International Congress of Plant Molecular Biology, Singapore, abstract 63

    Google Scholar 

  • Howie W, Joe L, Newbigin E, Suslow T and Dunsmuir P (1994) Transgenic tobacco plants which express the chiA gene from Serratia marcescens have enhanced tolerance to Rhizoctonia solani. Transgenic Res 3 90–98

    Article  CAS  Google Scholar 

  • Jach G, Logemann S, Wolf G, Oppenheim A, Chet I, Schell J and Logemann J (1992) Expression of a bacterial chitinase leads to improved resistance of transgenic tobacco plants against fungal infection. Biopractice 1 33–40

    Google Scholar 

  • Jach G, Grönhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R, Echell J and Maas C (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J 8 97–109

    Article  PubMed  CAS  Google Scholar 

  • James WC, Teng PS and Nutter FW (1991) Estimated losses of crops from plant pathogens. In: Boston PD (Ed) CRC Handbook of Pest Management in Agriculture 1, pp 15–51, CRC Press, Boca Raton

    Google Scholar 

  • Johal GS and Briggs SP (1992) Reductase activity encoded by the Hm1disease resistance gene in maize. Science 258 985–987

    Article  PubMed  CAS  Google Scholar 

  • Jones DA and Jones JDG (1996) The role of leucine-rich repeat proteins in plant defences. Adv Bot Res 24 91–167

    Google Scholar 

  • Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ and Jones JDG (1994) Isolation of the Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266 789–793

    Article  PubMed  CAS  Google Scholar 

  • Jongedijk D, De Schutter AAJM, Stolte T, Van den Elzen, PJM and Cornelissen BJC (1992) Increased resistance to potato virus X and preservation of cultivar properties in transgenic potato under field conditions. Bio/Technology 10 422–429

    Article  PubMed  CAS  Google Scholar 

  • Jongedijk E, Tigelaar H, Van Roekel JSC, Bres-Vloemans SA, Dekker I, Van den Elzen PJM, Cornelissen BJC and Melchers LS (1995) Synergistic activity of chitinases and β-l,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica 85 173–180

    Article  CAS  Google Scholar 

  • Kaniewski W, Lawson C, Samsons B, Haley L, Hart J, Delannay X and Turner N (1990) Field resistance of transgenic Russet Burbank potato to effeects of infection by potato virus X and potato virus Y. Bio/Technology 8 750–754

    Article  Google Scholar 

  • Kawchuk LM, Martin RR and McPherson J (1991) Sense and antisense RNA-mediated resistance to potato leafroll virus in Russet Burbank potato plants. Mol Plant-Microbe Interact 4 247–253

    Article  CAS  Google Scholar 

  • Kobe B and Deisenhofer J (1995) A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature 374 183–186

    Article  PubMed  CAS  Google Scholar 

  • Kuc J. (1995) Phytoalexins, stress metabolism and disease resistance in plants. Annu Rev Phytopathol 33 275–297

    Article  PubMed  CAS  Google Scholar 

  • Lawrence GJ, Finnegan EJ, Ayliffe MA and Ellis JG (1995) The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene Rps2 and the tobacco viral resistance gene N. Plant Cell 7 1195–1206

    PubMed  CAS  Google Scholar 

  • Lawson C, Kaniewski W, Haley L, Rozman R, Newell C, Sanders P and Turner NE (1990) Engineering resistance to mixed virus infection in a commercial potato cultivar: resistance to potato virus X and potato virus Y in transgenic Russet Burbank. Bio/Technology 8 127–134

    Article  PubMed  CAS  Google Scholar 

  • Leah R, Tommerup H, Svendsen I and Mundy J (1991) Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J Biol Chem 266 1464–1573

    Google Scholar 

  • Lee H.-I and Raikhel NV (1995) Prohevein is poorly processed but shows enhanced resistance to a chitin-binding fungus in transgenic tomato plants. Braz J Med Biol Res 28: 743–750

    PubMed  CAS  Google Scholar 

  • Lee H, Broekaert WF and Raikhel NV (1991) Co-and post-translational processing of the hevein preproprotein of latex of the rubber tree (Hevea brasiliensis). J Biol Chem 266 15944–15948

    PubMed  CAS  Google Scholar 

  • Lerner DR and Raikhel NV (1992) The gene for stinging nettle lectin (Urtica dioica agglutinin) encodes both a lectin and a chitinase. J Biol Chem 267 11085–11091

    PubMed  CAS  Google Scholar 

  • Lilley CJ, Urwin PE, McPherson MJ and Atkinson HJ (1996) Characterisation of intestinally active proteases of cyst-nematodes. Parasitology 113 415–424

    Article  PubMed  CAS  Google Scholar 

  • Lin W, Anuratha CS, Datta K, Potrykus I, Muthukrishnan S and Datta SK (1995) Genetic engineering of rice for resistance to sheath blight. Bio/Technology 13 686–691

    Article  CAS  Google Scholar 

  • Liu D, Raghothama KG, Hasegawa PM and Bressan RA (1994) Osmotin overexpression in potato delays development of disease symptoms. Proc Natl Acad Sci USA 91 1888–1892

    Article  PubMed  CAS  Google Scholar 

  • Logemann J, Jach G, Tommerup H, Mundy J and Schell J (1992) Expression of a barley ribosome inactivating protein leads to increased fungal protection in transgenic tobacco plants. Bio/Technology 10 305–308

    Article  CAS  Google Scholar 

  • Lomonossoff GP (1995) Pathogen-derived resistance to plant viruses. Annu Rev Phytopathol 33 323–343

    Article  PubMed  CAS  Google Scholar 

  • Van Loon LC, Pierpoint WS, Boller T and Conejero V (1994) Recommendations for naming plant pathogenisis-related proteins. Plant Mol Biol Rep 12 245–264

    Article  Google Scholar 

  • Lagudah ES, Moullet O and Appels R (1997) Map-based cloning of a gene encoding a nucleotide-binding domain and a leucine-rich region at the Cre3 nematode resistance locus of wheat. Genome 40 659–665

    Article  PubMed  CAS  Google Scholar 

  • Lorito M, Harman GE, Hayes CK, Broadway RM, Tronsmo A, Woo SL and Di Pietro A (1993) Chitinolytic enzymes produced by Trichoderma harzianum: antifungal activity of purified endochitinase and chitobiosidase. Phytopathology 83 302–307

    Article  CAS  Google Scholar 

  • Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED and Tanksley SD (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262 1432–1436

    Article  PubMed  CAS  Google Scholar 

  • Mindrinos M, Katagiri F, Yu G-L and Ausubel FM (1994) The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide binding site and leucine-rich repeats. Cell 78 1089–1099

    CAS  Google Scholar 

  • Mittler R, Shulaev V and Lam E (1995) Coordinated activation of programmed cell death and defence mechanisms in transgenic tobacco plants expressing a bacterial proton pump. Plant Cell 7 29–42

    PubMed  CAS  Google Scholar 

  • Nelson RS, McCormick SM, Delannay X, Dube P, Layton J, Anderson EJ, Kaniewska M, Proksch RK, Horsch RB, Rogers SG, Fraley RT and Beachy RN (1988) Virus tolerance, plant growth, and field performance of transgenic tomato plants expressing coat proteins from tobacco mosaic virus. Bio/Technology 6 403–409

    Article  Google Scholar 

  • Neuhaus J-M, Fritig B, Linthorst HJM, Meins F, Mikkelsen JD and Ryals J (1996) A revised nomencalture for chitinase genes. Plant Mol Biol Rep 14 102–104

    Article  CAS  Google Scholar 

  • Ohl SA, van der Lee FM and Sijmons PC (1997) Anti-feeding structure approaches to nematode resistance. In: Fenoll C, Grundler FMW and Ohl SA (eds.) Cellular and Molecular Aspects of Plant-Nematode Interactions, pp 250–261, Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Opperman CH, Taylor CG and Conkling MA (1994) Root-knot nematode-directed expression of a plant root-specific gene. Science 263 221–223

    Article  PubMed  CAS  Google Scholar 

  • Ori N, Eshed Y, Paran I, Presting G, Aviv D, Tanksley S, Zamir D and Fluhr R (1997) The /2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes. Plant Cell 9 521–532

    PubMed  CAS  Google Scholar 

  • Parker JE and Coleman MJ (1997) Molecular intimacy between proteins specifying plant-pathogen recognition. Trends Biochem Sci 22 291–296

    Article  PubMed  CAS  Google Scholar 

  • Parker JE, Coleman MJ, Szabo V, Frost LN, Schmidt R, Van der Biezen EA, Moores T, Dean C, Daniels MJ and Jones JDG (1997) The Arabidopsis downy mildew resistance gene Rpp5 shares similarity to the Toll and interleukin-1 receptors with N and L6. Plant Cell 9 879–894

    Article  PubMed  CAS  Google Scholar 

  • Ponstein AS, Bres-Vloemans SA, Sela-Buurlage MB, Van den Elzen PJM, Melchers LS and Cornelissen BJC (1994) A novel pathogen-and wound-inducible tobacco (Nicotiana tabacum) protein with antifungal activity. Plant Physiol 104 109–118

    Article  PubMed  CAS  Google Scholar 

  • Powell-Abel P, Nelson RS, Nelson De B, Hoffman N, Rogers SG, Fraley RT and Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232 738–743

    Article  Google Scholar 

  • Rosso MN, Schouten A, Roosien J, Borstvrenssen T, Hussey RS, Gommers FJ, Bakker J, Schots A and Abad P (1996) Expression and functional characterisation of a single chain FV antibody directed against secretions involved in plant nematode infection process. Biochem Biophys Res Comm 220 255–263

    Article  PubMed  CAS  Google Scholar 

  • Ryan CA (1990) Protease inhibitors in plants: genes for improving defences against insects and pathogens. Annu Rev Phytopathol 28 425–429

    Article  CAS  Google Scholar 

  • Salmeron JM, Oldroyd GED, Rommens CMT, Scofield SR, Kim HS, Lavelle DT, Dahlbeck D and Staskawicz BT (1996) Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes.and lies embedded within the Pto kinase gene cluster. Cell 86 123–133

    Article  PubMed  CAS  Google Scholar 

  • Schots A, De Boer, J, Schouten A, Roosien J, Zilvertant JF, Pomp H, Bouwman-Smits L, Overmars H, Gommers FJ, Visser B, Stiekema WJ and Bakker J (1992) Plantibodies: a flexible approach to design resistance against pathogens. Neth J. Plant Pathol 98 183–191

    Article  CAS  Google Scholar 

  • Simons G (1997) Map based cloning of the I2 and Mi genes from tomato, and the Mlo gene from barley. Abstract EMBO workshop: Plant diseases resistance gene function. Maratea, Italy, May 18-20

    Google Scholar 

  • Simons G, Groenendijk J, Wijbrani J, Reijans M, Groenen J, Diergaarde P, van der Lee T, Bleeker M, Onstenk J, de Both M, Haring M, Mes J, Cornelissen B, Zabeau M and Vos P (1998) Dissection of the Fusarium I2 gene cluster in tomato reveals six homologs and one active gene copy. Plant Cell 10 1055–1068

    PubMed  CAS  Google Scholar 

  • Song W-Y, Wang G-L, Chen L-L, Kim H-S, Pi L-Y, Holsten T, Gardner J, Wang B, Zhai W-X, Zhu L-H, Fauquet C and Ronald PC (1995) A receptor kinase-like protein encoded by the rice disease resistance gene Xa21 Science 270 1804–1806

    Article  PubMed  CAS  Google Scholar 

  • Stirpe F, Barbieri L, Battelli LG, Soria M and Lappi DA (1992) Ribosome-inactivating proteins from plants: present status and future prospects. Bio/Technology 10 405–412

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter G, Janssens J, Opsomer C and Botterman J (1995) Inhibition of fungal disease development in plants by engineering controlled cell death. Bio/Technology 13 1085–1089

    Article  CAS  Google Scholar 

  • Strittmatter G, Gheysen G, Gianninazzi-Pearson V, Hahn K, Niebel A, Rohde W and Tacke E (1996) Infections with various types of organisms stimulate transcription from a short promoter fragment of the potato gst1 gene. Mol Plant-Microbe Interact 9 68–73

    Article  PubMed  CAS  Google Scholar 

  • Stuiver MH, Tigelaar H, Molendijk L, Troost-van De venter E, Sela-Buurlage MB, Storms J, Plooster L, Sijbolts F, Custers J, Apotheker-de Groot M and Melchers LS (1996) Broad spectrum resistance in transgenic carrot plants. In: Stacey G, Mullin B, and Gresshoff PM (eds) 8 th International Congress Molecular Plant-Microbe Interactions, Knoxville, TN, p. B–93

    Google Scholar 

  • Taschner PE, Van Marie G, Brederode FT, Turner NE and Bol JF (1994) Plants transformed with a mutant alfalfa mosaic virus coat protein gene are resistant to the mutant but not to wild-type virus. Virology 203 269–276

    Article  PubMed  CAS  Google Scholar 

  • Tang X, Frederick RD, Zhou J, Halterman DA, Jia Y and Martin GB (1996) Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science 274 2060–2963

    Article  PubMed  CAS  Google Scholar 

  • Tavladoraki P, Benvenuto E, Trinca S, De Martinis D, Cattaneo A and Galeffi P (1993) Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 366 469–472

    Article  PubMed  CAS  Google Scholar 

  • Thilmony RL, Chen Z, Bressan RA and Martin GB (1995) Expression of the tomato Pto gene in tobacco enhances resistance to Pseudomonas syringae pv tabaci expressing avrPto. Plant Cell 7 1529–1536

    PubMed  CAS  Google Scholar 

  • Tricoli DM, Carney KJ, Russell PF, McMaster JR, Groff DW, Hadden KC, Himmel PT, Hubbard JP, Boeshore ML and Quemada HD (1995) Field evaluation of transgenic squash containing single or multiple virus coat protein gene constructs for resistance to cucumber mosaic virus, watermelon mosaic virus 2 and zucchini yellow mosaic virus. Bio/Technology 13 1458–1465

    Article  CAS  Google Scholar 

  • Tsugita A (1971) Phage lysozyme and other lytic enzymes. In: Boyer PD (ed) The Enzymes, Vol 5, pp 344–411. Academic Press, New York

    Google Scholar 

  • Urwin PE, Atkinson HJ, Waller DA and McPherson MJ (1995) Engineered oryzacystatin-I expressed in transgenic hairy roots confers resistance to Globodera pallida. Plant J 8 121–131

    Article  PubMed  CAS  Google Scholar 

  • Urwin PE, Lilley CJ, McPherson MJ and Atkinson HJ (1997) Resistance to both cyst and root-knot nematodes conferred by transgenic Arabidopsis expressing a modified plant cystatin. Plant J 12 455–461

    Article  PubMed  CAS  Google Scholar 

  • Vierheilig H, Alt M, Neuhaus JM, Boller T and Wiemke A (1993) Colonization of transgenic Nicotiana sylvestris plants expressing different forms of Nicotiana tabacum chitinase, by the root pathogen Rhizoctonia solani and by the mycorrhizal symbiont Glomus mosseae. Mol Plant Microbe Interact 6 261–264

    Article  CAS  Google Scholar 

  • Voss A, Niersbach M, Hain R, Hirsch HJ, Liao YC, Kreuzaler F and Fischer R (1995) Reduced virus infectivity in N. tabacum secreting TMV-specific full-size antibody. Mol Breeding 1 39–50

    CAS  Google Scholar 

  • Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C and Baker B (1994) The product of the tobacco mosaic virus resistance gene N: similarity to Toll and the interleukine-1 receptor. Cell 78 1101–1115

    Article  PubMed  CAS  Google Scholar 

  • Whitham S, McCormick S and Baker B (1996) The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc Natl Acad Sci USA 93 8776–8781

    Article  PubMed  CAS  Google Scholar 

  • Van der Wilk F, Postumus-Lutke Willink D, Huisman MJ, Huttinga H and Goldbach R (1991) Expression of the potato leafroll luteovirus coat protein gene in transgenic potato plants inhibits viral infection. Plant Mol Biol 17 431–439

    Article  PubMed  Google Scholar 

  • De Wit PJGM (1992) Molecular characterization of gene-for-gene systems in plant fungus interactions and the application of avirulence genes in control of plant pathogens. Annu Rev Phytopathol 30 391–481

    Article  PubMed  Google Scholar 

  • De Wit PJGM (1995) Fungal avirulence genes and plant resistance genes: unraveling the molecular basis of gene-for-gene interactions. In: Andrews JH and Tummerup IC (eds) Botanical Research, Vol 21, pp 147–185. Academic Press Limited, London

    Google Scholar 

  • De Wit PJGM and Van Vloten-Doting L (1993) General introduction to biotechnology in plant breeding and crop protection. In: Vuijk DH, Dekkers JJ and Van der Plas HC (eds) Developing Agricultural Biotechnology in the Netherlands, pp. 19–23, Pudoc Scientific, Wageningen.

    Google Scholar 

  • Woloshuk CP, Meulenhoff EJS, Sela-Buurlage M, Van den Elzen PJM and Cornelissen BJC (1991) Pathogeninduced proteins with inhibitory activity toward Phytophthora infestans. Plant Cell 3 619–628

    PubMed  CAS  Google Scholar 

  • Wu G, Shortt BJ, Lawrence EB, Levine EB, Fitzsimmons KC and Shah DM (1995) Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants. Plant Cell 7 1357–1368

    PubMed  CAS  Google Scholar 

  • Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang Z-X, Kono I, Kurata N, Yano M and Sasaki T (1997) Map-based cloning of Xa-1, a bacterial blight resistance gene in rice. 5th International Congress of Plant Molecular Biology, Singapore, abstract 613.

    Google Scholar 

  • Zhu Q, Maher EA, Masoud S, Dixon RA and Lamb CJ (1994) Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Bio/Technology 12 807–812

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cornelissen, B.J.C., Schram, A. (2000). Transgenic Approaches to Control Epidemic Spread of Diseases. In: Slusarenko, A.J., Fraser, R.S.S., van Loon, L.C. (eds) Mechanisms of Resistance to Plant Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3937-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3937-3_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0399-8

  • Online ISBN: 978-94-011-3937-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics